
Sample Problems for the 6th Quiz (April 15, 2021)

Corrections to Sample Problems for Quiz 5:

• Problem 1(c): We provide more detail for its solution.

. . . Thus, no overmodulation dictates

0 ≤ 1 + kam(t) =

{
1− kat, 0 ≤ t < 1;

1 + 3kat− 4ka, 1 ≤ t < 2

which implies

min

{
inf

0≤t<1
(1− kat), inf

1≤t<2
(1 + 3kat− 4ka)

}
= min {1− ka, 1− ka} ≥ 0

Accordingly, when 1− ka ≥ 0, no overmodulation occurs.

• Problem 1(d): The problem statement does not coincide with the answer. I therefore
change it to, “Will the answer be the same as (c) if one requires |kam(t)| ≤ 1 to ensure no
overmodulation for DSB-C?

• Problem 2(e): The solution should be corrected as

S(f) = · · ·
=

1

2
��̃M M+(f − fc) +

1

2
�
�̃M∗ M∗

+(−f − fc)

• Problem 2(f): The problem statement as well as the solution should be corrected as

S(f) = · · ·

=




M(f − fc), f > fc
1
2
M(0), f = fc

0, −fc < f < fc
1
2
M∗(0), f = −fc

�
�1
2
M∗(−f − fc), f < −fc

(This follows from (c).)

=




M(f − fc), f > fc
1
2
M(0), f = fc

0, −fc < f < fc
1
2
M(0), f = −fc

�
�1
2
M(f + fc), f < −fc

• Problem 3(b): For upper-sideband SSB,

F{X} = · · ·(
=

{
1
2
M(f)e−jφ, f > 0;

1
2
M(f)ejφ, f < 0

)

1



Similarly, for lower sideband SSB, we obtain

1

2
(M(f) = · · ·(

=

{
1
2
M(f)ejφ, f > 0;

1
2
M(f)e−jφ, f < 0

)

• Problem 6: Eq. (2) should be Denoting


aT (y) �
1

2T

∫ T

T−y

E[X(x+ y)X∗(x)]dx

bT (y) �
1

2T

∫ −T−y

−T

E[X(x+ y)X∗(y)]dx

cT (y) �
1

2T

∫ T

−T

E[X(x+ y)X∗(y)]dx

(1)

1. (a) The modulated signal to be transmitted via antenna is modeled as

s(t) = Re
{
[sI(t) + jsQ(t)]e

j2πfct
}
.

Place sI(t), sQ(t), cos(2πfct) and sin(2πfct) onto the four ( ) in the below figure
such that s(t) can be synthesized.

( )

( )

�⊗
�

( )

�⊗
�

( ) ��
��

� s(t)
+

−

(b) Under perfect synchronization, determine the modulation output oI(t).

s(t) = sI(t) cos(2πfct)
−sQ(t) sin(2πfct)

�⊗
�

2 cos(2πfct)

� Ideal lowpass
filter

� oI(t)

(c) Suppose the value of φ can be perfectly estimated via a separate low-power pilot tone,
and hence is known to the receiver. Show that we can recover sI(t) from oI(t) and
oQ(t).

s(t) = sI(t) cos(2πfct)
−sQ(t) sin(2πfct)

�

�⊗
�

−2 sin(2πfct + φ)

�⊗
�

2 cos(2πfct+ φ)

�

� Ideal lowpass
filter

Ideal lowpass
filter

�

�

oQ(t)

oI(t)
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(d) The transmitter now adds a separate pilot tone to the transmission signal as

s(t) = Re
{
(sI(t) + jsQ(t) + Ap cos(2πfpt))e

j2πfct
}
.

Note that we do not addApe
j2πfpt as in Sample Problem 3(d) for Quiz 5 but Ap cos(2πfpt).

What will be oI(t) and oQ(t) based on the canonical receiver in (c)?

Solution.

(a)

sQ(t)

sI(t)

�⊗
�

sin(2πfct)

�⊗
�

cos(2πfct) ��
��

� s(t)
+

−

(b) I provide two solutions. Solution 1 follows the receiver structure in a step-by-step
manner, while Solution 2 is based on s(t) = Re{s̃(t)ej2πfct}.
(Solution 1)

s(t) · 2 cos(2πfct) = 2sI(t) cos(2πfct) cos(2πfct)− 2sQ(t) sin(2πfct) cos(2πfct)

= sI(t) + sI(t) cos(4πfct)− sQ(t) sin(4πfct)︸ ︷︷ ︸
high freq. components

.

After filtering out the two high frequency components, we obtain oI(t) = sI(t).

(Solution 2) We can equivalently “imagine” that the receiver demodulates the modu-
lated signal with receiver carrier ej2πfct (we do not need to use 2ej2πfct as in Sample
Problem 3 for Quiz 5 because we multiply cos(2πfct) and sin(2πfct) by 2), and then
use the “reformulation trick” to obtain

s(t) = Re

{
(sI(t) + jsQ(t))︸ ︷︷ ︸

X+jY

ej2πfct
}
.

Hence, X = sI(t).

Note: Under perfect synchronization, the coherent receiver can recover sI(t) for all
modulations listed below. Note that DSC-C and VSB-C can also be recovered by an
envelop detector.

Modulations sI(t) sQ(t)
DSC-C 1 + kam(t) 0
DSB-SC m(t) 0
SSB m(t) m̂(t) Upper sideband transmission
SSB m(t) −m̂(t) Lower sideband transmission
VSB 1

2
m(t) 1

2
m′(t) Slide 4-46

VSB-C 1
2
[1 + kam(t)] 1

2
kam

′(t) Slide 4-51
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(c) (Solution 1) We derive

s(t) · 2 cos(2πfct + φ) = 2sI(t) cos(2πfct) cos(2πfct+ φ)

−2sQ(t) sin(2πfct) cos(2πfct+ φ)

= sI(t) cos(φ) + sI(t) cos(4πfct+ φ)

−sQ(t) sin(4πfct + φ) + sQ(t) sin(φ)

and

s(t)× (− 2 sin(2πfct+ φ)
)

= −2sI(t) cos(2πfct) sin(2πfct + φ)

+2sQ(t) sin(2πfct) sin(2πfct+ φ)

= −sI(t) sin(φ)− sI(t) sin(4πfct + φ)

+sQ(t) cos(φ)− sQ(t) sin(4πfct+ φ),

Passing the above two signals via a lowpass filter, we obtain{
oI(t) = sI(t) cos(φ) + sQ(t) sin(φ)

oQ(t) = −sI(t) sin(φ) + sQ(t) cos(φ)

Under the premise that φ can be perfectly estimated, we can recover sI(t) via

sI(t) = oI(t) cos(φ)− oQ(t) sin(φ).

(Solution 2) Considering

s(t) = Re

{
(sI(t) + jsQ(t))e

−jφ︸ ︷︷ ︸
X+jY

ej(2πfct+φ)

}
,

we obtain
oI(t) = X = sI(t) cos(φ) + sQ(t) sin(φ)

and
oQ(t) = Y = −sI(t) sin(φ) + sQ(t) cos(φ).

Under the premise that φ can be perfectly estimated, we can recover sI(t) via

sI(t) = oI(t) cos(φ)− oQ(t) sin(φ).

(d) We directly adopt (Solution 2).

s(t) = Re

{
(sI(t) + jsQ(t) + Ap cos(2πfpt))e

−jφ︸ ︷︷ ︸
X+jY

ej(2πfct+φ)

}
.

Hence, we obtain

oI(t) = X = sI(t) cos(φ) + Ap cos(2πfpt) cos(φ) + sQ(t) sin(φ)

and
oQ(t) = Y = −sI(t) sin(φ)−Ap cos(2πfpt) sin(φ) + sQ(t) cos(φ).
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Note: By a bandpass filter, we can further obtain:

sI(t) cos(φ) + sQ(t) sin(φ)

−sI(t) sin(φ) + sQ(t) cos(φ)

Ap cos(2πfpt) cos(φ)

−Ap cos(2πfpt) sin(φ)

provided fp is larger than W , where W is the bandwidth of sI(t) and sQ(t). Then we
can use the latter two to have an estimate of (or to control) the phase.

2. (VSB with Carrier) Suppose s(t) = Re
{
(
√
2[1 + kam(t)] + j

√
2kam

′(t))ej2πfct
}
.

(a) Find the output of an envelope detector (that is structured with a squarer, an ideal
lowpass filter and a square rooter) due to input s(t).

(b) Find m′(t), provided m(t) = cos(2πfmt) and LQ(f) =



1, f < −fv;

− f
fv
, |f | ≤ |fv|;

−1, f > fv.

Note: From Slide 4-46, M ′(f) = −jM(f)LQ(f), where M ′(f) = F{m′(t)} and
M(f) = F{m(t)}.

(c) Slide 4-51 states that the distortion of VSB with Carrier can be compensated by
reducing the amplitude sensitivity ka or increasing the width of the vestigial sideband
W + fv. Show that the distortion term k2

a(m
′(t))2 in (b) is proportional to k2

a/f
2
v ,

provided fv ≥ fm.

Solution.

(a)

s2(t) =
(√

2(1 + kam(t)) cos(2πfct)−
√
2kam

′(t) sin(2πfct)
)2

= 2(1 + kam(t))2 cos2(2πfct) + 2k2
a(m

′(t))2 sin2(2πfct)

−4(1 + kam(t)) cos(2πfct) · kam′(t) sin(2πfct)

After passing s2(t) through an ideal lowpass filter, we obtain

(1 + kam(t))2 + k2
a(m

′(t))2.

The last stage of square rooter then gives√
(1 + kam(t))2 + k2

a(m
′(t))2.

(b)

M ′(f) = −jM(f)LQ(f) (Slide 4-46)

= −j
δ(f − fm) + δ(f + fm)

2
LQ(f)

=
LQ(fm)δ(f − fm) + LQ(−fm)δ(f + fm)

2j
(LQ(f) = −LQ(−f))

= LQ(fm)
δ(f − fm)− δ(f + fm)

2j
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Hence, m′(t) = LQ(fm) sin(2πfmt) =

{
−fm

fv
sin(2πfmt), fm ≤ fv

− sin(2πfmt), fm > fv

Note: We can combine the two cases and write m′(t) =−min
{
fm
fv
,1
}
sin(2πfmt). Also,

in the (Fourier) frequency domain, we need to specify the value of, e.g., LQ(f) not
just for f ≥ 0 but also for f < 0. However, in the time domain, fm and fv can never
be negative! In fact, this is another difference between the instantaneous frequency
and the Fourier frequency. The former can never be negative while the latter ranges
over the entire real line.

(c) Just take the result in (b) into the distortion term:

k2
a(m

′(t))2 = k2
a

f 2
m

f 2
v

sin2(2πfmt)

Note: In general, k2
a(m

′(t))2 = k2
a min{ f2

m

f2
v
, 1} sin2(2πfmt). The result demonstrates

that the amount of distortion varies with fm. As a result, the higher frequency part
of a TV signal experiences more distortion than its lower frequency part.

3. (Instantaneous frequency and Fourier frequency) The instantaneous frequency and the
Fourier frequency are two different notions.

The instantaneous frequency is the operational frequency usually obtained from the
spacing between adjacent crossings with respect to the mid-value of a signal (because this
is what we observe instantaneously from the curve). For a signal of the shape cos(2πφ(t)),
the instantaneous frequence can be obtained from d

dt
φ(t).

The Fourier frequency, however, is an “imaginary” quantity for convenience of decom-
posing a signal into pieces that it is made of. In 1822, Joseph Fourier found that some nice
function g(t) could be expressed as a linear combination of harmonics {cos(2π nf0t)}n integer,
i.e.,

g(t) =

∞∑
n=0

cn cos(2π nf0t) =

∞∑
n=0

cn
(e−j2π nf0t + ej2π nf0t)

2
=

∞∑
n=−∞

G(n f0)e
−j2π nf0,

where G(nf0) +G(−nf0) = G(nf0) +G∗(nf0) = cn
2
. An extension of the nice expression is

the Fourier transform:

g(t) =

∫ ∞

−∞
G(f)e−j2πftdt.

It is useful in the analysis of communication systems because we can transform the convo-
lution operation of a signal and an impulse response (which occurs often in practice) into
a multiplication of their Fourier pieces.

We now demonstrate how nonlinearity induces (Fourier) harmonics.

(a) How many (Fourier) harmonics can be obtained at the functional output y(t) = f(x(t))
when a single tone x(t) = cos(2πf0t) is fed into it, if f(x(t)) = x2(t)? List the
harmonics of the functional output. What is the Hilbert transform of the functional
output? What is the instantaneous frequency of the functional output?
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Hint:1 H{cos(2πkf0t)} = sin(2πkf0t)

(b) Answer the same questions as in (a) except the one about the instantaneous frequency
if f(x(t)) = x3(t).

(c) Answer the same questions as in (b) if f(x(t)) = 1 + x(t) + x2(t) + x3(t).

(d) How many (Fourier) harmonics can be obtained at the functional output

f(x(t)) = cos

(
2πfct+ 2πkf

∫ t

0

x(τ)dτ

)

when a single tone cos(2πf0t) is fed into it? What is the Hilbert transform of the
functional output? What is the instantaneous frequency of the functional output?

Hint: ejβ sin(φ) =
∑∞

n=−∞ Jn(β)e
jnφ and J−n(β) = (−1)nJn(β).

Solutions.

(a) We must decompose cos2(2πf0t) into a linear combination of harmonics as did by
Joseph Fourier. As a result of

cos2(2πf0t) =
1

2
+

1

2
cos(2π(2f0)t),

two harmonics, i.e., 1 and cos(4πf0t), are induced by nonlinear functional operation
f(x(t)) = x2(t). With the Fourier decomposition, the Hilbert transform of cos2(2πf0t)
is straightforwardly

H{cos2(2πf0t)} = 0 +
1

2
sin(2π(2f0)t) = sin(4πf0t).

By the constant spacing of 1/2-crossings, the instantaneous frequency of cos2(2πf0t)
is a constant equal to 2f0.

(b) As a result of

cos3(2πf0t) =
3

4
cos(2πf0t) +

1

4
cos(2π(3f0)t),

two harmonics, i.e., cos(2πf0t) and cos(2π(3f0)t), are induced by nonlinear functional
operation f(x(t)) = x3(t). With the Fourier decomposition, the Hilbert transform of
cos3(2πf0t) is straightforwardly H{cos3(2πf0t)} = 3

4
sin(2πf0t) +

1
4
sin(2π(3f0)t).

Note: cos3(2πf0t) actually have the same constant zero-crossing spacing as cos(2πf0t).
But its instantaneous frequency, e.g., at t = 0 is apparently faster than f0. No widely
acceptable definition of instantaneous frequency for a signal of different shape from
cos(2πφ(t)) has been proposed in the literature.

1

H{cos(2πkf0t)} = (−jsgn(f))F{cos(2πkf0t)} = (−jsgn(f))
δ(f − kf0) + δ(f + kf0)

2

=
sgn(f) δ(f − kf0) + sgn(f) δ(f + kf0)

2j
=

δ(f − kf0)− δ(f + kf0)

2j
= sin(2πkf0)
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(c) As a result of

1 + cos(2πf0t) + cos2(2πf0t) + cos3(2πf0t)

=
3

2
+

7

4
cos(2πf0t) +

1

2
cos(2π(2f0)t) +

1

4
cos(2π(3f0)t)

four harmonics, i.e., 1, cos(2πf0t), cos(2π(2f0)t) and cos(2π(3f0)t), are induced by
nonlinear functional operation f(x(t)) = 1 + x(t) + x2(t) + x3(t). The Hilbert trans-
form of this functional output is straightforwardly H{1 + cos(2πf0t) + cos2(2πf0t) +

cos3(2πf0t)} =
�
�3

2
+7

4
sin(2πf0t) +

1
2
sin(2π(2f0)t) +

1
4
sin(2π(3f0)t).

Note: From (a), (b) and (c), you shall realize how nonlinearity induces (Fourier)
harmonics. For a functional f(x(t)) = a0 + a1x(t) + · · · + anx

n(t) + · · · , infinite
number of harmonics {cos(2πnf0t)}∞n=0 may be induced at its output.

(d) First, we derive 2πkf
∫ t

0
x(τ)dτ =

kf
f0
sin(2πf0t). Then, with β =

kf
f0
, we have

cos(2πfct+ β sin(2πf0t))

=
1

2

(
ej2πfctejβ sin(2πf0t) + e−j2πfctejβ sin(−2πf0t)

)
=

1

2

(
ej2πfct

∞∑
n=−∞

Jn(β)e
jn(2πf0t) + e−j2πfct

∞∑
n′=−∞

Jn′(β)ejn
′(−2πf0t)

)

=
∞∑

n=−∞
Jn(β) cos(2πfct + 2πnf0t)

Thus, those Fourier harmonics in {cos(2π(fc + nf0)f)}∞n=−∞ are induced at the func-
tional output. With the Fourier decomposition, the Hilbert transform of cos(2πfct+
β sin(2πf0t)) is straightforwardly

H{cos(2πfct+β sin(2πf0t))} =
∞∑

n=−∞
Jn(β) sin(2πfct+2πnf0t) = sin(2πfct+β sin(2πf0t)),

where

sin(2πfct+ β sin(2πf0t))

=
1

2j

(
ej2πfctejβ sin(2πf0t) − e−j2πfctejβ sin(−2πf0t)

)
=

1

2j

(
ej2πfct

∞∑
n=−∞

Jn(β)e
jn(2πf0t) − e−j2πfct

∞∑
n′=−∞

Jn′(β)ejn
′(−2πf0t)

)

=

∞∑
n=−∞

Jn(β) sin(2πfct+ 2πnf0t).

The instantaneous frequency of cos(2πφ(t)) = cos(2πfct+ β sin(2πf0t)) is given by

fi(t) =
d

dt
φ(t) = fc +

β

2π
2πf0 cos(2πf0t) = fc + kf cos(2πf0t).
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4. The time-averaged PSD of a deterministic signal x(t) can be obtained via

S̄X(f) = lim
T→

1

2T
X(f)X∗

2T (f)

where X(f) andX2T (f) are the Fourier transforms of x(t) and x(t)·1{|t| < T}, respectively.
(a) Show that if

X(f) =

∞∑
n=−∞

Jn · [δ(f −mW︸︷︷︸
fc

−nW ) + δ(f +mW︸︷︷︸
fc

+nW )] for m fixed,

where Jn is a real number satisfying J−n = (−1)nJn, then

S̄X(f) =

∞∑
k=−∞

Jk (Jk + (−1)kJ2m+k) [δ(f −mW − kW ) + δ(f +mW + kW )]

Hint: X2T (f) = X(f) � 2T sinc(2Tf), where “�” is the convolution operation.

(b) Determine
∫∞
−∞ S̄X(f)df , provided

∑∞
n=−∞ J2

n = 1.

Solution.

(a)

X2T (f) = X(f) � 2T sinc(2Tf)

=

( ∞∑
n=−∞

Jn · [δ(f −mW − nW ) + δ(f +mW + nW )]

)
� 2T sinc(2Tf)

=
∞∑

n=−∞
Jn ·

[
2T sinc(2T (f −mW − nW )) + 2T sinc(2T (f +mW + nW ))

]
.
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Therefore,

S̄X(f) = lim
T→∞

1

2T
X(f)X∗

2T (f)

= lim
T→∞

[ ∞∑
k=−∞

Jk · [δ(f −mW − kW ) + δ(f +mW + kW )]

]
[ ∞∑
n=−∞

Jn ·
[
sinc(2T (f −mW − nW )) + sinc(2T (f +mW + nW ))

]]

= lim
T→∞

[ ∞∑
k=−∞

∞∑
n=−∞

JkJn · δ(f −mW − kW )sinc(2T (f −mW − nW ))

+
∞∑

k=−∞

∞∑
n=−∞

JkJn · δ(f −mW − kW )sinc(2T (f +mW + nW ))

+
∞∑

k=−∞

∞∑
n=−∞

JkJn · δ(f +mW + kW )sinc(2T (f −mW − nW ))

+

∞∑
k=−∞

∞∑
n=−∞

JkJn · δ(f +mW + kW )sinc(2T (f +mW + nW ))

]

= lim
T→∞

[ ∞∑
k=−∞

∞∑
n=−∞

JkJn · δ(f −mW − kW )sinc(2T (mW + kW −mW − nW ))

+

∞∑
k=−∞

∞∑
n=−∞

JkJn · δ(f −mW − kW )sinc(2T (mW + kW +mW + nW ))

+
∞∑

k=−∞

∞∑
n=−∞

JkJn · δ(f +mW + kW )sinc(2T (−mW − kW −mW − nW ))

+
∞∑

k=−∞

∞∑
n=−∞

JkJn · δ(f +mW + kW )sinc(2T (−mW − kW +mW + nW ))

]
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= lim
T→∞


 ∞∑

k=−∞

∞∑
n=−∞

JkJn · δ(f −mW − kW ) sinc(2TW (k − n))︸ ︷︷ ︸
n=k

+

∞∑
k=−∞

∞∑
n=−∞

JkJn · δ(f −mW − kW ) sinc(2TW (2m+ k + n))︸ ︷︷ ︸
n=−2m−k

+
∞∑

k=−∞

∞∑
n=−∞

JkJn · δ(f +mW + kW ) sinc(2TW (−2m− k − n))︸ ︷︷ ︸
n=−2m−k

+

∞∑
k=−∞

∞∑
n=−∞

JkJn · δ(f +mW + kW ) sinc(2TW (−k + n))︸ ︷︷ ︸
n=k




(Note that sinc(x) = 0 for all non-zero integers x.)

=
∞∑

k=−∞
J2
k · δ(f −mW − kW ) +

∞∑
k=−∞

JkJ−2m−k · δ(f −mW − kW )

+
∞∑

k=−∞
JkJ−2m−k · δ(f +mW + kW ) +

∞∑
k=−∞

J2
k · δ(f +mW + kW )

=

∞∑
k=−∞

Jk (Jk + (−1)kJ2m+k) [δ(f −mW − kW ) + δ(f +mW + kW )]

(b) ∫ ∞

−∞
S̄X(f)df =

∫ ∞

−∞

( ∞∑
k=−∞

Jk (Jk + (−1)kJ2m+k)

[δ(f −mW − kW ) + δ(f +mW + kW )]

)
df

=

∞∑
k=−∞

Jk (Jk + (−1)kJ2m+k)

= 2 + 2
∞∑

k=−∞
(−1)kJkJ2m+k
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