
Sample Problems for the 5th Quiz (April 8, 2021)

Q&A

• Some students ask why

|g̃(t)| = |g̃+(t)| = |g(t) + jĝ(t)| =
√
g2I (t) + g2Q(t)

is called “envelope” of g(t) in Slide 3-17 and whether we can “visualize” this “envelope”
(as it is so named) from g(t). The answer is yes if fc � W as in Slide 4-8, where W is
essentially the bandwidth of g̃(t). We can visualize the trace of |g̃(t)| from the curve of g(t)
because

g(t) = gI(t) cos(2πfct)− gQ(t) sin(2πfct)

=
√

g2I (t) + g2Q(t) cos

(
2πfct + arctan

(
gQ(t)

gI(t)

))
≈

√
g2I (t) + g2Q(t) cos(2πfct) if fc � W.

Note that if fc � W does not hold, then the trace of |g̃(t)| may be non-visualized due to

the phase adjustment of arctan
(

gQ(t)

gI(t)

)
.

1. (DSB-C or AM) Let the modulated signal for DSB-C be given by

s(t) =
√
2 [1 + kam(t)] cos(2πfct).

(a) Show that the Fourier transform of s(t) is

S(f) =

√
2

2
(δ(f − fc) + δ(f + fc)) +

√
2ka
2

(M(f − fc) +M(f + fc)) ,

where M(f) is the Fourier transform of m(t).

(b) Upon reception of s(t), the receiver first performs squaring operation, i.e.,

s2(t) = 2[1 + kam(t)]2 cos2(2πfct) = [1 + kam(t)]2(1 + cos(4πfct)),

followed by an ideal lowpass filter to obtain

[1 + kam(t)]2.

Then, a simple square-rooter produces an output r(t) = 1 + kam(t). The receiver
can thus perfectly recover m(t) by performing 1

ka
(r(t) − 1). Is there any additional

technical requirement that needs to be mentioned here?

(c) Now suppose

m(t) =

{
−t, 0 ≤ t < 1;

3t− 4, 1 ≤ t < 2.

What is the range of the modulation index ka over which no overmodulation for DSB-C
occurs?

Note: ka must be a positive number.
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(d) Will the answer be the same as (c) if one requires |kam(t)| ≤ 1 to ensure no overmod-
ulation for DSB-C?

Solution.

(a)

S(f) = F
{√

2 cos(2πfct) +
√
2kam(t) cos(2πfct)

}
=

√
2F {cos(2πfct)} +

√
2kaF {m(t)} � F {cos(2πfct)}

=

√
2

2
(δ(f − fc) + δ(f + fc)) +

√
2kaM(f) �

1

2
(δ(f − fc) + δ(f + fc))

=

√
2

2
(δ(f − fc) + δ(f + fc)) +

√
2ka
2

(M(f − fc) +M(f + fc))

(b) The square-rooter actually gives
∣∣1 + kam(t)

∣∣, instead of
(
1 + kam(t)

)
. Thus, if

1 + kam(t) < 0, overmodulation occurs; as a result, such a simple and inexpensive
envelop detector cannot recover m(t) if 1 + kam(t) < 0 for some t.

Note: Overmodulation in Slide 4-6 is “bad” for DSB-C mainly because one wishes
to use simple “squarer+lowpass filter+square rooter” to recover m(t). If a more
sophisticated circuit, such as coherent detection, is realized, overmodulation will not
be a problem for a receiver.

Also note that this envelop detector, ideally, will not have the non-visualized en-
velop problem as long as fc > 2W . For detail, please see Problem 4.

(c) Overmodulation for DSB-C occurs when 1 + kam(t) < 0. Thus, no overmodulation
dictates

0 ≤ 1 + kam(t) =

{
1− kat, 0 ≤ t < 1;

1 + 3kat− 4ka, 1 ≤ t < 2

which implies

min

{
inf

0≤t<1
(1− kat), inf

1≤t<2
(1 + 3kat− 4ka)

}
= min {1− ka, 1− ka} ≥ 0

Accordingly, when 1 − ka ≥ 0, no overmodulation occurs. The answer to this sub-
problem is therefore 0 < ka ≤ 1.

(d) It is clear that

1 ≥ |kam(t)| =
{
|ka · (−t)|, 0 ≤ t < 1;

|ka · (3t− 4)|, 1 ≤ t < 2

implies |2ka| ≤ 1. Hence, the answer is 0 < ka ≤ 1
2
. The new condition is much

stronger than the one in (c).

2. (Hilbert transform and SSB) Suppose m(t) is a real-valued signal. Denote by M(f) its
Fourier transform (thus, M(f) = M∗(−f)).

(a) Let m̂(t) be the Hilbert transform ofm(t). Give the relation of their Fourier transforms
M(f) and M̂(f)? Is |M(f)| = |M̂(f)|?
Hint: HHilbert(f) = −jsgn(f)
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(b) Give the range of frequency f such that jM̂(f) = M(f), and also give the range of
frequency f such that jM̂(f) = −M(f).

(c) Let m+(t) = m(t) + jm̂(t), and denote by M+(f) the Fourier transform of m+(t).
Give the range of frequency f such that M+(f) = 2M(f), and also give the range of
frequency f such that M+(f) = 0.

(d) Let m−(t) = m(t) − jm̂(t), and denote by M−(f) the Fourier transform of m−(t).
Give the range of frequency f such that M−(f) = 2M(f), and also give the range of
frequency f such that M−(f) = 0.

(e) Show that the Fourier transform of

s(t) = Re{m+(t)e
j2πfct}

can be written as

S(f) =
1

2
M+(f − fc) +

1

2
M∗

+(−f − fc).

(f) Use (c) and (e) to show that

S(f) =




M(f − fc), f > fc
1
2
M(0), f = fc

0, −fc < f < fc
1
2
M(0), f = −fc

M(f + fc), f < −fc

(g) Derive (f) directly from

s(t) = m(t) cos(2πfct)− m̂(t) sin(2πfct).

Hint:

F{cos(2πfct)} =
1

2
(δ(f − fc) + δ(f + cc))

and

F{sin(2πfct)} =
1

2j
(δ(f − fc)− δ(f + cc))

Solution.

(a) M̂(f) = −jsgn(f)M(f); hence, |M̂(f)| = |M(f)| (except f = 0).

(b)

jM̂(f) = sgn(f)M(f) =



M(f), f > 0;

0, f = 0;

−M(f), f < 0

Thus, jM̂(f) = M(f) when f > 0 and jM̂(f) = −M(f) when f < 0.

3



(c)

M+(f) = M(f) + j M̂(f)

= M(f) + j (−jsgn(f))M(f)

= M(f) + sgn(f)M(f)

=



2M(f), f > 0;

M(f), f = 0;

0, f < 0

Thus, M+(f) = 2M(f) when f > 0 and M+(f) = 0 when f < 0.

(d)

M−(f) = M(f)− j M̂(f)

= M(f)− j (−jsgn(f))M(f)

= M(f)− sgn(f)M(f)

=



0, f > 0;

M(f), f = 0;

2M(f), f < 0

Thus, M−(f) = 2M(f) when f < 0 and M−(f) = 0 when f > 0.

(e)

S(f) =

∫ ∞

−∞
Re{m+(t)e

j2πfct}e−j2πftdt

=

∫ ∞

−∞

1

2

(
m+(t)e

j2πfct +
(
m+(t)e

j2πfct
)∗)

e−j2πftdt

=

∫ ∞

−∞

1

2

(
m+(t)e

j2πfct +m∗
+(t)e

−j2πfct
)
e−j2πftdt

=
1

2

∫ ∞

−∞
m+(t)e

−j2π(f−fc)tdt+
1

2

∫ ∞

−∞
m∗

+(t)e
−j2π(f+fc)tdt

=
1

2

∫ ∞

−∞
m+(t)e

−j2π(f−fc)tdt+
1

2

(∫ ∞

−∞
m+(t)e

−j2π(−f−fc)tdt

)∗

=
1

2
M+(f − fc) +

1

2
M∗

+(−f − fc)
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(f)

S(f) =
1

2
M+(f − fc) +

1

2
M∗

+(−f − fc)

=




M(f − fc), f > fc
1
2
M(0), f = fc

0, −fc < f < fc
1
2
M∗(0), f = −fc

M∗(−f − fc), f < −fc

(This follows from (c).)

=




M(f − fc), f > fc
1
2
M(0), f = fc

0, −fc < f < fc
1
2
M(0), f = −fc

M(f + fc), f < −fc

where the last step follows from M(f) = M∗(−f).

(g)

S(f) = M(f) � F{cos(2πfct)} − M̂(f) � F{sin(2πfct)}
= M(f) �

1

2
(δ(f − fc) + δ(f + fc))

−M̂(f) �
1

2j
(δ(f − fc)− δ(f + fc))

= M(f) �
1

2
(δ(f − fc) + δ(f + fc))

+jM̂(f) �
1

2
(δ(f − fc)− δ(f + fc))

=
M(f) + jM̂(f)

2
� δ(f − fc) +

M(f)− jM̂(f)

2
� δ(f + fc)

=




M(f − fc), f > fc
1
2
M(f − fc), f = fc

0 −fc < f < fc
1
2
M(f + fc), f = −fc

M(f + fc) f < −fc

3. (Demodulation trick) A quick and simple way to obtain the demodulated output of a
coherent receiver depicted below (instead of using the technical analysis in Slide 4-26) is
to re-express the transmitting signal s(t) in terms of the receiver carrier.

s(t) = sI(t) cos(2πfct)
−sQ(t) sin(2πfct)

�

�⊗
�

− sin(2πfct + φ)

�⊗
�

cos(2πfct+ φ)

�

� Ideal lowpass
filter

Ideal lowpass
filter

�

�

Y

X
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For example, according to the above figure, we derive:


Transmitter: s(t) = Re{(sI(t) + jsQ(t))e
j2πfct}

Receiver with carrier 2ej(2πfct+φ):

s(t) = Re

{(
1

2
(sI(t) + jsQ(t))e

−jφ

)
︸ ︷︷ ︸

X+jY

2ej(2πfct+φ)

}

Hence, we obtain X + jY = 1
2
(sI(t) + jsQ(t))e

−jφ after demodulation.

In Slides 4-25 and 4-26, we learn that sI(t) = m(t) and sQ(t) = 0. We also learn that only
X is retained as an estimate of m(t) at the output (because the receiver only implements
the upper half of the Costas receiver), which gives

X = Re

{
1

2

(
sI(t)︸︷︷︸
=m(t)

+j sQ(t)︸ ︷︷ ︸
=0

)
e−jφ

}
= Re

{
1

2
m(t)e−jφ

}
=

1

2
m(t) cos(φ)

Note that in Slides 4-25 and 4-26, the transmitter additionally amplifies the transmitted
signal by multiplying it with Ac, and the receiver also amplifies the received signal with
a multiplicative factor A′

c. This enlarges X to 1
2
AcA

′
cm(t) cos(φ) as exactly given in Slide

4-26. Here, we simply let Ac = A′
c = 1 for simplicity.

(a) In Slide 4-23 and 4-46, we produce sI(t) and sQ(t) as follows. For the two SSBs and
VSB, give the output estimate X as a function of m(t), m̂(t), m′(t) and φ using the
analytical trick just introduced.

Type of modulation sI(t) sQ(t) Output estimate
DSB-SC m(t) 0 X
SSB m(t) m̂(t) X
SSB m(t) −m̂(t) X
VSB m(t) −m′(t) X

(b) Find the Fourier transform of X for the two SSBs in (a). You should express it as a
function of M(f) only.

(c) Re-do (a) and (b) for DSB-SC if the carrier frequency f ′
c at the receiver is not the

same as that of the transmitter.

Hint: 

Transmitter: s(t) = Re{(sI(t) + jsQ(t))e

j2πfct}
Receiver with carrier 2ej(2πf

′
ct+φ):

s(t) = Re
{
(?) 2ej(2πf

′
ct+φ)

}
(d) As indicated in Slide 4-33, a separated pilot tone is added to SSB such that

s(t) = Re
{
(m(t) + jm̂(t) + Ape

j2πfpt)ej2πfct
}
.

Give the output estimate X as a function of m(t), m̂(t), fp and φ using the analytical
trick just introduced, if the receiver demodulates the signal based on local carrier
2ej(2πfct+φ).
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Solution.

(a) X = Re
{

1
2
(sI(t) + jsQ(t))e

−jφ
}
= 1

2
(sI(t) cos(φ) + sQ(t) sin(φ)). Thus we obtain

Type of modulation sI(t) sQ(t) Output estimate

SSB m(t) m̂(t) 1
2
(m(t) cos(φ) + m̂(t) sin(φ))

SSB m(t) −m̂(t) 1
2
(m(t) cos(φ)− m̂(t) sin(φ))

VSB m(t) −m′(t) 1
2
(m(t) cos(φ)−m′(t) sin(φ))

(b) For upper-sideband SSB,

F{X} =
1

2
(M(f) cos(φ) + M̂(f) sin(φ))

=
1

2
(M(f) cos(φ) + (−jsgn(f))M(f) sin(φ))

=
1

2
M(f)(cos(φ)− jsgn(f) sin(φ))(

=

{
1
2
M(f)e−jφ, f > 0;

1
2
M(f)ejφ, f < 0

)

Similarly, for lower sideband SSB, we obtain

1

2
(M(f) cos(φ)− M̂(f) sin(φ))

=
1

2
(M(f) cos(φ)− (−jsgn(f))M(f) sin(φ))

=
1

2
M(f)(cos(φ) + jsgn(f) sin(φ))(

=

{
1
2
M(f)ejφ, f > 0;

1
2
M(f)e−jφ, f < 0

)

(c) Using the quick and simple analysis as follows. From


Transmitter: s(t) = Re{(sI(t) + jsQ(t))e
j2πfct}

Receiver with carrier 2ej2πf
′
ct+φ:

s(t) = Re

{(
1

2
(sI(t) + jsQ(t))e

j(2π(fc−f ′
c)t−φ)

)
︸ ︷︷ ︸

X+jY

2ej(2πf
′
ct+φ)

}

we obtain

X =
1

2
sI(t) cos(2π(fc − f ′

c)t− φ)− 1

2
sQ(t) sin(2π(fc − f ′

c)t− φ).

Hence, for DSB-SC (i.e., sI(t) = m(t) and sQ(t) = 0),

X =
1

2
m(t) cos(2π(fc − f ′

c)t− φ) =
1

2
m(t) cos(2π(∆f)t− φ),
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where ∆f = fc − f ′
c, and the Fourier transform of X is

1

2
M(f) �

(
cos(φ)

δ(f −∆f) + δ(f +∆f)

2
+ sin(φ)

δ(f −∆f)− δ(f +∆f)

2j

)
=

1

4
M(f) �

(
e−jφδ(f −∆f) + ejφδ(f +∆f)

)
=

1

4

[
e−jφM(f −∆f) + ejφM(f +∆f)

]
.

Thus, an additional shift in frequency occurs. As a result, M(f) might be seriously
distorted if |fc − f ′

c| < W , where W is the bandwidth of M(f).

(d)

s(t) = Re

{
1

2

(
m(t) + jm̂(t) + Ape

j2πfpt
)
e−jφ︸ ︷︷ ︸

X+jY

2ej(2πfct+φ)

}
.

We then obtain

X = Re

{
1

2

(
m(t) + jm̂(t) + Ape

j2πfpt
)
e−jφ

}
=

1

2
m(t) cos(φ) +

1

2
m̂(t) sin(φ) +

1

2
Ap cos(2πfpt− φ)︸ ︷︷ ︸

In principle, this part
can be technically separated from

1
2m(t) cos(φ) + 1

2m̂(t) sin(φ).

.

4. Here, m̂(t) is the Hilbert transform of m(t). In other words, M̂(f) = HHilbert(f)M(f),
where HHilbert(f) = (−jsgn(f)). In addition, M ′(f) = HQ(f)M(f), where

1

j
HQ(f)



= 1, f ≤ −fv

∈ [0, 1], −fv < f < 0

0, f = 0

and HQ(−f) = H∗
Q(f). (1)

Suppose M(f) is real-valued and is give by

�

�

f

M(f)

�
�

�
�

−W W

1

(a) Does HHilbert(f) satisfy (1) for any given fv < W ? Justify your answer.

(b) Plot jM̂(f).

(c) Plot M(f) + jM̂(f) for upper sideband SSB.

(d) Plot the spectrum of Re{(m(t) + jm̂(t))ej2πfct} = m(t) cos(2πfct)− m̂(t) sin(2πfct).

(e) Plot M(f)− jM̂(f) for lower sideband SSB.
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(f) Plot the spectrum of Re{(m(t)− jm̂(t))ej2πfct} = m(t) cos(2πfct) + m̂(t) sin(2πfct).

(g) Further assume that

1

j
HQ(f) =



1, f ≤ −W

2
1
2
, −W

2
< f < 0

0, f = 0

Plot jM ′(f).

(h) Continue from (g). Plot M(f)− jM ′(f).

Solution.

(a)

1

j
HHilbert(f) = −sgn(f)



= 1, f ≤ −fv

∈ [0, 1], −fv < f < 0

0, f = 0

and
HHilbert(−f) = −jsgn(−f) = jsgn(f) = (−jsgn(f))∗ = H∗

Hilbert(f).

Thus, Hilbert transformer is a special (impractical) choice of HQ(f).

(b) jM̂(f) = j(−jsgn(f))M(f) = sgn(f)M(f).

�

�

f

jM̂(f)

�
�

�
�

−W W

1

(c)

�

�

f

M(f) + jM̂(f)

�
�

�
�

−W W

2

(d) From Problem 1(f), we know that the spectrum of Re{m+(t)e
j2πfct} = m(t) cos(2πfct)−

m̂(t) sin(2πfct), where m+(t) = m(t) + jm̂(t), is equal to

1

2

[
M̃(f − fc) + M̃∗(−f − fc)

]
.

Since M̃(f) = M(f) + jM̂(f), we plot:

�

�

f

1
2
M̃(f − fc)

�
�

fc fc +W

1

9



�

�

f

1
2
M̃∗(−f − fc)

�
�

−fc−fc −W

1

�

�

f

1
2
M̃(f − fc) +

1
2
M̃∗(−f − fc)

�
�

fc fc +W

1

�
�

−fc−fc −W

1

(e)

�

�

f

M(f)− jM̂(f)

�
�
�
�

−W W

2

(f) With M̃(f) = M(f)− jM̂(f), we have:

�

�

f

1
2
M̃(f − fc) +

1
2
M̃∗(−f − fc)

�
�

fcfc −W

1

�
�

−fc −fc +W

1

(g) jM ′(f) = jHQ(f)M(f) =
HQ(f)

j
(−M(f))

�

�

f

−M(f)

�
�

�
�

−W W

−1

�

�

f

HQ(f)/j

−1

1

�

�

f

jM ′(f)

�
���

���
�

−W W
− 1

4

− 1
2

(h)
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�

�

f

2MV SB(f) = M(f)− jM ′(f)

�
�

�
�
�
�
�
��
	
	
	
	
	
	
	
	

1
4

1
2

3
2

3
4

1

−W
2

W
2−W

5. The passband filter H(f) for VSB modulation is required to satisfy two conditions:{
|H(fc − f)|+ |H(fc + f)| = 1 for |f | < fv

H(f − fc) +H(f + fc) = 1 for |f | < W

Thus, given f = ±0.01 MHz, fc = 1 MHz, W = 0.04 MHz and fv = 0.02 MHz, we have

|H(0.99)|+ |H(1.01)| = 1

H(−0.99) +H(1.01) = 1

H(−1.01) +H(0.99) = 1

(a) If H(1.01) = 1+j
2
, determine the value of H(−0.99).

(b) Can we determine the value of H(0.99) and H(−1.01)? Justify your answer.

(c) Can a third condition that H(f) is conjugate symmetric, i.e., H(−f) = H∗(f), be
satisfied under H(1.01) = 1+j

2
? Justify your answer.

(d) Show that 

|H(fc − f)|+ |H(fc + f)| = 1 for |f | < fv

H(f − fc) +H(f + fc) = 1 for |f | < W

H(f) = H∗(−f)

imply H(f) is real for |f − fc| < fv.

Solution.

(a) H(−0.99) = 1− 1+j
2

= 1−j
2
.

(b) |H(0.99)| = 1−
√

1
4
+ 1

4
= 2−√

2
2

. Hence,

H(0.99) =

(
2−√

2

2

)
ejθ.

Also,

H(−1.01) = 1−H(0.99) = 1−
(
2−√

2

2

)
ejθ.

We cannot determine H(0.99) and H(−1.01) because θ is unknown.
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(c) For conjugate symmetric H(f), we only need to specify H(f) for f > 0. Thus the
second condition becomes

H∗(fc − f) +H(fc + f) = 1 for |f | < W

which implies

H(0.99) = (1−H(1.01))∗ =
1− j

2
.

However, this violates the first condition that requires |H(0.99)| + |H(1.01)| = 1
because ∣∣∣∣1− j

2

∣∣∣∣+
∣∣∣∣1 + j

2

∣∣∣∣ = √
2 �= 1.

Note: This concludes that H(1.01) must not have an imaginary part.

(d) For conjugate symmetric H(f), the second condition becomes

H∗(fc − f) +H(fc + f) = 1 for |f | < W.

We thus have {
|H∗(fc − f)|+ |H(fc + f)| = 1 for |f | < fv;

H∗(fc − f) +H(fc + f) = 1 for |f | < fv.

We plot H∗(fc − f) +H(fc + f) = 1 for |f | < fv in the complex domain.

�

�

H∗(fc − f) H(fc + f)

1

�
�
�
���

�
�
��
�

Then, |H∗(fc − f)| + |H(fc + f)| = 1 for |f | < fv indicates the three vectors in the
above figure cannot form a triangle and hence H∗(fc−f) and H(fc+f) must be both
real-valued.

(The next two problems are only for your reference. They will not be a part
of the exam or quizzes.)

6. In this problem, we demonstrate the idea behind the Wiener-Khintchine theorem in re-
sponse to queries from some students. As given in our lecture, the time-average autocor-
relation function is defined as

R̄X(τ) � lim
T→∞

1

2T

∫ T

−T

E[X(t+ τ)X∗(t)]dt.

12



Denoting 


aT (y) �
1

2T

∫ T

T−y

E[X(x+ y)X∗(x)]dx

bT (y) �
1

2T

∫ −T−y

−T

E[X(x+ y)X∗(y)]dx

cT (y) �
1

2T

∫ T

−T

E[X(x+ y)X∗(y)]dx

(2)

we assume that there exists a function ε(T ) such that

max
0≤y<2T

max{|aT (y)|, |bT (y)|} ≤ ε(T ) and lim
T→∞

T · ε(T ) = 0 (3)

and also assume that

lim
T→∞

∫
|y|>2T

|cT (y)|dy = 0. (4)

Prove that

PSD(f) � lim
T→∞

1

2T
E[|X2T (f)|2]

is the Fourier transform of the time-average autocorrelation function R̄X(τ), where X2T (f)
is the Fourier transform of

X2T (t) �
{
X(t), |t| < T ;

0, otherwise.

Solution.

PSD(f) = lim
T→∞

1

2T
E

[(∫ T

−T

X(t)e−j2πftdt

)(∫ T

−T

X(t′)e−j2πft′dt′
)∗]

= lim
T→∞

1

2T
E

[∫ T

−T

∫ T

−T

X(t)X∗(t′)e−j2πftej2πft
′
dtdt′

]
(x = t′ and y = t− t′)

= lim
T→∞

1

2T
E

[∫ 2T

0

(∫ T−y

−T

X(x+ y)X∗(x)dx
)
e−j2πfydy

+

∫ 0

−2T

(∫ T

−T−y

X(x+ y)X∗(x)e−j2πfydx

)
dy

]
(t′ = x and t = x+ y)

= lim
T→∞

(∫ 2T

0

[cT (y)− aT (y)]e
−j2πfydy +

∫ 0

−2T

[cT (y)− bT (y)]e
−j2πfydy

)

= lim
T→∞

(∫ ∞

−∞
cT (y)e

−j2πfydy −
∫ 2T

0

aT (y)e
−j2πfydy −

∫ 0

−2T

bT (y)e
−j2πfydy

−
∫
|y|>2T

cT (y)e
−j2πfydy

)
.

Observing that∣∣∣∣
∫ 2T

0

aT (y)e
−j2πfydy

∣∣∣∣ ≤
∫ 2T

0

|aT (y)e−j2πfy|dy ≤
∫ 2T

0

ε(T )dy → 0 as T → ∞

13



∣∣∣∣
∫ 2T

0

bT (y)e
−j2πfydy

∣∣∣∣ ≤
∫ 2T

0

|bT (y)e−j2πfy|dy ≤
∫ 2T

0

ε(T )dy → 0 as T → ∞

∣∣∣∣
∫
|y|>2T

cT (y)e
−j2πfydy

∣∣∣∣ ≤
∫
|y|>2T

|cT (y)|dy → 0 as T → ∞

we obtain

PSD(f) = lim
T→∞

∫ ∞

−∞
cT (y)e

−j2πfydy

=

∫ ∞

−∞

(
lim
T→∞

1

2T

∫ −T

−T

E[X(x+ y)X∗(y)]dx
)
e−j2πfydy

=

∫ ∞

−∞
R̄X(y)e

−j2πfydy.

Note: Some books directly adopt PSD(f) � lim
T→∞

1

2T
E[|X2T (f)|2] as the definition of the

time-average PSD and claim that it is the Fourier transform of the time-average autocor-
relation function R̄X(τ). From the above proof, you shall realize some assumptions must
be made in order to validate it.

Thus, I adopt a different approach in my lescture. Note that from Sample Problem 3(a)
for Quiz 3, it is always valid that

S̄X(f) = lim
T→∞

1

2T
E[X(f)X∗

2T (f)]

is the Fourier transform of

R̄X(τ) � lim
T→∞

1

2T

∫ T

−T

E[X(t+ τ)X∗(t)]dt.

In fact, if the time-average autocorrelation function is no longer functionally independent
of the location of the integration window, then we can show that

lim
T→∞

1

2T
E[X(f)X∗

(L−T,L+T )(f)]

is the Fourier transform of

lim
T→∞

1

2T

∫ L+T

L−T

E[X(t + τ)X∗(t)]dt

where

X(L−T,L+T )(t) �
{
X(t), |t− L| < T ;

0, otherwise.

7. The “squarer + lowpass filter + square rooter” concatenation is just one kind of envelope
detectors. In fact, the term envelope detector can be used to refer to any electronic circuit
that takes in a high-frequency amplitude modulated signal and provides an output that is
the envelope of the original signal. As an example, one can use a diode and a capacitor to
form a simple envelope detector that is even much cheaper than the “squarer + lowpass
filter + square rooter” concatenation.
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(a) The input-output relation of the simple envelope detector above can actually be char-
acterized by

vout(f)

vin(f)
=

1

1 + jf/f0

where f0 is determined by the capacitor C. Find vout(t) if vin(t) = δ(t).

Hint: vin(t) = δ(t) implies vin(f) = 1 and use the below table.

TABLE A6.3 Fourier-transform pairs
Time Function Fourier Transform
exp(−at)u(t), a > 0 1

a+j2πf

exp(−a|t|), a > 0 2a
a2+(2πf)2

δ(t) 1

1 δ(f)

Notes: u(t) = unit step function
δ(t) = delta function or unit impulse

(b) Can the concatenation of squarer, ideal lowpass filter, square rooter and dc term remover
perfectly recover m(t) from the DSB-C signal s(t) = Ac[1 + kam(t)] cos(2πfct) if
fc > 2W ? Justify your answer.

Hint: Here, we assume that 1 + kam(t) is always non-negative.

Solution.

(a) Apparently, vout(f) =
1

1+jf/f0
= 2πf0

2πf0+j2πf
. Hence, according to the table,

vout(t) = 2πf0e
−2πf0tu(t).

Note: If f0 is small (i.e., C is large), then this envelop detector is simply to connect
the adjacent peaks of the amplitude modulated waves by a straight line that well
approximates the e−2πf0t curve, as the black dashed line in Slide 4-7. Hence, non-
visualized envelope occurs when fc is not much larger than W .
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(b) From the below procedure,

s(t)
squarer−→ s2(t) = A2

c(1 + kam(t))2 cos2(2πfct)

=
A2

c

2
(1 + kam(t))2[1 + cos(4πfct)]

ideal lowpass−→ A2
c

2
(1 + kam(t))2 (Hold when fc > 2W )

square rooter−→ Ac√
2
(1 + kam(t))

dc term remover−→ Ac√
2
kam(t)

it can be seen that as long as fc > 2W , the system can perfectly recover m(t). Hence,
the answer to the question is YES.

8. Below I repeat Sample Problem 1 for Quiz 4 with new proofs. Prove (a), (b), (c) in
Table A.6.3 using Properties 4 and 9 and F(δ(t)) = 1. You can see that for the Fourier
transform of (real-valued) even symmetric or odd symmetric functions, the last tricky term
in Property 9 of Table A6.2 is often ignored.

(d) in Table A6.3 is not (real-valued) even symmetric, nor odd symmetric. So, rewrite
it as the sum of an even symmetric function and an odd symmetric function and get its
Fourier transform as the sum of the Fourier transforms of the even and odd symmetric
functions.

TABLE A6.2 Summary of properties of the Fourier transform
Property Mathematical Description
4. Time shifting g(t− t0) � G(f) exp(−j2πft0)

8. Differentiation in the time domain d
dt
g(t) � j2πfG(f)

9. Integration in the time domain
∫ t

−∞ g(τ)dτ � 1
j2πf

G(f) + G(0)
2

δ(f)︸ ︷︷ ︸
this term is tricky!

10. Conjugate functions If g(t) � G(f),
then g∗(t) � G∗(−f) (and additionally g∗(−t) � G∗(f))

11. Multiplication in the time doman g1(t)g2(t) �
∫∞
−∞ G1(λ)G2(f − λ)dλ

12. Convolution in the time doman
∫∞
−∞ g1(τ)g2(t− τ)dτ � G1(f)G2(f)

TABLE A6.3 Fourier-transform pairs
Time Function Fourier Transform
(a) rect

(
t
T

)
T sinc(Tf)

(b) sgn(t) 1
jπf

(c) ∆(t) :=

{
1− |t|

T
, |t| < T

0, |t| ≥ T
T sinc2(Tf)

(d) u(t) 1
2
δ(f) + 1

j2πf
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Notes: u(t) = unit step function
δ(t) = delta function or unit impulse
rect(t) = rectangular function of unit amplitude

and unit duration centered on the origin
sgn(t) = signum function

sinc(t) = sin(πt)
πt

sinc function

Solution.

(a)

F
{
rect

(
t

T

)}
= F

{∫ t

−∞

(
δ

(
τ +

T

2

)
− δ

(
τ − T

2

))
︸ ︷︷ ︸

g(τ)in Property 9

dτ

}

=
1

j2πf

(
e−j2πf(−T

2
) − e−j2πf(T

2
)

)
︸ ︷︷ ︸

G(f)

+

�����������������
(
e−j2π·0(−T

2
) − e−j2π·0(T

2
)

)
︸ ︷︷ ︸

G(0)

1

2
δ(f)

=
1

j2πf
(j2 sin(πfT )) = T · sin(πfT )

πfT
= T sinc(Tf).

(b)

F {sgn (t)} = F
{∫ t

−∞
2δ(τ)︸ ︷︷ ︸

g(τ) in Property 9

dτ−1

}
=

1

j2πf
2︸︷︷︸

G(f)

+
1

2
2︸︷︷︸

G(0)

δ(f)−δ(f) =
1

jπf
.

(c)

G1(f) = F
{∫ t

−∞

1

T

(
δ(τ + T )− 2δ(τ) + δ(τ − T )

)
︸ ︷︷ ︸

g(τ) in Property 9

dτ

}

=

(
1

j2πf

)
1

T

(
e−j2πf(−T ) − 2 + e−j2πf(T )

)
︸ ︷︷ ︸

G(f)

+
1

2
0︸︷︷︸

G(0)

δ(f)

=

(
1

j2πf

)
1

T
(2 cos(2πfT )− 2)

Note that

G1(0) =

d
df

(2 cos(2πfT )− 2)
d
df
(j2πfT )

∣∣∣∣∣
f=0

=
−4πT sin(2πfT )

j2πT

∣∣∣∣
f=0

= 0.
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Then,

F {∆(t)} = F
{∫ t

−∞

∫ τ

−∞

1

T

(
δ(s+ T )− 2δ(s) + δ(s− T )

)
ds︸ ︷︷ ︸

g1(τ) in Property 9

dτ

}

=
1

j2πf
G1(f) +

1

2
0︸︷︷︸

G1(0)

δ(f)

= − 1

4π2f 2T
(2 cos(2πfT )− 2) =

1

4π2f 2T
(2− 2 cos(2πfT ))

= T
sin2(πfT )

π2f 2T 2
= T sinc2(Tf)

(d) u(t) = 1
2
(1 + sgn(t)); hence,

F{u(t)} =
1

2
F{1 + sgn(t)} =

1

2

(
δ(f) +

1

jπf

)
.
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