Correction:

• On Slide 2-29, X(t) should be complex conjugated, i.e.,

$$\bar{S}_X(f) = \int_{-\infty}^{\infty} \left(\lim_{T \to \infty} \frac{1}{2T} \int_{-T}^T E[X(t+\tau)X^*(t)] dt \right) e^{-j2\pi f\tau} d\tau$$
$$= \lim_{T \to \infty} \frac{1}{2T} E\left[\int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} X(t+\tau)X^*_{2T}(t) dt \right) e^{-j2\pi f\tau} d\tau \right]$$
$$= \lim_{T \to \infty} \frac{1}{2T} E[X(f)X^*_{2T}(f)], \text{ where } X_{2T} \triangleq X(t) \cdot \mathbf{1}\{|t| \le T\}.$$

1. Prove each of the seven properties in Table A6.2.

TABL	E A6.2	Summary	of	proper	ties	of the	Fourier	transform
-		3.6	-	-	1 -		-	

Property	Mathematical Description
1. Linearity	$ag_1(t) + bg_2(t) \rightleftharpoons aG_1(f) + bG_2(f)$
	where a and b are constants
2. Time scaling	$g(at) \rightleftharpoons \frac{1}{ a } G\left(\frac{f}{a}\right)$
	where a is a constant
3. Duality	If $g(t) \rightleftharpoons G(f)$,
	then $G(t) \rightleftharpoons g(-f)$
4. Time shifting	$g(t-t_0) \rightleftharpoons G(f) \exp(-j2\pi f t_0)$
5. Frequency shifting	$\exp(j2\pi f_0 t)g(t) \rightleftharpoons G(f - f_0)$
6. Area under $g(t)$	$\int_{-\infty}^{\infty} g(t)dt = G(0)$
7. Area under $G(f)$	$g(0) = \int_{-\infty}^{\infty} G(f) df$

Solution.

P1.

$$\int_{-\infty}^{\infty} (ag_1(t) + bg_2(t))e^{-j2\pi ft} dt = a \int_{-\infty}^{\infty} g_1(t)e^{-j2\pi ft} dt + b \int_{-\infty}^{\infty} g_2(t)e^{-j2\pi ft} dt$$
$$= aG_1(f) + bG_2(f)$$

P2. Letting s = at, we derive

$$\begin{split} \int_{-\infty}^{\infty} g(at) e^{-j2\pi ft} \mathrm{d}t &= \begin{cases} \int_{-\infty}^{\infty} g(s) e^{-j2\pi f\frac{s}{a}} \frac{1}{a} \mathrm{d}s, & a > 0\\ \int_{-\infty}^{\infty} g(s) e^{-j2\pi f\frac{s}{a}} \frac{1}{a} \mathrm{d}s, & a < 0 \end{cases} \\ &= \int_{-\infty}^{\infty} g(s) e^{-j2\pi \frac{f}{a}s} \frac{1}{|a|} \mathrm{d}s \\ &= \frac{1}{|a|} G\left(\frac{f}{a}\right) \end{split}$$

P3.

$$\int_{-\infty}^{\infty} G(t)e^{-j2\pi ft} dt = \int_{-\infty}^{\infty} G(f)e^{-j2\pi tf} df \quad (\text{Exchange of } t \text{ and } f)$$
$$= \int_{-\infty}^{\infty} G(f)e^{j2\pi(-t)f}$$
$$= g(-t)$$

P4. Letting $s = t - t_0$, we obtain

$$\int_{-\infty}^{\infty} g(t-t_0)e^{-j2\pi ft} dt = \int_{-\infty}^{\infty} g(s)e^{-j2\pi f(s+t_0)} ds$$
$$= e^{-j2\pi ft_0} \int_{-\infty}^{\infty} g(s)e^{-j2\pi fs} ds$$
$$= e^{-j2\pi ft_0} G(f)$$

P5.

$$\int_{-\infty}^{\infty} e^{j2\pi f_0 t} g(t) e^{-j2\pi f t} dt = \int_{-\infty}^{\infty} g(t) e^{-j2\pi (f-f_0)t} dt = G(f-f_0)$$

P6.

$$\int_{-\infty}^{\infty} g(t) \mathrm{d}t = \int_{-\infty}^{\infty} g(t) e^{-j2\pi \, 0 \, t} \mathrm{d}t = G(0)$$

P7.

$$g(0) = \int_{-\infty}^{\infty} G(f) e^{j2\pi f 0} \mathrm{d}f = \int_{-\infty}^{\infty} G(f) \mathrm{d}f$$

- 2. If G(f) is the Fourier transform of g(t), answer whether the following statement is correct or not, and which property in Table A6.2 your answer is based on.
 - (a) The Fourier transform of $2 \times g(t)$ is $2 \times G(f)$.
 - (b) The Fourier transform of G(t) is $g^*(-f)$.
 - (c) The Fourier transform of g(t-a) is $G(f)e^{-j2\pi af}$.
 - (d) The Fourier transform of g(2t) is $2G(\frac{f}{2})$.

(e)
$$G(0) = \int_{-\infty}^{\infty} g(t) dt$$

- (a) Based on the linearity property of the Fourier transform, the statement is correct.
- (b) Based on the duality property of the Fourier transform, the statement is incorrect since g(-f) may not equal $g^*(-f)$.
- (c) Based on the time shifting property of the Fourier transform, the statement is correct.
- (d) Based on the time scaling property of the Fourier transform, the statement is incorrect. The correct answer should be (1/2)G(f/2).

- (e) Based on the "Area under g(t)" property of the Fourier transform, the statement is correct.
- 3. The time-average autocorrelation function $\bar{R}_X(\tau)$ of complex-valued random process X(t) is given by

$$\bar{R}_X(\tau) := \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^T E[X(t+\tau)X^*(t)]dt,$$

and the time-average power spectra density (PSD) is defined as

$$\bar{S}_X(f) := \int_{-\infty}^{\infty} \bar{R}_X(\tau) e^{-j2\pi f\tau} d\tau$$

(a) Show that

$$\bar{S}_X(f) = \lim_{T \to \infty} \frac{1}{2T} E[X(f)X_{2T}^*(f)],$$

where

$$X_{2T}(t) := \begin{cases} X(t), & |t| \le T; \\ 0, & \text{otherwise} \end{cases} = X(t) \cdot \mathbf{1}\{|t| \le T\}$$

(b) Find the time-averaged PSD of X(t), given that X(t) = 1 is a constant (i.e., non-random) function.

Hint: A quote from Table A6.3: Fourier transform pairs.

Time FunctionFourier Transform $rect(\frac{t}{T})$ $T sinc(Tf) = T \frac{sin(\pi Tf)}{\pi Tf}$ Notes:rect(t) = rectangular function of unit amplitude
and unit duration centered on the origin

Hence, $\operatorname{rect}(\frac{t}{T}) = \begin{cases} 1, & |f| < \frac{T}{2}; \\ 0, & \text{otherwise.} \end{cases}$

(c) In reality, we could not know or measure X(t) for $-\infty < t < \infty$. Instead we shall use the so-called "periodogram" to estimate $\bar{S}_X(f)$:

$$\bar{S}_X(f) \approx \frac{1}{2T} E[X_{2T}(f)X_{2T}^*(f)],$$

which can be computed based on a window period of X(t). Find the periodogram approximation of $\bar{S}_X(f)$ in (b).

$$\begin{split} \bar{S}_X(f) &= \int_{-\infty}^{\infty} \bar{R}_X(\tau) e^{-j2\pi f\tau} d\tau \\ &= \int_{-\infty}^{\infty} \left(\lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} E[X(t+\tau)X^*(t)] dt \right) e^{-j2\pi f\tau} d\tau \\ &= \lim_{T \to \infty} \frac{1}{2T} E\left[\int_{-T}^{T} X^*(t) \left(\int_{-\infty}^{\infty} X(t+\tau) e^{-j2\pi f\tau} d\tau \right) dt \right] \quad (\text{Let } s = t+\tau.) \\ &= \lim_{T \to \infty} \frac{1}{2T} E\left[\int_{-T}^{T} X^*(t) \left(\int_{-\infty}^{\infty} X(s) e^{-j2\pi f \cdot (s-t)} ds \right) dt \right] \\ &= \lim_{T \to \infty} \frac{1}{2T} E\left[\int_{-T}^{T} X^*(t) \left(\int_{-\infty}^{\infty} X(s) e^{-j2\pi f \cdot s} ds \right) e^{j2\pi f t} dt \right] \\ &= \lim_{T \to \infty} \frac{1}{2T} E\left[\int_{-T}^{T} X^*(t) X(f) e^{j2\pi f t} dt \right] \\ &= \lim_{T \to \infty} \frac{1}{2T} E\left[X(f) \left(\int_{-T}^{T} X(t) e^{-j2\pi f t} dt \right)^* \right] \\ &= \lim_{T \to \infty} \frac{1}{2T} E\left[X(f) X^*_{2T}(f) \right] \end{split}$$

(b) There are two ways to derive the PSD. A formal way is perhaps to derive the timeaverage autocorrelation function and find its Fourier transform as follows:

$$\bar{R}_X(\tau) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^T E[X(t+\tau)X^*(t)]dt$$
$$= \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^T dt \quad (\text{Because } X(t) = 1.)$$
$$= 1,$$

and

$$\bar{S}_X(f) = \int_{-\infty}^{\infty} \bar{R}_X(\tau) e^{-j2\pi f\tau} d\tau$$

=
$$\int_{-\infty}^{\infty} e^{-j2\pi f\tau} d\tau \quad (\text{Because } \bar{R}_X(\tau) = 1.)$$

=
$$\delta(-f),$$

where the last step holds because the Fourier transform of $\delta(t)$ is 1 (using the replication property of the delta function) and therefore by duality property of the Fourier transform, the Fourier transform of 1 is $\delta(-f)$. Note that $\delta(-f) = \delta(f)$ since δ function is symmetric.

Alternatively, we use the formula in (a). We know that X(t) = 1 and $X_{2T}(t) = \operatorname{rect}(\frac{t}{2T})$. Hence, their Fourier transforms are respectively $X(f) = \delta(f)$ and $X_{2T}(f) = 2T \operatorname{sinc}(2Tf)$.

Thus,

$$\bar{S}_X(f) = \lim_{T \to \infty} \frac{1}{2T} E\left[X(f) X_{2T}^*(f)\right]$$

=
$$\lim_{T \to \infty} \frac{1}{2T} E\left[\delta(f) \cdot 2T\operatorname{sinc}(2Tf)\right]$$

=
$$\lim_{T \to \infty} \delta(f)\operatorname{sinc}(2Tf)$$

=
$$\lim_{T \to \infty} \delta(f)\operatorname{sinc}(2T \cdot 0)$$

=
$$\lim_{T \to \infty} \delta(f)$$

=
$$\delta(f),$$

where we use the property that $g(t)\delta(t) = g(0)\delta(t)$ (i.e., only the value of g(t) at t = 0 matters when it multiplies $\delta(t)$) and sinc(0) = 1.

Note: I favor the alternative way because it is much more "thoughtful."

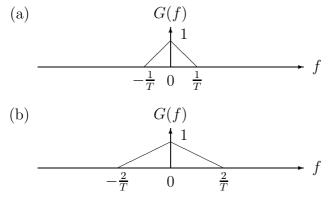
(c) (Let's use the thoughtful approach.) Since $X_{2T}(f) = 2T \operatorname{sinc}(2Tf)$, we have

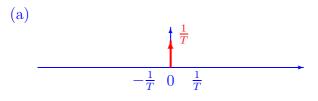
$$\frac{1}{2T}E[X_{2T}(f)X_{2T}^*(f)] = \frac{1}{2T}E[|X_{2T}(f)|^2]$$

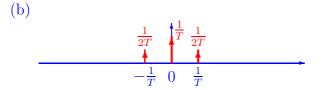
= $\frac{1}{2T}(4T^2\operatorname{sinc}^2(2Tf))$
= $2T\operatorname{sinc}^2(2Tf).$

4. Suppose $f(t) = \sum_{n=-\infty}^{\infty} g(t - nT)$, which is periodic with period T. Plot the Fourier transform F(f) of f(t), if G(f) is given as follows.

Hint: See Slide 2-14. The Fourier transform of a periodic function must be in the form of a pulse train.







- 5. (a) Use $R_X^*(\tau) = R_X(-\tau)$ to prove that PSD $S_X(f)$ must be real-valued.
 - (b) Use i) $\underline{R_X(\tau)} = R_X(-\tau)$ and ii) $\underline{R_X(\tau)}$ real to prove that PSD $S_X(f)$ is real and symmetric.
 - (c) The autocorrelation function of a signal with random phase is periodic, and is given by $R_X(\tau) = \frac{A^2}{2} \cos(2\pi f_c \tau)$. What is the problem encountered when using the technique in Slide 2-43 to prove that $S_X(f) \ge 0$.

Hint: The Fourier transform of $\cos(2\pi f_c \tau)$ is $\frac{1}{2}(\delta(f-f_c)+\delta(f+f_c))$.

- (a) See Slide 2-40.
- (b) Use (a) and the derivation in Slide 2-41.
- (c) The PSD $S_X(f) = \frac{A^2}{4} (\delta(f f_c) + \delta(f + f_c))$ is discontinuous at $f = f_c$ and $f = -f_c$. Hence, by replication property of the δ -function, $S_X(f_c)$ is actually undertermined.