
Sample Problems for Quiz 2 (March 15, 2021)

Correction

• In the solution of Problem 5(b) of Sample Problems for Quiz 1:

RX(t1, t2) = E[ej(2πfct1+Θ)(ej(2πfct2+Θ))∗]

= E[ej(2πfct1+Θ)e−j(2πfct2+Θ)]

= E[ej(2πfc(t1−t2)��+Θ)�������
e−j(2πfct2+Θ)]

= E[ej(2πfc(t1−t2)]

= ej2πfc(t1−t2)

1. In order to give you an intuition on stationarity and ergodicity of a
random process, I cook up an example below.

Let A = {001001, 010010, 100100}. Define r(·) as a circularly right-
shift operation. For example,

r(001001) = 100100 and r(100100) = 010010.

Note that the circularly right-shift operation can be regarded as a tick
in time; thus, it can be considered as a circularly “time” shift, justifying
the usage of the term of “stationary” below.

A set A is said to be ergodic with respect to operation r if for every
�x = (x1, x2, x3, x4, x5, x6) ∈ A, we have r(�x) ∈ A.

A random process1 X1, X2, X3, X4, X5, X6 is said to be an ergodic
process if for every ergodic set A, P �X(A) is either 1 or 0.

(a) Is A an ergodic set? Is B = {001001, 110110} an ergodic set?
Justify your answer.

(b) Suppose a random process �X satisfy

P �X(001001) =
1

2
and P �X(110110) =

1

2
.

What is the relative frequency of X3? What is the relative fre-
quency of X5? Are they identical? Justify your answer.

(c) Is the random process �X ergodic? Justify your answer.

1It is actually a 6-dimensional random vector because a random process usually has
infinite number of components, e.g., X1, X2, X3, . . .; but we momentarily “regard” it as a
“random process” in this problem for convenience.
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(d) List all possible time averages one may obtain from observing �X .

(e) Suppose a random process �Y satisfy

P�Y (001001) = P�Y (010010) = P�Y (100100) =
1

3
.

Is �Y ergodic? Is �Y (firt-order) stationary in the sense of relative
frequency? List all possible time averages one may obtain from
observing �Y .

Solution.

(a) A is ergodic but B is not. You shall justify the answer by perform-
ing the r-operation on each of the elements in a set by yourself.

(b) Apparently, PX3(0) = PX3(1) =
1
2
and PX5(0) = PX5(1) =

1
2
. So

they are identical.

Note: We may say X1, X2, X3, X4, X5, X6 is first-order stationary
in the sense of “relative frequency.”

(c) Apparently

P �X(A) = P �X(001001)+P �X(010010)+P �X(100100) =
1

2
+0+0 =

1

2

is not equal to either 1 or 0 for ergodic set A. So, �X is not an
ergodic process.

(d) When performing six consecutive observations (or measurements)

on �X, one may observe 001001 with probability 1
2
and may get

110110 with probability 1
2
. Thus, the time average can be 1/3

with probability 1
2
and 2/3 with probability 1/2.

Note: In other words, if I ask 100 students to make six consec-
utive observation on X1, X2, X3, X4, X5, X6, half of them antic-
ipatively get 001001, but the other half of students may result
in 110110. Both groups of students faithfully perform their ex-
periments and yet two different time averages are resulted. This
example gives you the intuition why a (first-order) stationary pro-
cess is not enough to guarantee the time average converges to the
ensemble average.

Advanced Note: For those students who are interested in and
hence self-study the subject of probability space, �X is actually
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a function mapping from Ω = {ω1, ω2} to {0, 1}6 with P (ω1) =
P (ω2) =

1
2
. This mapping can be divided into six sub-mappings:{
X1(ω1) = 0

X1(ω2) = 1

{
X2(ω1) = 0

X2(ω2) = 1

{
X3(ω1) = 1

X3(ω2) = 0{
X4(ω1) = 0

X4(ω2) = 1

{
X5(ω1) = 0

X5(ω2) = 1

{
X6(ω1) = 1

X6(ω2) = 0

Thus, these sub-mappings well-define a random process. For a
discrete-time random process X = (X1, X2, . . .), we may define
the random process via a mapping X from Ω to {0, 1}∞, or via
each sub-mapping Xi : Ω → {0, 1}. When X = {Xt, t ∈ �}, we
can also define this continuous-time random process via each sub-
papping Xt from Ω to {0, 1}. Hope this advanced note can help
you understand the notion of defining a random process based on
a probability space (Ω,F , P ).

(e) �Y is a stationary ergodic process, and the time average is always
equal to 1/3 (with probability one). Your shall justify your answer
by yourself by checking the corresponding properties.

Note: The textbook saves the effort of introducing the ergodic
theory but directly defines the process under consideration to be
ergodic in the mean and ergodic in the autocorrelation. This is a
frequently used trick that is good from engineering standpoint but
not well accepted from theoretical standpoint. Such a trick may
obscure the understanding of the implication of ergodicity.

2. It is not easy to see why autocorrelation function is of significant impor-
tance to communication systems. In other words, why the knowledge
of RX(τ) = E[X(t + τ)X∗(t)] is important cannot be seen from its
definition. Thus, we use the scenario in Slide 1-61 as an example.

(a) Suppose τ1 = 16 nanoseconds, τ2 = 10 natoseconds and τ3 =
30 nanoseconds. Let the input X(t) be a WSS process. List
all the time differences, corresponding to which the knowledge of
RX(τ) = E[X(t+τ)X∗(t)] is necessary for the computation of the
received power E[|Y (t)|2] = E[Y (t)Y ∗(t)].

(b) In (a), we see that RY (0) is the weighted sum of RX(τ) for many
τ ’s. Since RX(τ) is in general a complex number, how can we
be certain that the received power E[|Y (t)|2] = E[Y (t)Y ∗(t)] is
real-valued?
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Solution.

(a) The received power at time t is given by

E[|Y (t)|2] = E[Y (t)Y ∗(t)]

= E [(α1X(t− 16) + α2X(t− 10) + α3(X(t− 30))

(α1X(t− 16) + α2X(t− 10) + α3(X(t− 30))∗]

= E [α1α
∗
1X(t− 16)X∗(t− 16) + α1α

∗
2X(t− 16)X∗(t− 10)

+α1α
∗
3X(t− 16)X∗(t− 30) + α2α

∗
1X(t− 10)X∗(t− 16)

+α2α
∗
2X(t− 10)X∗(t− 10) + α2α

∗
3X(t− 10)X∗(t− 30)

+α3α
∗
1X(t− 30)X∗(t− 16) + α3α

∗
2X(t− 30)X∗(t− 10)

+α3α
∗
3X(t− 30)X∗(t− 30)]

= α1α
∗
1RX((t− 16)− (t− 16)) + α1α

∗
2RX(t− 16)− (t− 10))

+α1α
∗
3RX((t− 16)− (t− 30)) + α2α

∗
1RX((t− 10)− (t− 16))

+α2α
∗
2RX((t− 10)− (t− 10)) + α2α

∗
3RX((t− 10)− (t− 30))

+α3α
∗
1RX((t− 30)− (t− 16)) + α3α

∗
2RX((t− 30)− (t− 10))

+α3α
∗
3RX((t− 30)X − (t− 30))

= α1α
∗
1RX(0) + α1α

∗
2RX(−6) + α1α

∗
3RX(14) + α2α

∗
1RX(6)

+α2α
∗
2RX(0) + α2α

∗
3RX(20) + α3α

∗
1RX(−14) + α3α

∗
2RX(−20)

+α3α
∗
3RX(0)

Hence, time differences, corresponding to which the knowledge of
RX(τ) = E[X(t+τ)X∗(t)] is necessary for the computation of the
received power E[|Y (t)|2] = E[Y (t)Y ∗(t)], are −20, −14, −6, 0,
6, 14 and 20.

(b) Since RX(τ) andRX(−τ) will simultaneously appear in the weighted
sum for the computation of RY (0) and the sum of RX(τ) and
RX(−τ) = R∗

X(τ) (thus, this is an important property) is real-
valued, we can be certain that RY (0) must be real-valued.

Note: By this example, you can see that the real part of RX(τ)
is conceptually more important than the imaginary part as the
knowledge of Re{RX(τ)} fully decides RY (0).

3. (a) If we admit (by the Sifting property of the Dirac delta function)
that the Fourier transform of the Dirac delta function δ(t) is 1,
show that the Fourier transform of 1 is δ(f).
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(b) Suppose G(f) is continuous. Then, we obtain from the replication
property that

1

T
G
(n
T

)
ej2π

n
T
t =

∫ ∞

−∞
δ
(
f − n

T

) 1

T
G (f) ej2πftdf,

show that the (extended) Fourier transform of the periodic func-
tion

gT (t) =

∞∑
n=−∞

g(t− nT )

is equal to

1

T
G (f)

( ∞∑
n=−∞

δ
(
f − n

T

))
.

Solution.

(a) Admitting∫ ∞

−∞
δ(t)e−j2πftdt =

∫ ∞

−∞
δ(t− 0)e−j2πftdt = ej2πf ·0 = 1,

we know from the Fourier transform pair that the inverse Fourier
transform of 1 must be δ(t), which can be written as

δ(t) =

∫ ∞

−∞
1 · ej2πftdf. (1)

In the above formula, t and f are just arguments and can be
exchanged. Hence, we can rewrite (1) as

δ(f) =

∫ ∞

−∞
1 · ej2πtfdt =

∫ ∞

−∞
1 · e−j2π(−f)tdt,

implying that the Fourier transform of function 1 is δ(−f). As
δ(−f) = δ(f), we conclude that the Fourier transform of 1 is δ(f).

Note: Since constant function 1 is not absolutely integrable, its
Fourier transform does not exist (as pointed out by Dirichlet).
However, for convenience, engineers often admit this “fact” and
use it widely in their derivations. Such an “admission” facilitates
the general establishment of communications theory (as can be
seen from the next subproblem). Due to the conflict of the two
viewpoints, some books may say the Fourier transform of 1 does
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not exist but others may admit it. Both are correct in their own
viewpoints. Now you shall know how tricky it is to introduce the
Dirac delta function.

In order to unify the two viewpoints, a few researchers prefer
to use the extended Fourier transform and say that the extended
Fourier transform of δ(t) is 1. But still, some articles do not
bother to add “extended” and simply use Fourier transform in
their description.

(b) From

gT (t) =

∞∑
n=−∞

1

T
G
(n
T

)
ej2π

n
T
t

=

∞∑
n=−∞

∫ ∞

−∞
δ
(
f − n

T

) 1

T
G (f) ej2πftdf

=

∫ ∞

−∞

1

T
G (f)

( ∞∑
n=−∞

δ
(
f − n

T

))
︸ ︷︷ ︸

GT (f)

ej2πftdf

we admit that the Fourier transform of gT (t) is

GT (f) =
1

T
G (f)

( ∞∑
n=−∞

δ
(
f − n

T

))
.

Note: Dirichlet would say the Fourier transform of the periodic
function gT (t) does not exist (as a period function is not absolutely
integrable). So, he may prefer to see the statement that GT (f) is
the extended Fourier transform of gT (t).

4. (a) Prove that for a stable LTI filter, a WSS input induces a WSS
output.

(b) Prove that the convolution operation in time domain ≡ the mul-
tiplication operation in frequency domain.

Solution.

(a) See Slide 1-63 and 1-65. Simply show that µY (t) is a constant and
RY (t, u) is only a function of (t− u).

Note: It is suggested to memorize the general input-output rela-
tion of mean function and autocorrelation function for a stable LTI
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filter in Slide 1-65, as well as the simplified input-output relation
when assuming the input process is WSS.

(b) See Slide 2-18.

5. Please memorize the Fourier transform pair in Slide 2-2. You shall care-
fully read the three examples in Slides 1-28, 1-33 and 1-45. Variations
of the three may appear in the midterm exam.
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