Sample Problems for Quiz 1 (2021 Spring)

1. (a) Prove that if a random process X(t) is stationary, its autocorrelation function $R_X(t_1, t_2)$ is only a function of time difference $(t_1 - t_2)$. Hint: Here, we assume that the joint probability density function

(pdf) $f_{X(t_1),X(t_2)}(x_1,x_2)$ exists.

(b) Prove that autocorrelation function $R_X(t_1, t_2)$ equals autocovariance function $C_X(t_1, t_2)$ plus $\mu_X(t_1)\mu_X^*(t_2)$. Hint: Prove the equivalence: $C_{T_2}(t_1, t_2) = R_T(t_1, t_2) - \mu_T(t_1)\mu_X^*(t_2)$.

Hint: Prove the equivalence: $C_X(t_1, t_2) = R_X(t_1, t_2) - \mu_X(t_1)\mu_X^*(t_2)$. Solution.

(a)

$$R_X(t_1, t_2) = E[X(t_1)X^*(t_2)]$$
(By definition of autocorrelation function)
$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_1 x_2^* f_{X(t_1), X(t_2)}(x_1, x_2) dx_1 dx_2$$
(By definition of expectation value)
$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_1 x_2^* f_{X(t_1-t_2), X(0)}(x_1, x_2) dx_1 dx_2$$
(Due to stationarity)
$$= E[X(t_1 - t_2)X^*(0)]$$

$$= R_X(t_1 - t_2, 0)$$
(= $R_X(t_1 - t_2)$)

- (b) See Slide 1-19.
- 2. (a) Give the conditions on the mean function $\mu_X(t)$ and the autocorrelation function $R_X(t_1, t_2)$, which define a WSS process X(t).
 - (b) Give the conditions on the mean function $\mu_X(t)$ and the autocorrelation function $R_X(t_1, t_2)$, which define the cyclostationary process X(t).

Solution.

(a) $\mu_X(t)$ is a constant and $R_X(t_1, t_2) = R_X(t_1 - t_2)$ is only a function of time difference $(t_1 - t_2)$.

- (b) μ_X(t + T) = μ_X(t) and R_X(t₁ + T, t₂ + T) = R_X(t₁, t₂) are both periodic function with the same period T.
 Note: See Problem 5(a) for an example of cyclostationary process.
- 3. Name a reason why the following function cannot be the autocorrelation function $R_X(\tau)$ of some WSS process X(t).

Hint: The autocorrelation function $R_X(\tau)$ of a WSS process X(t) must satisfy $R_X(0) = E[|X(t)|^2], R_X(\tau) = R_X^*(-\tau)$ and $|\text{Re}\{R_X(\tau)\}| \leq R_X(0).$

- (a) $g_1(\tau) = \cos(2\pi f_c \tau) + j \cos(2\pi f_c \tau)$
- (b) $g_2(\tau) = \tau^2$
- (c) $g_3(\tau) = 1 |\tau 1|$

Solution.

- (a) $g_1(\tau)$ violates the property of conjugate symmetry: $g_1(\tau) \neq (g_1(-\tau))^*$. Note: It also violates the property that $g_1(0)$ must be a non-negative real number.
- (b) $g_2(\tau)$ violates the property that the real part peaks at zero: $|\operatorname{Re}\{g_2(\tau)\}| = |g_2(\tau)| \leq g_2(0).$
- (c) $g_3(\tau)$ violates the property of conjugate symmetry: $g_3(\tau) = (g_3(-\tau))^*$. Note: It also violates the property that the real part peaks at zero.
- 4. (a) Can the autocorrelation function at the origin $R_X(0)$ be a complex number with non-zero imaginary part? Justify your answer.
 - (b) Prove that the real part of the autocorrelation function of a WSS random process X(t) peaks at zero, i.e., $|\text{Re}\{R_X(\tau)\}| \leq R_X(0)$. Hint: Think of how to generate $R_X(\tau)$ and $R_X(0)$ simultaneously in an equation from $X(t + \tau)$ and X(t).

Solution.

(a) The answer is No because by definition, $R_X(0) = E[X(t)X^*(t)] = E[|X(t)|^2]$ must be a (non-negative) real number.

$$\begin{array}{lll} 0 &\leq & E\left[|X(t+\tau) + X(t)|^{2}\right] \\ &= & E\left[(X(t+\tau) + X(t))\left(X(t+\tau) + X(t)\right)^{*}\right] \\ &\quad (Since |A|^{2} = AA^{*} \mbox{ for a complex number } A) \\ &= & E\left[(X(t+\tau) + X(t))\left(X^{*}(t+\tau) + X^{*}(t)\right)\right] \\ &\quad (Since (A+B)^{*} = A^{*} + B^{*} \mbox{ for two complex numbers } A \mbox{ and } B) \\ &= & E[X(t+\tau)X^{*}(t+\tau) + X(t+\tau)X^{*}(t) + X(t)X^{*}(t+\tau) + X(t)X^{*}(t)] \\ &= & E[X(t+\tau)X^{*}(t+\tau)] + E[X(t+\tau)X^{*}(t)] + E[X(t)X^{*}(t+\tau)] + E[X(t)X^{*}(t)] \\ &\quad (Since \ E[Y+Z] = E[Y] + E[Z] \mbox{ for two random variables } Y \mbox{ and } Z) \\ &= & R_{X}(0) + R_{X}(\tau) + R_{X}(-\tau) + R_{X}(0) \\ &\quad (By \ definition \ of \ autocorrelation \ function) \\ &= & R_{X}(0) + R_{X}(\tau) + R_{X}^{*}(\tau) + R_{X}(0) \\ &\quad (From \ R_{X}(\tau) = R_{X}^{*}(-\tau)) \\ &= & 2R_{X}(0) + 2\operatorname{Re}\{R_{X}(\tau)\}, \\ \text{which implies } \operatorname{Re}\{R_{X}(\tau)\} \geq -R_{X}(0). \ Similarly, \ we \ derive \\ 0 &\leq & E\left[|X(t+\tau) - X(t)|^{2}\right] \\ &= & E\left[(X(t+\tau) - X(t))\left(X^{*}(t+\tau) - X^{*}(t)\right)\right] \\ &= & E\left[(X(t+\tau) - X(t))\left(X^{*}(t+\tau) - X^{*}(t)\right)\right] \\ &= & E\left[X(t+\tau)X^{*}(t+\tau) - X(t+\tau)X^{*}(t) - X(t)X^{*}(t+\tau) + X(t)X^{*}(t)\right] \\ &= & E\left[X(t+\tau)X^{*}(t+\tau) - E\left[X(t+\tau)X^{*}(t+\tau)\right] + E\left[X(t)X^{*}(t)\right] \end{aligned}$$

$$= R_X(0) - R_X(\tau) - R_X(-\tau) + R_X(0)$$

$$= R_X(0) - R_X(\tau) - R_X^*(\tau) + R_X(0)$$

$$= 2R_X(0) - 2\operatorname{Re}\{R_X(\tau)\},\$$

which implies $\operatorname{Re}\{R_X(\tau)\} \leq R_X(0)$. The above two inequalities jointly imply $|\operatorname{Re}\{R_X(\tau)\}| \leq R_X(0)$.

Note: From the Hint, one way to generate $R_X(\tau)$ and $R_X(0)$ simultaneously in an equation from $X(t+\tau)$ and X(t) is to examine

$$E[(X(t+\tau) + X(t))(X(t+\tau) + X(t))^*]$$

and

$$E[(X(t+\tau) - X(t))(X(t+\tau) - X(t))^*].$$

5. (a) Give $X(t) = \cos(2\pi f_c t + \Theta)$, where Θ is uniformly distributed over $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right)$. Find the mean function $\mu_X(t)$ and the autocorrelation function $R_X(t_1, t_2)$. Is X(t) WSS? Is X(t) cyclostationary?

(b) Give $X(t) = \cos(2\pi f_c t + \Theta) + j \sin(2\pi f_c t + \Theta)$, where is uniformly distributed over $[-\pi, \pi)$. Find the mean function $\mu_X(t)$ and the autocorrelation function $R_X(t_1, t_2)$. Is X(t) WSS? Is X(t) cyclostationary?

Hint: It is sometimes convenient to denote

$$\cos(2\pi f_c t + \Theta) + j\sin(2\pi f_c t + \Theta) = e^{j(2\pi f_c t + \Theta)}.$$

Solution.

(a) For wide-sense stationarity, we need to check whether the mean function $\mu_X(t)$ is a constant, (functionally) independent of t, and whether the autocorrelation function $R_X(t_1, t_2)$ is only a function of time difference $(t_1 - t_2)$. So we derive

$$\mu_X(t) = E[\cos(2\pi f_c t + \Theta)]$$

= $\int_{-\pi/2}^{\pi/2} \cos(2\pi f_c t + \theta) \frac{1}{\pi} d\theta$
= $\frac{1}{\pi} \sin(2\pi f_c t + \theta) \Big|_{-\pi/2}^{\pi/2}$
= $\frac{1}{\pi} \sin\left(2\pi f_c t + \frac{\pi}{2}\right) - \frac{1}{\pi} \sin\left(2\pi f_c t - \frac{\pi}{2}\right)$
= $\frac{1}{\pi} \cos(2\pi f_c t) + \frac{1}{\pi} \cos(2\pi f_c t)$
= $\frac{2}{\pi} \cos(2\pi f_c t).$

and

$$\begin{aligned} R_X(t_1, t_2) &= E[\cos(2\pi f_c t_1 + \Theta)\cos(2\pi f_c t_2 + \Theta)] \\ &= \int_{-\pi/2}^{\pi/2} \cos(2\pi f_c t_1 + \theta)\cos(2\pi f_c t_2 + \theta)\frac{1}{\pi}d\theta \\ &= \int_{-\pi/2}^{\pi/2} \frac{1}{2\pi} \left[\cos(2\pi f_c(t_1 + t_2) + 2\theta) + \cos(2\pi f_c(t_1 - t_2))\right]d\theta \\ &= \int_{-\pi}^{\pi} \frac{1}{4\pi} \left[\cos(2\pi f_c(t_1 + t_2) + \theta') + \cos(2\pi f_c(t_1 - t_2))\right]d\theta' \\ &= \frac{1}{2}\cos(2\pi f_c(t_1 - t_2)). \end{aligned}$$

Consequently, X(t) is not WSS because $\mu_X(t)$ is not a constant. However, X(t) is cyclostationary since $\mu_X(t+T) = \mu_X(t)$ and $R_X(t_1+T, t_2+T) = R_X(t_1, t_2)$ with $T = \frac{1}{f_c}$. Note: With a better calibration mechanism, one may limit the phase difference between the transmitter and the receiver to be within $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right)$; however, the received signal $X(t) = \cos(2\pi f_c t + \Theta)$ is no longer WSS but cyclostationary.

(b) Again, for wide-sense stationarity, we need to check whether the mean function $\mu_X(t)$ is a constant, (functionally) independent of t, and whether the autocorrelation function $R_X(t_1, t_2)$ is only a function of time difference $(t_1 - t_2)$. So we derive

$$\mu_X(t) = E[\cos(2\pi f_c t + \Theta) + j\sin(2\pi f_c t + \Theta)]$$

= $E[\cos(2\pi f_c t + \Theta)] + jE[\sin(2\pi f_c t + \Theta)]$
= $\int_{-\pi}^{\pi} \cos(2\pi f_c t + \theta) \frac{1}{2\pi} d\theta + j \int_{-\pi}^{\pi} \sin(2\pi f_c t + \theta) \frac{1}{2\pi} d\theta$
= $\frac{1}{2\pi} \sin(2\pi f_c t + \theta) \Big|_{-\pi}^{\pi} - \frac{1}{2\pi} \cos(2\pi f_c t + \theta) \Big|_{-\pi}^{\pi}$
= 0

and

$$R_X(t_1, t_2) = E[e^{j(2\pi f_c t_1 + \Theta)} (e^{j(2\pi f_c t_2 + \Theta)})^*]$$

= $E[e^{j(2\pi f_c t_1 + \Theta)} e^{-j(2\pi f_c t_2 + \Theta)}]$
= $E[e^{j2\pi f_c (t_1 - t_2)}]$
= $e^{j2\pi f_c (t_1 - t_2)}$

Since $\mu_X(t)$ is a constant, and $R_X(t_1, t_2)$ is only a function of $(t_1 - t_2)$, X(t) is a WSS process.

As a WSS process must be a cyclostationary process (with arbitrary period T), X(t) is also a cyclostationary process.