
Additional Sample Problems for the Final Exam

Corrections

• Solutions for Sample Problem 4(c) for Quiz 10:

Derive

G(f) = ∆ · F{
1{|t| ≤ 0.25}}(ej2πf(−0.25) − ej2πf(0.25)

)
= ∆ · 0.5 sinc(0.5f) (− j2 sin(0.5πf)

)
= −j∆sinc(0.5f) sin(0.5πf)

• Solutions for Sample Problem 4(a) for Quiz 11:

hISI(iTb) =
∑N−1

k=0 wkai−k

(
= w0ai +

∑N−1
k=1 wkai−k︸ ︷︷ ︸
ISI term

)

1. (Demonstration of how a pre-coder can be designed.) Design a pre-coder for the class III
correlative level coding.

Hint: For the class III correlative level coding, we have ck = 2ak + ak−1 − ak−2.

Solution. Using a similar derivation to Slides 8-64 and 8-72, we obtain

ck = 2ak + ak−1 − ak−2

= 2(2b̃k − 1) + (2b̃k−1 − 1)− (2b̃k−2 − 1)

= 2(2b̃k + b̃k−1 − b̃k−2)− 2.

From the above equation, we need to represent bk as a function of b̃k, b̃k−1 and b̃k−2. Let
bk = α0b̃k ⊕ α1b̃k−1 ⊕ α2b̃k−2 with α0, α1, α2 ∈ {0, 1}. Then,

b̃k b̃k−1 b̃k−2 bk ck
0 0 0 0 −2
0 0 1 α2 −4
0 1 0 α1 0
0 1 1 α1 ⊕ α2 −2
1 0 0 α0 2
1 0 1 α0 ⊕ α2 0
1 1 0 α0 ⊕ α1 4
1 1 1 α0 ⊕ α1 ⊕ α2 2

From ck = −2, we know the first row and the fourth row should give the same bk-value,
i.e., α1 ⊕ α2 = 0; from ck = 0, it requires α1 = α0 ⊕ α2; and from ck = 2, we must have
α0 = α0 ⊕ α1 ⊕ α2. These summarize to:


α1 ⊕ α2 = 0;

α1 = α0 ⊕ α2;

α0 = α0 ⊕ α1 ⊕ α2

⇒
{
α1 ⊕ α2 = 0;

α1 = α0 ⊕ α2

⇒ (α0, α1, α2) =

{
(0, 0, 0)

(0, 1, 1)
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The solution of (α0, α1, α2) = (0, 0, 0) must be excluded; hence, we choose (α0, α1, α2) =
(0, 1, 1). In summary, bk = b̃k−1 ⊕ b̃k−2 (or b̃k−1 = bk ⊕ b̃k−2), and the decision making at
the receiver can be done as

bk =

{
0, |ck| = 2;

1, |ck| = 0 or 4,

as illustrated in the table below.

b̃k b̃k−1 b̃k−2 bk ck
0 0 0 0 −2
0 0 1 1 −4
0 1 0 1 0
0 1 1 0 −2
1 0 0 0 2
1 0 1 1 0
1 1 0 1 4
1 1 1 0 2

2. Give b̃k = bk ⊕ b̃k−1, where bk, b̃k ∈ {0, 1} and “⊕” is the exclusive-or operation.

(a) Express the probability Pr[b̃k = 0] as a function of the statistics of b̃k−1 and bk.

(b) Let {bk}∞k=1 be i.i.d. with Pr(bk = 1) = p for each k. Suppose we initialize b̃0 = 0.
Find Pr(b̃1 = 0) and Pr(b̃2 = 0). Is {b̃k}∞k=1 stationary?

(c) Re-do (b) under p = 1
2
. Is {b̃k}∞k=1 stationary?

Solution.

(a) From Bayes rule,

Pr(b̃k = 0) = Pr(b̃k−1 = 0) · Pr(b̃k = 0|b̃k−1 = 0) + Pr(b̃k−1 = 1) · Pr(b̃k = 0|b̃k−1 = 1)

= Pr(b̃k−1 = 0) · Pr(bk = 0) + Pr(b̃k−1 = 1) · Pr(bk = 1)

(b) From (a), we obtain

Pr(b̃1 = 0) = Pr(b̃0 = 0)︸ ︷︷ ︸
=1

·(1− p) + Pr(b̃0 = 1)︸ ︷︷ ︸
=0

·p = 1− p

and

Pr(b̃2 = 0) = Pr(b̃1 = 0) · Pr(b1 = 0) + Pr(b̃1 = 1) · Pr(b1 = 1)

= (1− p) · (1− p) + p · p
= 1− 2p+ 2p2,

which implies {b̃k} is not necessarily stationary unless p = 1
2
.

(c) Since p = 1
2
, we have

Pr(b̃1 = 0) = Pr(b̃2 = 0) =
1

2
.

And we can follow Slides 8-65 and 8-66 to prove that {b̃k}∞k=1 is i.i.d. with Pr(b̃k) =
1
2

for each k. Thus, {b̃k}∞k=1 is stationary.
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3.

In our lectures, we derive

Rq(τ1, τ2; i) =
∞∑

k=−∞
q(iTb − kTb − τ1)q(iTb − kTb − τ2),

where q(t) = g(t) � h(t). Let G(f) be the Fourier transform of g(t).

(a) Argue that Rq(τ1, τ2; i) has nothing to do with i. Hence, we can re-express it as
Rq(τ1, τ2).

(b) Is Rq(τ1, τ2) only a function of τ1 − τ2? If your answer is affirmative, prove it; else,
give a counterexample.

(c) Show that if the transmit filter g(t) satisfies

∞∑
m=−∞

G(−f1)G(−f2) δ

(
f1 + f2 − m

Tb

)
= G(−f1)G(−f2)δ (f1 + f2)︸ ︷︷ ︸

the term for m=0

, (1)

then Rq(τ1, τ2) is only a function of τ1 − τ2.

Hint: Perform the two-dimensional Fourier transform onto Rq(τ1, τ2).

Solution.

(a) By setting m = i− k, kwe obtain

Rq(τ1, τ2; i) =

∞∑
m=−∞

q(mTb − τ1)q(mTb − τ2)

and hence Rq(·, ·; ·) has nothing to do with i.

(b) Not necessarily. For example, suppose q(t) =
(
1− |t−Tb|

Tb

)
1{0 ≤ t < 2Tb}, as a result

of g(t) = h(t) = 1√
Tb
1{0 ≤ t < Tb} (See Slide 8-11). Then, with τ1 − τ2 = −Tb

10
, we

obtain

Rq

(
0, Tb

10

)
=

∞∑
m=−∞

q(mTb)q
(
mTb − Tb

10

)
= q(Tb)q

(
Tb − Tb

10

)
= 9

10

and

Rq

(
Tb

10
, Tb

5

)
=

∞∑
m=−∞

q
(
mTb − Tb

10

)
q
(
mTb − Tb

5

)
= q

(
Tb − Tb

10

)
q
(
Tb − Tb

5

)
+ q

(
2Tb − Tb

10

)
q
(
2Tb − Tb

5

)
= 9

10
· 4
5
+ 1

10
· 1
5

= 37
50
.
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(c) The two-dimensional Fourier transform of Rq(τ1, τ2) is given by

Sq(f1, f2) =

∫ ∞

−∞

∫ ∞

−∞
Rq(τ1, τ2)e

−ı2πf1τ1e−ı2πf2τ2dτ1dτ2

=

∫ ∞

−∞

∫ ∞

−∞

∞∑
m=−∞

q(mTb − τ1)q(mTb − τ2)e
−ı2πf1τ1e−ı2πf2τ2dτ1dτ2

=
∞∑

m=−∞

∫ ∞

−∞
q(mTb − τ1︸ ︷︷ ︸

=s1

)e−ı2πf1τ1dτ1

∫ ∞

−∞
q(mTb − τ2︸ ︷︷ ︸

=s2

)e−ı2πf2τ2dτ2

=
∞∑

m=−∞

∫ ∞

−∞
q(s1)e

−ı2πf1(mTb−s1)ds1

∫ ∞

−∞
q(s2)e

−ı2πf2(mTb−s2)ds2

=
∞∑

m=−∞
e−ı2πf1mTbe−ı2πf2mTb

∫ ∞

−∞
q(s1)e

−ı2π(−f1)s1ds1︸ ︷︷ ︸
Q(−f1)

∫ ∞

−∞
q(s2)e

−ı2π(−f2)s2ds2︸ ︷︷ ︸
Q(−f2)

= Q(−f1)Q(−f2)

∞∑
m=−∞

e−ı2π(f1+f2)mTb

= Q(−f1)Q(−f2)
1

Tb

∞∑
m=−∞

δ

(
f1 + f2 − m

Tb

)

=
1

Tb
H(−f1)H(−f2)

∞∑
m=−∞

G(−f1)G(−f2)δ

(
f1 + f2 − m

Tb

)
︸ ︷︷ ︸

=G(−f1)G(−f2)δ(f1+f2) by assumption

(Apply Q(f) = H(f)G(f))

=
1

Tb

H(−f1)H(−f2)G(−f1)G(−f2)δ (f1 + f2)

=
1

Tb

Q(−f1)Q(−f2)δ (f1 + f2) .

This implies that

Rq(τ1, τ2) =

∫ ∞

−∞

∫ ∞

−∞

1

Tb
Q(−f1)Q(−f2)δ (f1 + f2) e

ı2πf1τ1eı2πf2τ2df1df2

=
1

Tb

∫ ∞

−∞
Q(−f1)Q(f1)e

ı2πf1(τ1−τ2)df1; (2)

hence, Rq(τ1, τ2) is only a function of τ1 − τ2.

Note: An example of G(f) that satisfies the condition in (1) (and hence satisfies that
Rq(τ1, τ2) is only a function of τ1 − τ2) is

G(f) =

{
Tb e

−j2πft0 , |f | < 1
2Tb

;

0, otherwise.

In such case, g(t) = sinc((t− t0)/Tb). In fact, any G(f) that is zero outside |f | < 1
2Tb

satisfies the condition in (1).
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Taking τ = τ1 − τ2 into (2), we obtain

Rq(τ) =
1

Tb

∫ ∞

−∞
Q(−f)Q(f)eı2πfτdf.

The Fourier transform of Rq(τ) is obviously

Sq(f) =
1

Tb
Q(−f)Q(f) =

1

Tb
|Q(f)|2

provided Q(−f) = Q∗(f) (equivalently, provided q(t) is real).

3. This is a continuation from the previous problem.

From the previous block diagram, we have

y(iTb) =

∞∑
k=−∞

ak

∫ ∞

−∞
c(τ)q(iTb − τ − kTb)dτ︸ ︷︷ ︸

ξi

+

∫ ∞

−∞
c(τ)w(iTb − τ)dτ︸ ︷︷ ︸

ni

,

where q(t) = g(t) � h(t).

Now, suppose w(t) is a zero-mean WSS noise with PSD Sw(f) (i.e., w(t) is not neces-
sarily a white noise), and suppose {ak} are real-valued zero-mean i.i.d. with variance 1 (i.e.,
each ak not necessarily only takes values from {±1}). Then, the minimum mean square
error criterion (MMSE) minimizes

Ji = E[e2i ] = E[((ξi + ni)− ai)
2]

= E[ξ2] + E[n2
i ] + E[a2i ] + 2E[ξini]− 2E[niai]− 2E[ξiai].

It can be derived that E[ξ2i ] =
∫∞
−∞ Sq(f)|C(f)|2df .

(d) Show that E[n2
i ] =

∫∞
−∞ Sw(f)|C(f)|2df .

Hint: g(t), h(t) and c(t) are all real.

(e) Show that E[ξiai] =
∫∞
−∞ Re{C(f)Q(f)}df .

(f) Since E[a2i ] = 1 and E[ξini] = E[niai] = 0, we have

Ji =

∫ ∞

−∞

(
[Sq(f) + Sw(f)] |C(f)|2 − 2 · Re{C(f)Q(f)})︸ ︷︷ ︸

=A(f)

df + 1.

Show that C(f) = Q∗(f)
Sq(f)+Sw(f)

minimizes A(f).

(g) From (f), under what condition that the MMSE equalizer is a matched filter to q(t)?

Note: Since ak is obtained from the sample at t = kTb (not at t = (k + 1)Tb), the
matched filter to q(t) is Q∗(f) (not Q∗(f)e−j2πfTb).

Solution.
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(d)

E[n2
i ] =

∫ ∞

−∞

∫ ∞

−∞
c(τ1)c(τ2)E[w(iTb − τ1)w(iTb − τ2)]dτ1dτ2

=

∫ ∞

−∞

∫ ∞

−∞
c(τ1)c(τ2)Rw(τ1 − τ2)dτ1dτ2

=

∫ ∞

−∞

∫ ∞

−∞
c(τ1)c(τ2)

(∫ ∞

−∞
Sw(f)e

j2πf(τ1−τ2)df

)
dτ1dτ2

=

∫ ∞

−∞
Sw(f)

(∫ ∞

−∞
c(τ1)e

j2πfτ1dτ1

)(∫ ∞

−∞
c(τ2)e

−j2πfτ2dτ2

)
df

=

∫ ∞

−∞
Sw(f)C(−f)C(f)df

=

∫ ∞

−∞
Sw(f)|C(f)|2df (Because C(−f) = C∗(f).)

(e) See Slides 8-110∼111, and the fact that ξi and ai are both real.

(f)

A(f) = [Sq(f) + Sw(f)]

(
|C(f)|2 − 2Re

{
Q(f)

[Sq(f) + Sw(f)]
C(f)

})

= [Sq(f) + Sw(f)]

∣∣∣∣C(f)−
(

Q(f)

Sq(f) + Sw(f)

)∗∣∣∣∣2 − |Q(f)|2
Sq(f) + Sw(f)

implies that the optimal design should satisfy

C(f) =
Q∗(f)

Sq(f) + Sw(f)
.

(g) It requires
Q∗(f)

Sq(f) + Sw(f)
= constant ·Q∗(f),

based on which we know that the condition is Sq(f) + Sw(f) is a constant over the
range where Q∗(f) is non-zero.

4. The derivation of the optimal linear receiver introduced in Slide 8-112 indicates that the
transfer function of the MMSE equalizer is

C(f) =
Q∗(f)

Sq(f) +
N0

2

.

After approximating Sq(f) by a periodic S̃q(f) defined in Slide 8-116, we notice that

Θq(f) =
1

S̃q(f) +
N0

2

becomes periodic with period 1/Tb, and hence its inverse Fourier transform only exhibits
pulses at t = nTb with integer n. Suppose the inverse Fourier transform of Θq(f) is given
by

θq(t) = δ(t)− 2δ(t− Tb) + δ(t− 2Tb).
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(a) Draw the block diagram of the tapped-delay-line equalizer with impulse response θq(t).

(b) Suppose an adaptive receiver is equipped with the ideal “desired response” that was
obtained through, e.g., measurement of the output due to input x(t) and filter θq(t).
With the desired response d[n] = x[n]−2 x[n−1]+x[n−2] and the adaptive equalizer
below, represent e[n] as a function of x[n], x[n− 1], x[n− 2], w0 and w1.

(c) Continue from (b). Usually, w0 = 1. By using the training sequence:

x[n] =



−1, nmod3 = 0;

+1, nmod3 = 1;

+1, nmod3 = 2,

is it possible to adapt to a fixed w1 such that limn→∞ e[n] = 0? Justify your answer.

Hint: y[n] is only a function of x[n] and x[n− 1] but the desired response depends on
x[n− 2].

(d) Re-do (c) for training sequence

x[n] =

{
−1, n odd;

1, n even.

Solution.

(a)

(b) From the block diagram, we derive

e[n] = d[n]− y[n]

= d[n]−
1∑

k=0

wk x[n− k]

= (x[n]− 2 x[n− 1] + x[n− 2])− (w0x[n] + w1x[n− 1])

= −(2 + w1) x[n− 1] + x[n− 2]
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(c)

e[n] = −(2 + w1) x[n− 1] + x[n− 2] =



−1− w1, nmod3 = 0

3 + w1, nmod3 = 1

−(3 + w1), nmod3 = 2

Because either w1 = −1 or w1 = −3 cannot make limn→∞ e[n] = 0, the answer to the
question is negative

(d) We now have

e[n] = −(2 + w1) x[n− 1] + x[n− 2] =

{
−(3 + w1), n odd

3 + w1, n even

Apparently, w1 = −3 guarantees e[n] = 0; hence, it is surely possible that e[n] con-
verges to zero.

Note: Although this adaptive filter converges for the specifically designed training
sequence, it actually “approximates” θq(τ) = δ(t) − 2δ(t − T ) + δ(t − 2T ) by δ(t) −
3δ(t−T ). This approximation is “accurate” only for this specific input sequence, i.e.,
. . . ,+1,−1,+1,−1, . . . but for other data sequence, the two filters may generate very
different output sequences.

Hence, even if the adaptive filter converges for a specific training sequence, it does
not guarantee we obtain the “desired” adaptive equalizer.

5. An inner product satisfies that for all u, v ∈ V and α ∈ F ,

1. 〈v, v〉 ≥ 0, where equality holds iff v = 0. (Here, 0 is the vector additive identity,
i.e., v + 0 = v for all v ∈ V.)

2. 〈u, v〉 = (〈v,u〉)∗
3. 〈u+w, v〉 = 〈u, v〉+ 〈w, v〉
4. 〈αu, v〉 = α〈u, v〉

(a) Let V be the set of all complex random variables and F be the set of complex numbers.
Define 〈X, Y 〉 = E[XY ∗] for X, Y ∈ V. Show that 〈X, Y 〉 satisfies the above four
properties.

(b) Let V be the set of real-valued functions defined over [0, T ), and F be the set of real
numbers. Define for f(t), g(t) ∈ V,

〈f(t), g(t)〉 =
∫ T

0

f 2(t)g2(t)dt.

does 〈f(t), g(t)〉 satisfy the above four properties? Justify your answer.

Solution.

(a) • E[X ×X∗] = E[|X|2] ≥ 0, where equality holds iff X = 0 (with probability 1).

• E[XY ∗] = (E[Y X∗])∗

• E[(X + Y )Z∗] = E[XZ∗] + E[Y Z∗]
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• E[αXY ∗] = αE[XY ∗]

(b) The first two axioms hold but the last two axioms do not.

• ∫ T

0
f 2(t)f 2(t)dt ≥ 0, where equality holds iff f(t) = 0.

• ∫ T

0
f 2(t)g2(t)dt = (

∫∞
−∞ g2(t)f 2(t)dt)∗ =

∫∞
−∞ g2(t)f 2(t)dt

• ∫ T

0
(f(t) + g(t))2h2(t)dt =

∫ T

0
f 2(t)h2(t)dt+

∫ T

0
g2(t)h2(t)dt+ 2

∫ T

0
f(t)g(t)h2(t)dt

is not necessarily equal to
∫ T

0
f 2(t)h2(t)dt +

∫ T

0
g2(t)h2(t)dt

• ∫ T

0
(αf(t))2g2(t)dt = α2

∫ T

0
f 2(t)g2(t)dt is not necessarily equal to α

∫ T

0
f 2(t)g2(t)dt.

6. Define the inner product of two complex-valued signals x(t) and y(t) as

〈x(t), y(t)〉 =
∫ ∞

−∞
x(t)y∗(t)dt.

Answer the following questions.

(a) Suppose n(t) is a white random process with PSD N0/2, and Show that {ai}∞i=1

satisfies

E[aia
∗
j ] =

{
N0

2
, i = j

0, i 	= j

provided that {fi(t)}∞i=1 are orthonormal.

(b) Prove that 〈x(t), y(t)〉 = 〈X(f), Y (f)〉, where X(f) and Y (f) are Fourier transforms
of x(t) and y(t), respectively, and

〈X(f), Y (f)〉 =
∫ ∞

−∞
X(f)Y ∗(f)df.

Solution.

(a)

E[aia
∗
j ] = E

[(∫ ∞

−∞
n(t)f ∗

i (t)dt

)(∫ ∞

−∞
n(s)f ∗

j (s)ds

)∗]
=

∫ ∞

−∞

∫ ∞

−∞
E[n(t)n∗(s)]f ∗

i (t)fj(s)dtds

=
N0

2

∫ ∞

−∞

∫ ∞

−∞
δ(t− s)f ∗

i (t)fj(s)dtds

=
N0

2

∫ ∞

−∞
f ∗
i (t)fj(t)dt

=

{
N0

2
, i = j

0, i 	= j
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(b) ∫ ∞

−∞
x(t)y∗(t)dt =

∫ ∞

−∞

(∫ ∞

−∞
X(f1)e

ı2πf1tdf1

)(∫ ∞

−∞
Y (f2)e

ı2πf2tdf2

)∗
dt

=

∫ ∞

−∞

(∫ ∞

−∞
X(f1)e

ı2πf1tdf1

)(∫ ∞

−∞
Y ∗(f2)e−ı2πf2tdf2

)
dt

=

∫ ∞

−∞

∫ ∞

−∞
X(f1)Y

∗(f2)
(∫ ∞

−∞
e−ı2π(f2−f1)tdt

)
df1df2

=

∫ ∞

−∞

∫ ∞

−∞
X(f1)Y

∗(f2)δ(f2 − f1)df1df2

=

∫ ∞

−∞
X(f1)Y

∗(f1)df1.

7. (a) Suppose x = sm + n, where s1 = (
√
E, 0), s2 = (0,

√
E), s3 = (−√

E, 0) and
s4 = (0,−√

E). Assume the prior probability for each sm is 1/4. The noise n,
however, is Gaussian distributed with mean µ = (

√
E, 0) and covariance matrix σ2

I,
where I is the identity matrix. Find the ML decision rule.

(b) Draw the best decision region for m = 1, 2, 3, 4.

(c) Suppose the receiver mistakenly treats the noise as zero-mean, and use the best parti-
tions for zero-mean additive Gaussian noise. What is the symbol error rate obtained
by such a careless receiver if σ2 = 0 and µ = (2

√
E, 0) (i.e., if Pr[n = (2

√
E, 0)] = 1)?

Solution.
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(a)

dML(x) = arg max
1≤m≤4

log f(x|sm)

= arg max
1≤m≤4

1

2πσ2
e−

1
2σ2 (x1−(sm,1+

√
E))2− 1

2σ2 (x2−sm,2)2

= arg min
1≤m≤4

[
(x1 − (sm,1 +

√
E))2 + (x2 − sm,2)

2
]

= arg min
1≤m≤4

‖x− sm − µ‖2 (
= arg min

1≤m≤4
‖x− (sm + µ)‖2 )

Note: If the mean of the additive noise is not equal to zero, then a compensation
subtraction of this mean should be added in the ML decision.

(b) The two decision boundary lines are y = x+
√
E and y = −x+

√
E.

(c) From (a), we know that the decision rule for zero-mean additive noise is

dML(x) = arg min
1≤m≤4

‖x− sm‖2

There are only four possible receptions as marked in red in the below figure, and
dML(x) = 1 for all four cases.
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Since only the transmission of s1 will result in a correct decision, the probability of
making the correct decision is given by

Pc = Pr[s1]

∫
Z1

f(x|s1)dx+ Pr[s2]

∫
Z2

f(x|s2)dx

+Pr[s3]

∫
Z3

f(x|s3)dx+ Pr[s4]

∫
Z4

f(x|s4)dx
= Pr[s1] + Pr[s2] · 0 + Pr[s3] · 0 + Pr[s4] · 0
=

1

4
.

Hence, the probability of symbol error is Pe = 1− Pc =
3
4
.

Note: Even if the noise has zero variance, a high error probability can still be resulted
from this mistreatment of noise mean.
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