Problems for the 8th Quiz (May 10)

Name:_____ Student ID:_____ Score:_____

1. When performing sampling on a signal g(t), we obtain the sampled signal

$$g_{\delta}(t) = \sum_{n=-\infty}^{\infty} g(nT_s) \cdot \delta(t - nT_s),$$

where T_s is the sampling period. Let the sampling rate be denoted as $f_s = \frac{1}{T_s}$. Draw the spectrum $G_{\delta}(f)$ of $g_{\delta}(t)$ over the range of (-6W, 6W) in the following three situations, if G(f) is given by

Note: Please remember to mark the "height" of your $G_{\delta}(f)$. Recall that the larger the f_s , the higher the $G_{\delta}(f)$.

- (a) (25%) $f_s = 4W$
- (b) (25%) $f_s = 2W$
- (c) (25%) $f_s = W$

(d) (25%) From which situations G(f) can be reconstructed using an ideal lowpass filter?

Solution.

(d) (a) & (b)