Problems for the 5th Quiz (April 8, 2021)

Name:

Student ID: Score:

- 1. The modulated signal for DSB-C is given by $s(t) = [1 + k_a m(t)] \cos(2\pi f_c t)$.
 - (a) (40%) Find the Fourier transform of s(t). Hint:

$$S(f) = \mathcal{F} \{ \cos(2\pi f_c t) + k_a m(t) \cos(2\pi f_c t) \}$$

= $\mathcal{F} \{ \cos(2\pi f_c t) \} + k_a \mathcal{F} \{ m(t) \} \star \mathcal{F} \{ \cos(2\pi f_c t) \} = \cdots$

where \star denotes the convolution operation; $\mathcal{F}\{\cdot\}$ denotes the Fourier transform operation; $\mathcal{F}\{m(t)\} = M(f)$; and $\mathcal{F}\{\cos(2\pi f_c t)\} = \frac{1}{2}(\delta(f - f_c) + \delta(f + f_c))$.

(b) (30%) Now suppose $m(t) = \cos(2\pi f_m t)$. What is the range of the modulation index k_a over which no overmodulation for DSB-C occurs? Note: k_a must be a positive number.

) (30%) Will the answer be the same as (b) if one requ

(c) (30%) Will the answer be the same as (b) if one requires $|k_a m(t)| \le 1$ to ensure no overmodulation for DSB-C?

Solution.

(a)

$$\begin{split} S(f) &= \mathcal{F} \{ \cos(2\pi f_c t) + k_a \, m(t) \cos(2\pi f_c t) \} \\ &= \mathcal{F} \{ \cos(2\pi f_c t) \} + k_a \, \mathcal{F} \{ m(t) \} \, \star \mathcal{F} \{ \cos(2\pi f_c t) \} \\ &= \frac{1}{2} \left(\delta(f - f_c) + \delta(f + f_c) \right) \, + k_a \, M(f) \, \star \frac{1}{2} \left(\delta(f - f_c) + \delta(f + f_c) \right) \\ &= \frac{1}{2} \left(\delta(f - f_c) + \delta(f + f_c) \right) \, + \frac{k_a}{2} \left(M(f - f_c) + M(f + f_c) \right) \end{split}$$

(b) Over modulation for DSB-C occurs when $1 + k_a m(t) < 0$. Thus, no over modulation dictates

$$0 \le 1 + k_a m(t) = 1 + k_a \cos(2\pi f_m t)$$

which implies that when $\min_{t} \{1 + k_a \cos(2\pi f_m t)\} = 1 - k_a \ge 0$, no overmodulation occurs. Hence, the answer of this problem is $0 < k_a \le 1$.

- (c) The problem statement may be too conservative. So I provide two "correct" solutions.
 - It is clear that $1 \ge |k_a m(t)| = |k_a \cos(2\pi f_m t)|$ dictates $k_a \le 1$. Hence, the answer is the same as (b). It is clear that $1 > |k_a m(t)| = |k_a \cos(2\pi f_m t)|$ dictates $k_a < 1$. Hence, the answer is a little different from (b). Note: When m(t) is balanced in the sense that

$$\max_{t} m(t) + \min_{t} m(t) = 0,$$

the criterion in (b) and the criterion in (c) give the same answer. This justifies the adoption of $|km(t)| \leq 1$ as the design criterion of DSB-C in practice.