Problems for Quiz 3 (March 22, 2021)

Name	e: \$	Student ID:	Score:
	TABLE A6.2 Summary of properties of the Fourier transform		
-	Property	Mathematical Description	
-	1. Linearity	$ag_1(t) + bg_2(t) =$ where a and b as	$= aG_1(f) + bG_2(f)$ re constants
	2. Time scaling	$g(at) \rightleftharpoons \frac{1}{ a } G\left(\frac{f}{a}\right)$ where <i>a</i> is a con	stant
	3. Duality	If $g(t) \rightleftharpoons G(f)$, then $G(t) \rightleftharpoons g(-$	-f)
	4. Time shifting	$g(t-t_0) \rightleftharpoons G(f$	$)\exp(-j2\pi ft_0)$
	5. Frequency shifting	g $\exp(j2\pi f_0 t)g(t)$	$\rightleftharpoons G(f - f_0)$
	6. Area under $g(t)$	$\int_{-\infty}^{\infty} g(t) dt = G($	0)
_	7. Area under $G(f)$	$g(0) = \int_{-\infty}^{\infty} G(f)$)df

1. Let $G(f) = \mathcal{F}\{g(t)\}$ be the Fourier transform of g(t). Use the properties in Table A6.2 to derive the Fourier transform of the following functions.

(a)
$$(30\%) G(-2t)$$
.

(b) (30%)
$$g(t-t_0)e^{j2\pi f_0 t}$$
.

Solution.

- (a) By duality, $\mathcal{F}{G(t)} = g(-f)$. By time-scaling, $\mathcal{F}{G(-2t)} = \frac{1}{|-2|}g\left(-\left(\frac{f}{-2}\right)\right) = \frac{1}{2}G\left(\frac{f}{2}\right)$.
- (b) By time-shifting, $\mathcal{F}\{g(t-t_0)\} = G(f)e^{-j2\pi ft_0}$. By frequency shifting, $\mathcal{F}\{g(t-t_0)e^{j2\pi f_0 t}\} = G(f-f_0)e^{-j2\pi (f-f_0)t_0} = G(f-f_0)e^{j2\pi f_0 t_0}e^{-j2\pi ft_0}$.
- 2. (40%) Find the time-average PSD of a deterministic function $X(t) = \begin{cases} 1, & |t| < 20; \\ 0, & \text{otherwise.} \end{cases}$

Hint:
$$\bar{S}_X(f) = \lim_{T \to \infty} \frac{1}{2T} E[X(f) X_{2T}^*(f)]$$
, where
 $X_{2T}(t) := \begin{cases} X(t), & |t| \le T; \\ 0, & \text{otherwise,} \end{cases}$ and $X_{2T}(f) = \mathcal{F}\{X_{2T}(t)\}.$

Solution. $X_{2T}(t) = X(t)$ for T > 20. Hence, $X_{2T}(f) = X(f)$, which implies

$$\bar{S}_X(f) = \lim_{T \to \infty} \frac{1}{2T} X(f) X_{2T}^*(f) = \lim_{T \to \infty} \frac{1}{2T} X(f) X^*(f) = \lim_{T \to \infty} \frac{1}{2T} |X(f)|^2 = 0,$$

where the last step follows from the fact that $|X(f)|^2 = |40\operatorname{sinc}(40f)|^2 \le 1600$ is bounded (and is functionally independent of T).

Note: For any process of finite duration, its time-average PSD is zero as long as its Fourier transform is bounded.