Name:______Student ID:______Score:_____

- 1. (a) (40%) Give the conditions on the mean function $\mu_X(t)$ and the autocorrelation function $R_X(t_1, t_2)$, which define a wide-sense stationary (WSS) process X(t).
 - (b) (30%) Name a reason why $g(\tau) = \tau^3$ cannot be the autocorrelation function $R_X(\tau)$ of some WSS process X(t).
 - (c) (30%) Fix a complex WSS process X(t) with mean function $\mu_X(t)$, autocorrelation function $R_X(t_1, t_2)$ and autocovariance function $C_X(t_1, t_2)$. Given that $R_X(3, 3.2) = 2+j$ and $\mu_X(3) = 1$, what is $C_X(2.7, 2.5)$?

Hint: Autocorrelation function equals sum of autocovariance function and product of the mean function.

Solution.

- (a) $\mu_X(t)$ is a constant and $R_X(t_1, t_2) = R_X(t_1 t_2)$ is only a function of time difference $(t_1 t_2)$.
- (b) $g(\tau)$ cannot be the autocorrelation function of some WSS process because it is not conjugate symmetric.

Note: Alternatively, you may say $g(\tau)$ cannot be the autocorrelation function of some WSS process because the absolute value of its real part does not peak at the origin.

(c) For a WSS process, $C_X(t_1 - t_2) = R_X(t_1 - t_2) - |\mu_X|^2$. With $t_1 = 2.7$ and $t_2 = 2.5$, we obtain

$$C_X(2.7, 2.5) = C_X(0.2) = R_X(0.2) - 1$$

= $R_X^*(-0.2) - 1$
= $2 - j - 1$
= $1 - j$