
Introduction to Communication Systems: Final Exam

Grading systems

• 5 problems and each problem = 20 points.

– Each problem awards you 14 (basic) points when a serious answer is provided, regard-
less of its correctness.

– The remaining 6 (extra) points awards (partially or fully) to those who provide a
(partially or fully) correct answer.

– Please do not duplicate the answer from others.

1. (Matched filter over signal space)

(a) (basic= 3 pts., extra=1 pts.) For a single transmission, we have

x(t) = a · g(t) + w(t),

where a is the digital message to be transmitted, and w(t), g(t) and h(t) are all
real-valued.

Can we re-interpret the filtering and sampling operation as an inner product? Justify
your answer. You shall clearly indicate what your definition of inner product is and
what the two elements involved in the inner product are.

(b) (basic= 7 pts., extra=3 pts.) Based on the signal space viewpoint, the transmitter
is modeled as the transmission of M waveforms, i.e., s1(t), s2(t), . . ., sM(t), and
the receiver employs “inner product” to transform the received waveform into a N -
dimensional vector, based on which an estimate of the index of the transmitted wave-
form is made. In other words, the decision is made based on



〈x(t), φ1(t)〉 = 〈si(t), φ1(t)〉+ 〈w(t), φ1(t)〉
〈x(t), φ2(t)〉 = 〈si(t), φ2(t)〉+ 〈w(t), φ2(t)〉

...

〈x(t), φj(t)〉︸ ︷︷ ︸
=xj

= 〈si(t), φj(t)〉︸ ︷︷ ︸
=si,j

+ 〈w(t), φj(t)〉︸ ︷︷ ︸
=nj

...

〈x(t), φN(t)〉 = 〈si(t), φN(t)〉+ 〈w(t), φN(t)〉
Suppose the noise power E[|nj |2] = E[|〈w(t), φj(t)〉|2] is proportional to the norm
square ‖φj(t)‖2, i.e.,

E[|nj |2] = β‖φj(t)‖2 for a constant β functionally independent of j. (1)

1



Assume ‖si(t)‖ > 0 and ‖φj(t)‖ = 1. Let the signal-to-noise ratio for the transmission
of waveform si(t) be equal to

ηi �
∑N

j=1 |si,j|2∑N
j=1 1{si,j �= 0}E[n2

j ]
=

∑
1≤j≤N :si,j �=0 |si,j|2∑
1≤j≤N :si,j �=0E[n2

j ]
,

where the receiver reasonably exclude xj from its decision making operation if it
knows xj contains no information but simply noise. What is the combination of N
and {φj}Nj=1 such that the average SNR

ηave �
1

M

M∑
j=i

ηi

is maximized if {si(t)}Mi=1 are orthogonal to each other in the sense that 〈si1(t), si2(t)〉 =
0 for every i1 �= i2?

Hint: The Cauchy Schwartz inequality states that

|〈f1(t), f2(t)〉| ≤ ‖f1(t)‖ · ‖f2(t)‖

with equality holding iff f1(t) = c · f2(t). Also,1 for non-negative {aj, bj}Nj=1,∑N
j=1 aj∑N
j=1 bj

≤ max
1≤j≤N :aj>0

aj
bj
. (2)

(c) (basic= 4 pts., extra=2 pts.) Prove that E[n2
j ] =

N0

2
‖φj(t)‖2, provided w(t) is zero-

mean white with PSD N0

2
, and the inner product of two (generally complex) functions

f1 and f2 is defined as

〈f1(t), f2(t)〉 =
∫ ∞

−∞
f1(t)f

∗
2 (t)dt.

Note: This is to confirm (1) can possibly hold.

Solution.

(a) Define the inner product of two (generally complex) functions f1 and f2 as

〈f1(t), f2(t)〉 =
∫ ∞

−∞
f1(t)f

∗
2 (t)dt.

Then, we can equivalently transform the system to

y(T ) = a 〈g(t), φ(t)〉+ 〈w(t), φ(t)〉,

where φ(t) = h(T − t).

1Here, we allow
aj

bj
= ∞ to be an upper bound under aj > 0 and bj = 0.
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(b) First, we note from the Cauchy-Schwartz inequality that

s2i,j = |〈si(t), φj(t)〉|2 ≤ ‖si(t)‖2 ‖φj(t)‖2

Thus, using E[|nj |2] = β‖φj(t)‖2, we derive

ηi =

∑
1≤j≤N :si,j �=0 |si,j|2∑N
1≤j≤N :si,j �=0E[nj ]2

≤
∑

1≤j≤N :si,j �=0 ‖si(t)‖2 ‖φj(t)‖2∑
1≤j≤N :si,j �=0 β ‖φj(t)‖2 (Cauchy-Schwartz inequality)

≤ max
1≤j≤N :si,j �=0

‖si(t)‖2 ‖φj(t)‖2
β ‖φj(t)‖2 (Use (2).)

=
‖si(t)‖2

β
,

where the upper bound has nothing to do with the choice of N and {φj(t)}Nj=1 (as long
as there is at least one non-zero element in {si,j}Nj=1). Consequently, if we can choose

N and {φj(t)}Nj=1 such that ηi =
‖si(t)‖2

β
for each i (i.e., ηi achieves the upper bound),

then ηave is maximized. It is obvious that by letting N = M and φj(t) =
sj(t)

‖sj(t)‖ , we
can equate both the Cauchy-Schwartz inequality and (2).

Note: Since I gave the wrong equality condition as f1(t) = c · f2(t), an answer of

φj(t) =
s∗j (t)

‖sj(t)‖ is also regarded “correct.”

(c)

E[n2
j ] = E[(〈w(t), φj(t)〉)2] = E

[(∫ ∞

−∞
w(t)φ∗

j(t)dt

)(∫ ∞

−∞
w(s)φ∗

j(s)ds

)∗]
=

∫ ∞

−∞

∫ ∞

−∞
E[w(t)w∗(s)]φ∗

j(t)φj(s) dt ds

=

∫ ∞

−∞

∫ ∞

−∞

N0

2
δ(t− s)φ∗

j(t)φj(s) dt ds

=
N0

2

∫ ∞

−∞
φj(t)φ

∗
j(t) dt

=
N0

2
〈φj(t), φj(t)〉

=
N0

2
‖φj(t)‖2

2. A general correlative level coding scheme that follows

ck = w0ak + w1ak−1 + · · ·+ wN−1ak−N+1 (as shown in Slide 8-73)

with w0 �= 0 may suffer serious error propagation if the estimate of ak is determined via

âk =
1

w0
(ck − (w1âk−1 + · · ·+ wN−1âk−N+1)).

This can be solved by the precoding technique.
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(a) (basic= 4 pts., extra=2 pts.) Subject to N = 3, can we design a precoder that makes
bk only a function of ck for arbitrary w0, w1 and w2 in {0, 1}, where


bk = α0b̃k ⊕ α1b̃k−1 ⊕ α2b̃k−2 for αj , b̃k ∈ {0, 1};
ak = 2b̃k − 1;

ck = w0ak + w1ak−1 + w2ak−2

If your answer is positive, give the design. If your answer is negative, give a coun-
terexample.

Hint: α0b̃k ⊕ α1b̃k−1 ⊕ α2b̃k−2 = (α0b̃k + α1b̃k−1 + α2b̃k−2)mod 2

(b) (basic= 4 pts., extra=2 pts.) Subject to N = 3, can we design a precoder that makes
bk only a function of ck for arbitrary integers w0, w1 and w2, where


bk = α0b̃k ⊕ α1b̃k−1 ⊕ α2b̃k−2 for αj, b̃k ∈ {0, 1};
ak = 2b̃k − 1;

ck = w0ak + w1ak−1 + w2ak−2

If your answer is positive, give the design. If your answer is negative, give a coun-
terexample.

Hint: α0b̃k ⊕ α1b̃k−1 ⊕ α2b̃k−2 = (α0b̃k + α1b̃k−1 + α2b̃k−2)mod 2

(c) (basic= 6 pts., extra=2 pts.) Subject to N = 3, can we design a precoder that makes
bk only a function of ck for arbitrary rationals w0, w1 and w2, where


bk = α0b̃k ⊕ α1b̃k−1 ⊕ α2b̃k−2 for αj, b̃k ∈ {0, 1};
ak = 2b̃k − 1;

ck = w0ak + w1ak−1 + w2ak−2

If your answer is positive, give the design. If your answer is negative, give a coun-
terexample.

Hint: α0b̃k ⊕ α1b̃k−1 ⊕ α2b̃k−2 = (α0b̃k + α1b̃k−1 + α2b̃k−2)mod 2

Solution.

(a) If w0 = w1 = w2 = 0, then ck is always zero. Hence, a two-value bk cannot be made a
function of (and uniquely recovered from) a single-value ck.

Then, we proceed to work on the cases that at least one of w0, w1 and w2 is
non-zero. First, we derive

ck = w0ak + w1ak−1 + w2ak−2

= w0(2b̃k − 1) + w1(2b̃k−1 − 1) + w2(2b̃k−2 − 1)

= 2(w0b̃k + w1b̃k−1 + w2b̃k−2)− (w0 + w1 + w2)

Next we note

bk = α0b̃k ⊕ α1b̃k−1 ⊕ α2b̃k−2 = (α0b̃k + α1b̃k−1 + α2b̃k−2)mod 2
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Thus, it is obvious that if wi ∈ {0, 1}, we can let αi = wi and obtain

bk = (α0b̃k + α1b̃k−1 + α2b̃k−2)mod 2

= (w0b̃k + w1b̃k−1 + w2b̃k−2)mod 2

=

(
ck + (w0 + w1 + w2)

2

)
mod 2

Consequently, if we know ck, we can uniquely determine bk.

Note: If w0 + w1 + w2 is odd, then ck is also odd. If, however, w0 + w1 + w2 is even,
then ck is also even.

(b) If w0 = w1 = w2 = 0, then ck is always zero. Hence, a two-value bk cannot be made a
function of (and uniquely recovered from) a single-value ck.

Then, we proceed to work on the cases that at least one of w0, w1 and w2 is
non-zero. First, we derive

ck = w0ak + w1ak−1 + w2ak−2

= w0(2b̃k − 1) + w1(2b̃k−1 − 1) + w2(2b̃k−2 − 1)

= 2(w0b̃k + w1b̃k−1 + w2b̃k−2)− (w0 + w1 + w2)

Next we note

bk = α0b̃k ⊕ α1b̃k−1 ⊕ α2b̃k−2 = (α0b̃k + α1b̃k−1 + α2b̃k−2)mod 2

Thus, if wi is an integer, we can let αi = wimod 2 and obtain

bk = (α0b̃k + α1b̃k−1 + α2b̃k−2)mod 2

= (w0b̃k + w1b̃k−1 + w2b̃k−2)mod 2

=

(
ck + (w0 + w1 + w2)

2

)
mod 2

Consequently, if we know ck, we can uniquely determine bk.

Note: If w0 + w1 + w2 is odd, then ck is also odd. If, however, w0 + w1 + w2 is even,
then ck is also even.

(c) If w0 = w1 = w2 = 0, then ck is always zero. Hence, a two-value bk cannot be made a
function of (and uniquely recovered from) a single-value ck.

Then, we proceed to work on the cases that at least one of w0, w1 and w2 is
non-zero. First, we derive

ck = w0ak + w1ak−1 + w2ak−2

= w0(2b̃k − 1) + w1(2b̃k−1 − 1) + w2(2b̃k−2 − 1)

=
2

W
(Ww0b̃k +Ww1b̃k−1 +Ww2b̃k−2)− (w0 + w1 + w2),

where W is an integer that makes Ww0, Ww1 and Ww2 integers. The existence of
such integer W can be guaranteed because w0, w1 and w2 are rational. Next we note

bk = α0b̃k ⊕ α1b̃k−1 ⊕ α2b̃k−2 = (α0b̃k + α1b̃k−1 + α2b̃k−2)mod 2
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Thus, we can let αi = (Wwi)mod 2 and obtain

bk = (α0b̃k + α1b̃k−1 + α2b̃k−2)mod 2

= (Ww0b̃k +Ww1b̃k−1 +Ww2b̃k−2)mod 2

=

(
W (ck + (w0 + w1 + w2))

2

)
mod 2

Consequently, if we know ck, we can uniquely determine bk.

3. Continue from the previous problem. Given

bk = α0b̃k ⊕ α1b̃k−1 ⊕ α2b̃k−2 for αj, b̃k ∈ {0, 1}.

(a) (basic= 7 pts., extra=3 pts.) Subject to α0 = 1 and Pr(bk = 0) = Pr(bk = 1) = 1
2
,

determine Pr(b̃k = 0) for arbitrary α1, α2 ∈ {0, 1}.
(b) (basic= 7 pts., extra=3 pts.) Continue from (a). Show that b̃k is independent of

{b̃k−i}k−1
i=1 .

Hint: Show that Pr(b̃k = βk|b̃k−1 = βk−1, b̃k−2 = βk−2, . . . , b̃1 = β1) has nothing to do
with βk−1, βk−2, . . . , β1.

Solution.

(a) Since
bk = b̃k ⊕ α1b̃k−1 ⊕ α2b̃k−2

implies
bk ⊕ bk ⊕ b̃k︸ ︷︷ ︸ = b̃k ⊕ α1b̃k−1 ⊕ α2b̃k−2 ⊕ bk ⊕ b̃k︸ ︷︷ ︸,

(equivalently, b̃k = α1b̃k−1 ⊕ α2b̃k−2 ⊕ bk) we obtain

Pr(b̃k = 0) = Pr(α1b̃k−1 ⊕ α2b̃k−2 ⊕ bk = 0)

= Pr(b̃k−1 = 0 and b̃k−2 = 0)Pr(α1b̃k−1 ⊕ α2b̃k−2 ⊕ bk = 0|b̃k−1 = 0 and b̃k−2 = 0)

+Pr(b̃k−1 = 0 and b̃k−2 = 1)Pr(α1b̃k−1 ⊕ α2b̃k−2 ⊕ bk = 0|b̃k−1 = 0 and b̃k−2 = 1)

+Pr(b̃k−1 = 1 and b̃k−2 = 0)Pr(α1b̃k−1 ⊕ α2b̃k−2 ⊕ bk = 0|b̃k−1 = 1 and b̃k−2 = 0)

+Pr(b̃k−1 = 1 and b̃k−2 = 1)Pr(α1b̃k−1 ⊕ α2b̃k−2 ⊕ bk = 0|b̃k−1 = 1 and b̃k−2 = 1)

= Pr(b̃k−1 = 0 and b̃k−2 = 0)Pr(bk = 0)

+Pr(b̃k−1 = 0 and b̃k−2 = 1)Pr(bk = α2)

+Pr(b̃k−1 = 1 and b̃k−2 = 0)Pr(bk = α1)

+Pr(b̃k−1 = 1 and b̃k−2 = 1)Pr(bk = α1 ⊕ α2)

= Pr(b̃k−1 = 0 and b̃k−2 = 0)
1

2
+ Pr(b̃k−1 = 0 and b̃k−2 = 1)

1

2

+Pr(b̃k−1 = 1 and b̃k−2 = 0)
1

2
+ Pr(b̃k−1 = 1 and b̃k−2 = 1)

1

2

=
1

2
.
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(b)

Pr(b̃k = βk|b̃k−1 = βk−1, b̃k−2 = βk−2, . . . , b̃1 = β1)

= Pr(b̃k = βk|b̃k−1 = βk−1, b̃k−2 = βk−2) (Because b̃k = α1b̃k−1 ⊕ α2b̃k−2 ⊕ bk)

= Pr(bk = βk ⊕ α1βk−1 ⊕ α2βk−2)

=
1

2

The above result holds regardless of {βk−i}k−1
i=1 . Hence, b̃k is independent of {b̃k−i}k−1

i=1 .

4. (Signal-space-based constellation design that minimizes the union bound) Suppose x =
sm + n, where 1 ≤ m ≤ M = 3, and x, sm and n are 2-dimensional vectors. Assume
the prior probability for each sm is 1/3 and n is zero-mean Gaussian distributed with
covariance matrix σ2

I, where I is the 2× 2 identity matrix.

(a) (basic= 4 pts., extra=2 pts.) Subject to s1 + s2 + s3 = 0, show that

‖s1 − s2‖2 + ‖s1 − s3‖2 + ‖s2 − s3‖2 = 3‖s1‖2 + 3‖s2‖2 + 3‖s3‖2.
(b) (basic= 4 pts., extra=2 pts.) Let

P2(si, sj) �
∫ ∞

di,j/2

1√
2πσ2

e−
x2

2σ2 dx =

∫ −di,j/2

−∞

1√
2πσ2

e−
x2

2σ2 dx = Φ

(
−di,j
2σ

)
,

where Φ(·) denotes the standard normal cdf, and di,j = ‖si − sj‖. Show that subject
to a2 + b2 = constant with non-negative a and b,

Φ
(
− a

2σ

)
+ Φ

(
− b

2σ

)
is minimized when a = b.

(c) (basic= 6 pts., extra=2 pts.) Subject to a fixed unit average transmission power, i.e.,

1

3

3∑
m=1

‖sm‖2 = 1,

and
∑3

m=1 sm = 0, find the best {sm}3m=1 that minimizes the union bound

1

3

3∑
i=1

3∑
j=1,j �=i

P2(si, sj) =
2

3

3∑
i=1

3∑
j=i+1

P2(si, sj).

Solution.

(a)

‖s1 − s2‖2 + ‖s1 − s3‖2 + ‖s2 − s3‖2
= 2‖s1‖2 + 2‖s2‖2 + 2‖s3‖2 − 2s1 · s2 − 2s1 · s3 − 2s2 · s3
= 2‖s1‖2 + 2‖s2‖2 + 2‖s3‖2 − (s1 · s2 + s1 · s3)− (s2 · s1 + s2 · s3)− (s3 · s1 + s3 · s2)
= 2‖s1‖2 + 2‖s2‖2 + 2‖s3‖2 − s1 · (s2 + s3)− s2 · (s1 + s3)− s3 · (s1 + s2)

= 2‖s1‖2 + 2‖s2‖2 + 2‖s3‖2 + ‖s1‖2 + ‖s2‖2 + ‖s3‖3
= 3‖s1‖2 + 3‖s2‖2 + 3‖s3‖2
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(b) Let a2 + b2 = C. Then, the problem becomes to find a such that

Φ
(
− a

2σ

)
+ Φ

(
−
√
C − a2

2σ

)
is minimized. Taking the derivative of the above equation, we obtain

−1

2

1√
2πσ2

e−
a2

2σ2 +
a

2
√
C − a2

1√
2πσ2

e−
C−a2

2σ2 = 0, (3)

which can be equivalently simplified to

a2

C − a2
= e

C−2a2

σ2 .

Noting that a2

C−a2
is monotonically increasing in a2 ∈ [0, C] and e

C−2a2

σ2 is monotonically

decreasing in a2 ∈ [0, C], a unique solution of (3) is a =
√

C
2
; hence, the solution

satisfies a = b.

(c) Based on (a), the problem becomes the minimization of

P2(s1, s2) + P2(s1, s3) + P2(s2, s3) = Φ

(
−d1,2

2σ

)
+ Φ

(
−d1,3

2σ

)
+ Φ

(
−d2,3

2σ

)
subject to d21,2 + d21,3 + d22,3 = 9. Since for fixed d1,2 (respectively, d1,3 and d2,3), the
union bound is minimized when d1,3 = d2,3 (respectively, d1,2 = d2,3 and d1,2 = d1,3),
the optimal solution should satisfy

d1,2 = d2,3 = d1,3 =
√
3.

Thus, a best constellation design is

s1 = (1, 0)

s2 = (−1
2
,
√
3
2
)

s3 = (−1
2
,−

√
3
2
)

5. (Matched filter and MMSE equalizer)

The above diagram shows that for sequence transmission,

x0(t) =
∞∑

k=−∞
ak q(t− kTb), where q(t) = g(t) � h(t),

and
y(t) = x0(t) � c(t) + w(t) � c(t).
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From Sample Problem 3 for Final Exam, the MMSE equalizer is given by

CMMSE(f) =
Q∗(f)

Sq(f) + Sw(f)
,

where from Slide 8-115, we derive

Sq(f) = Q∗(f) · 1

Tb

∞∑
k=−∞

Q

(
f +

k

Tb

)

provided that

Rq(τ) �
∞∑

k=−∞
q(kTb − τ)q(kTb)

is only a function of time difference τ .

(a) (basic= 4 pts., extra=2 pts.) Does G(f)H(f)CMMSE(f) satisfy Nyquist’s Criterion
when Sw(f) = 0? Justify your answer.

Hint: From Sample Problem 3(f) for Final Exam, we obtain that

AMMSE(f) = − |Q(f)|2
Sq(f) + Sw(f)

,

implying

Ji,MMSE = 1−
∫ ∞

−∞

|Q(f)|2
Sq(f) + Sw(f)

df.

(b) (basic= 4 pts., extra=2 pts.) When Sw(f) = 0, determine a G(f) that minimizes the
minimum mean square error Ji,MMSE, subject to the constraint that G(f) = 0 for
f > 1

2Tb
.

Hint: G(f) = 0 for f > 1
2Tb

implies

Q∗(f) · 1

Tb

∞∑
k=−∞

Q

(
f +

k

Tb

)
=

1

Tb
|Q(f)|2

for |f | < 1
2Tb

and check whether Ji,MMSE = 0 when Sw(f) = 0.

(c) (basic= 6 pts., extra=2 pts.) When Sw(f) > 0, subject to bandlimited constraint of
G(f) = 0 for f > 1

2Tb
, and fixed transmission power:

∫ 1
2Tb

− 1
2Tb

1

Tb
|G(f)|2df = P,

find the G(f) that minimizes the minimum mean square error Ji,MMSE.

Hint: G(f) = 0 for f > 1
2Tb

implies

Q∗(f) · 1

Tb

∞∑
k=−∞

Q

(
f +

k

Tb

)
=

1

Tb
|Q(f)|2

for |f | < 1
2Tb

and apply the Cauchy-Schwarz inequality
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Solution.

(a) Since

P (f) = G(f)H(f)CMMSE(f)

= Q(f)CMMSE(f)

= Q(f) · Q∗(f)
Sq(f)︸ ︷︷ ︸

=Q∗(f)· 1
Tb

∑∞
k=−∞ Q

(
f+ k

Tb

)
+Sw(f)︸ ︷︷ ︸

=0

=
Q(f)

1
Tb

∑∞
k=−∞Q

(
f + k

Tb

) ,
we derive

∞∑
�=−∞

P

(
f − 


Tb

)
=

∞∑
�=−∞

Q
(
f − �

Tb

)
1
Tb

∑∞
k=−∞Q

((
f − �

Tb

)
+ k

Tb

)

=

∑∞
�=−∞Q

(
f − �

Tb

)
1
Tb

∑∞
j=−∞Q

(
f − j

Tb

) (Set j = 
− k.)

= Tb.

Thus, adopting CMMSE(f) will automatically satisfy Nyquist’s Criterion when Sw(f)
is reduced to zero.

(b) Noting that Q(f) = G(f)H(f) = 0 for |f | > 1
2Tb

is also bandlimited, we derive

Ji,MMSE = 1−
∫ ∞

−∞

|Q(f)|2
Sq(f) + Sw(f)

df

= 1−
∫ 1

2Tb

− 1
2Tb

|Q(f)|2
Q∗(f) · 1

Tb

∑∞
k=−∞Q

(
f + k

Tb

)
+ Sw(f)︸ ︷︷ ︸

=0

df

= 1−
∫ 1

2Tb

− 1
2Tb

|Q(f)|2
1
Tb
|Q(f)|2df

= 1−
∫ 1

2Tb

− 1
2Tb

Tbdf = 0.

The zero minimum mean square error can be achieved by any (bandlimited) G(f).

Note: Since the transmission is noiseless, the minimum mean square error should be
zero as anticipated.
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(c) Noting that Q(f) = G(f)H(f) = 0 for |f | > 1
2Tb

is also bandlimited, we derive

Ji,MMSE = 1−
∫ ∞

−∞

|Q(f)|2
Sq(f) + Sw(f)

df

= 1−
∫ 1

2Tb

− 1
2Tb

|Q(f)|2
Q∗(f) · 1

Tb

∑∞
k=−∞Q

(
f + k

Tb

)
+ Sw(f)

df

= 1−
∫ 1

2Tb

− 1
2Tb

|Q(f)|2
1
Tb
|Q(f)|2 + Sw(f)

df

= 1−
∫ 1

2Tb

− 1
2Tb

(
Tb − TbSw(f)

1
Tb
|Q(f)|2 + Sw(f)

)
df

= Tb

∫ 1
2Tb

− 1
2Tb

Sw(f)
1
Tb
|G(f)|2|H(f)|2 + Sw(f)

df (Because Q(f) = G(f)H(f).)

= Tb

∫ 1
2Tb

− 1
2Tb

Sw(f)
|H(f)|2

1
Tb
|G(f)|2 + Sw(f)

|H(f)|2
df

By Cauchy-Schwarz inequality,(∫ 1
2Tb

− 1
2Tb

√
Sw(f)

|H(f)|2df
)2

=


∫ 1

2Tb

− 1
2Tb

√√√√ Sw(f)
|H(f)|2

1
Tb
|G(f)|2 + Sw(f)

|H(f)|2
·
√

1

Tb

|G(f)|2 + Sw(f)

|H(f)|2df



2

≤
(∫ 1

2Tb

− 1
2Tb

Sw(f)
|H(f)|2

1
Tb
|G(f)|2 + Sw(f)

|H(f)|2
df

)(∫ 1
2Tb

− 1
2Tb

(
1

Tb

|G(f)|2 + Sw(f)

|H(f)|2
)
df

)

=

(
1

Tb
Ji,MMSE

)(
P +

∫ 1
2Tb

− 1
2Tb

Sw(f)

|H(f)|2df
)
.

Thus,

Ji,MMSE ≥
Tb

(∫ 1
2Tb

− 1
2Tb

√
Sw(f)
|H(f)|2df

)2

P +
∫ 1

2Tb

− 1
2Tb

Sw(f)
|H(f)|2df

.

Equality holds when for constant c,

c ·
√√√√ Sw(f)

|H(f)|2
1
Tb
|G(f)|2 + Sw(f)

|H(f)|2
=

√
1

Tb
|G(f)|2 + Sw(f)

|H(f)|2 .

Accordingly,

|Goptimal(f)|2 = Tb

(
c

√
Sw(f)

|H(f)| − Sw(f)

|H(f)|2
)
.

Note: The constant c must be the one to fulfill∫ Tb
2

−Tb
2

1

Tb
|Goptimal(f)|2df = P.
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