# Part 9 Signal-Space Analysis

#### Introduction

$$m_i$$
 \_\_\_\_\_\_\_ Transmitter  $s_i(t)$  Channel \_\_\_\_\_\_\_  $x(t)$  Receiver \_\_\_\_\_\_  $\hat{m}_i$ 

- Statistical model for a genetic digital communication system
  - Message source: A priori probabilities for information source

$$p_i = P(m_i)$$
 for  $i = 1, 2, ..., M$ 

**Transmitter:** The transmitter takes the message source output  $m_i$  and (en-)codes it into a distinct signal  $s_i(t)$  suitable for transmission over the channel. So:

$$p_i = P(m_i) = P(s_i(t))$$
 for  $i = 1, 2, ..., M$ 

#### Introduction

 $\Box$   $s_i(t)$  must be a real-valued *energy signal* (i.e., a signal with finite energy) with duration *T*.

$$E_i = \int_0^T s_i^2(t) dt < \infty.$$

Channel: The channel is assumed *linear* and with a bandwidth wide enough to pass  $s_i(t)$  with no distortion.

□ A zero-mean additive white Gaussian noise (AWGN) is also assumed to facilitate the analysis.

## A Mathematical Model

□ We can simplify the previous system block diagram to:



Upon the reception of x(t) with a duration of T, the receiver makes the *best* estimate of  $m_i$ . (We haven't defined what "the best" means.)

## Criterion for the "Best" Decision

Best = Minimization of the average probability of symbol error.

$$P_e = \sum_{i=1}^{M} p_i \cdot P(\hat{m} \neq m_i \mid m_i)$$

- It is *optimum in the minimum-probability-of-error* sense.
- Based on this criterion, we begin to design the receiver that can give the best decision.

- □ Signal space concept
  - Vectorization of the (discrete or continuous) signals removes the redundancy in signals, and provides a compact representation for them.
  - Determination of the vectorization basis
    - Gram-Schmidt orthogonalization procedure

## Gram-Schmidt Orthogonalization Procedure

Given  $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_k$ , how to find an orthonormal basis for them? (step *i*) Let  $\vec{u}_1 = \frac{\vec{v}_1}{\|\vec{v}_1\|}$ . (step *ii*)  $\vec{u}_{2} = \vec{v}_{2} - (\vec{v}_{2} \cdot \vec{u}_{1})\vec{u}_{1}$ . Set  $\vec{u}_{2} = \frac{\vec{u}_{2}}{\|\vec{u}_{2}\|}$ . (step *iii*) For i = 3, 4, ...,Let  $\vec{u}_i = \vec{v}_i - (\vec{v}_i \cdot \vec{u}_{i-1})\vec{u}_{i-1} - (\vec{v}_i \cdot \vec{u}_{i-2})\vec{u}_{i-2} - \dots - (\vec{v}_i \cdot \vec{u}_1)\vec{u}_1$ . Set  $\vec{u}_i = \frac{\vec{u}_i}{\|\vec{u}_i\|}$ . (step *iv*) Then  $(\vec{u}_1, \vec{u}_2, \dots, \vec{u}_k)$  forms an orthonormal basis.

#### Properties:

- (i) vector:  $\vec{v} = (v_1, ..., v_n)$
- (ii) inner product:  $\vec{v}_1 \cdot \vec{v}_2 = \sum_{i=1}^n v_{i1} v_{i2}$

(iii) orthogonal, if inner product = 0

(iv) norm: 
$$\|\vec{v}\| = \sqrt{v_1^2 + \dots + v_n^2}$$

(v) orthonormal, if inner product = 0, and individual norm = 1(vi) linearly independent, if none can be represented as a linear combination of others

(vii) triangle inequality:  $\|\vec{v}_1 + \vec{v}_2\| \le \|\vec{v}_1\| + \|\vec{v}_2\|$ 

#### © Po-Ning Chen@ece.nctu

(viii) Cauchy Schwartz inequality:

 $|\vec{v}_1 \cdot \vec{v}_2| \le \|\vec{v}_1\| \cdot \|\vec{v}_2\|$ 

with equality holding if  $\vec{v}_1 = a\vec{v}_2$ 

(xi) Norm square:

 $\|\vec{v}_1 + \vec{v}_2\|^2 = \|\vec{v}_1\|^2 + \|\vec{v}_2\|^2 + 2\vec{v}_1 \cdot \vec{v}_2$ 

(x) Pythagorean property: If orthogonal,

 $\|\vec{v}_1 + \vec{v}_2\|^2 = \|\vec{v}_1\|^2 + \|\vec{v}_2\|^2$ 

(xi) matrix transformation w.r.t. matrix *A*:

$$\vec{v}_1 = A \vec{v}_2$$

(xii) eigenvalues w.r.t. matrix A:

solution  $\lambda$  of det $[A - \lambda I] = 0$ (xiii) eigenvectors w.r.t. eigenvalue  $\lambda$  : solution  $\vec{v}$  of  $A\vec{v} = \lambda\vec{v}$ 

## Signal Space Concept for Continuous Functions

Properties for continuous functions

- (i) (complex-valued) signal: z(t)
- (ii) inner product:  $\langle z(t), \hat{z}(t) \rangle = \int_a^b z(t) \hat{z}^*(t) dt$

(iii) orthogonal, if inner product = 0

- (iv) norm:  $||z(t)|| = \sqrt{\int_a^b |z(t)|^2 dt}$
- (v) orthonormal, if inner product = 0, and individual norm = 1
- (vi) linearly independent, if none can be represented as a linear combination of others

(vii) triangle inequality:  $||z(t) + \hat{z}(t)|| \le ||z(t)|| + ||\hat{z}(t)||$ 

(viii) Cauchy Schwartz inequality:

 $|\langle z(t), \hat{z}(t) \rangle| \le ||z(t)|| \cdot ||\hat{z}(t)||$ 

with equality holding if  $z(t) = a \cdot \hat{z}(t)$ , where *a* is a complex number (xi) norm square:

 $||z(t) + \hat{z}(t)||^2 = ||z(t)||^2 + ||\hat{z}(t)||^2 + \langle z(t), \hat{z}(t) \rangle + \langle \hat{z}(t), z(t) \rangle$ 

(x) Pythagorean property: If orthogonal,

 $||z(t) + \hat{z}(t)||^2 = ||z(t)||^2 + ||\hat{z}(t)||^2$ 

(xi) transformation w.r.t. a function  $C(t, \tau)$ :

$$\hat{z}(t) = \int_{a}^{b} C(t,\tau) z(\tau) d\tau$$
 (Recall  $v_{1j} = \sum_{i=1}^{n} a_{ji} v_{2i}$ .)

(xii.a) eigenvalues and eigenfunctions w.r.t. a function  $C(t, \tau)$ :

solution  $\lambda_k$  and  $\{\phi_k(t)\}_{k=1}^{\infty}$  of  $\lambda_k \cdot \phi_k(t) = \int_a^b C(t,\tau)\phi_k(\tau)d\tau$ and  $C(t,\tau)$  can be represented as

$$C(t,\tau) = \sum_{k=1}^{\infty} \phi_k(t) \cdot \lambda_k \cdot \phi_k^*(\tau)$$

(xii.b) Give a deterministic function  $\{s(t), t \in [0, T)\}$  and a set of orthonormal basis  $\{\psi_k(t)\}_{1 \le k < \infty}$  that can span s(t). Then

$$s(t) = \sum_{k=1}^{\infty} a_k \psi_k(t) \ 0 \le t < T,$$

where 
$$a_k = \int_0^T s(t)\psi_k^*(t)dt$$
.  
(xii.c) If orthonormal set  $\{\psi_k(t)\}_{1 \le k \le K}$  does not span the space, then  
it is possible that  $\hat{s}(t) = \sum_{k=1}^K a_k \psi_k(t) \ne s(t)$  for all choices of  
 $\{a_k\}_{1 \le k \le K}$ .

#### **D** Problem : How to minimize the "energy" of $e(t) = s(t) - \hat{s}(t)$ ?

$$\begin{split} &\int_{-\infty}^{\infty} |e(t)|^{2} dt \\ &= \int_{-\infty}^{\infty} \left[ s(t) - \sum_{k=1}^{K} a_{k} \psi_{k}(t) \right] \left[ s(t) - \sum_{k=1}^{K} a_{k} \psi_{k}(t) \right]^{*} dt \\ &= \sum_{k=1}^{K} |a_{k}|^{2} - \sum_{k=1}^{K} a_{k} \int_{-\infty}^{\infty} \psi_{k}(t) s^{*}(t) dt - \sum_{k=1}^{K} a_{k}^{*} \int_{-\infty}^{\infty} \psi_{k}^{*}(t) s(t) dt + \int_{-\infty}^{\infty} |s(t)|^{2} dt \\ &= \sum_{k=1}^{K} \left| a_{k} - \int_{-\infty}^{\infty} s(t) \psi_{k}^{*}(t) dt \right|^{2} + \int_{-\infty}^{\infty} |s(t)|^{2} dt - \sum_{k=1}^{K} \left| \int_{-\infty}^{\infty} s(t) \psi_{k}^{*}(t) dt \right|^{2} \\ &\Rightarrow a_{k} = \int_{-\infty}^{\infty} s(t) \psi_{k}^{*}(t) dt \end{split}$$
 Q.E.D.

#### □ Interpretation

•  $a_j$  is the projection of s(t) onto the  $\Psi_j(t)$ -axis.

 $|a_j|^2$  is the energy-projection of s(t) onto the  $\Psi_j(t)$ -axis.

#### Slide 9-13 also yields:

$$\int_{-\infty}^{\infty} |e(t)|^2 dt = \int_{-\infty}^{\infty} |s(t)|^2 dt - \sum_{k=1}^{K} \left| \int_{-\infty}^{\infty} s(t) \psi_k^*(t) dt \right|^2$$
$$= \int_{-\infty}^{\infty} |s(t)|^2 dt - \sum_{k=1}^{K} |a_k|^2$$
and 
$$\int_{-\infty}^{\infty} |\hat{s}(t)|^2 dt = \sum_{k=1}^{K} |a_k|^2.$$

## Signal Space Concept for Continuous Functions

- □ For simplicity, we now focus on real-valued functions.
- Completeness
  - If every finite energy signal s(t) satisfies

$$\int_{-\infty}^{\infty} s^2(t) dt = \sum_{k=1}^{K} a_k^2$$

 $\{\psi_k(t)\}_{k=1}^K$  is a *complete* orthonormal set.

Example. Fourier series

$$\left\{\sqrt{\frac{2}{T}}\cos\left(\frac{2\pi kt}{T}\right), \sqrt{\frac{2}{T}}\sin\left(\frac{2\pi kt}{T}\right)\right\}_{0 \le k \le \infty} \text{ complete for signals defined over } [0, T]$$



- □ Through the signal space concept,  $s_i(t)$  (where  $1 \le i \le M$ ) can be unambiguously represented by an *N*-dimensional *signal vector* ( $s_{i1}, s_{i2}, ..., s_{iN}$ ) over an *N*-dimensional *signal space*.
- □ The design of transmitters becomes the selection of *M* points over the signal space, and the receivers make a guess about which of the *M* points was transmitted.
- □ In the *N*-dimensional signal space,
  - length square of the vector = energy of the signal \_\_\_\_\_
  - angle between vectors = energy correlation between signals  $\cos(\theta_{ik}) = \frac{\langle s_i(t), s_k(t) \rangle}{\|s_i(t)\| \cdot \|s_i(t)\|} \|s_i(t)\|^2 = \int_0^T s_i^2(t) dt = \sum_{j=1}^N s_{ij}^2$

The length square of a vector and the angle between vectors are independent of the basis used (Note that no translation of the origin is allowed).

#### □ From this view,

- the transmitter may be viewed as a *synthesizer*, which *synthesizes* the transmitted signal by a bank of *N* multipliers.
- the receiver may be viewed as an *analyzer*, which correlates (product-integrate) the common input into individual informational signal.

## Euclidean Distance

□ After vectorization, we can calculate the *Euclidean distance* between two signals, which is the squared root of:

$$\int_0^T (s_i(t) - s_k(t))^2 dt = ||s_i(t) - s_k(t)||^2 = \sum_{j=1}^N (s_{ij} - s_{kj})^2$$

## Cauchy-Schwarz Inequality

Cauchy-Schwarz inequality and angle between signals
 Cauchy-Schwarz inequality said that

 $\left|\left\langle s_1(t), s_2(t)\right\rangle\right|^2 \le \|s_1(t)\|^2 \cdot \|s_2(t)\|^2$  with equality holding if  $s_1(t) = cs_2(t)$ .

Also, the angle between signals gives that

$$\cos(\theta_{12}) = \frac{\langle s_1(t), s_2(t) \rangle}{\|s_1(t)\| \cdot \|s_2(t)\|}$$

Hence, Cauchy-Schwarz inequality can be equivalently stated as:

 $|\cos(\theta_{12})|^2 \le 1$  with equality holding if  $\theta_{12} = 0$  or  $\pi$ 

## Basis

- □ The (complete) orthonormal basis for a signal space is not unique!
  - So, the synthesizer and the analyzer for the transmission of the same informational messages are not unique!
- One way to determine a set of orthonormal basis is the Gram-Schmidt orthogonalization procedure.

□ Influence of the AWGN noise to the signal space concept

$$x(t) = s_i(t) + w(t)$$

where w(t) is zero-mean AWGN with PSD  $N_0/2$ .

After the correlator at the receiver, we obtain:





#### Notably, there is no "information loss" by the signal space representation.



**Statistics of**  $\{w_j\}$ 

$$\begin{bmatrix} x_1 \\ \vdots \\ x_N \end{bmatrix} = \begin{bmatrix} S_{i1} \\ \vdots \\ S_{iN} \end{bmatrix} + \begin{bmatrix} W_1 \\ \vdots \\ W_N \end{bmatrix}$$

- □ Since  $\{s_{ij}\}$  is deterministic, the distribution of x is a mean-shift of the distribution of w.
- Observe that *w* is Gaussian distributed because *w*(*t*) is AWGN. The distribution of *w* can, therefore, be determined by its *mean vector* and *covariance matrix*.

Mean  $E[w_{i}] = E\left|\int_{0}^{T} w(t)f_{i}(t)dt\right| = \int_{0}^{T} E[w(t)]f_{i}(t)dt = 0$ Covariance  $E[w_i w_j] = E\left[\left(\int_0^T w(s)f_i(s)ds\right)\left(\int_0^T w(t)f_j(t)dt\right)\right]$  $= \int_{0}^{T} \int_{0}^{T} E[w(s)w(t)]f_{i}(s)f_{j}(t)dsdt$  $=\int_0^T \int_0^T \frac{N_0}{2} \delta(s-t) f_i(s) f_j(t) ds dt$  $=\frac{N_{0}}{2}\int_{0}^{T}f_{i}(t)f_{j}(t)dt = \frac{N_{0}}{2}\delta_{ij} \qquad \delta_{ij} = \begin{cases} 1, & i=j\\ 0, & i\neq j \end{cases}$ 

- As a result,  $[w_1, w_2, ..., w_N]$  are zero-mean i.i.d. Gaussian distributed with variance  $N_0/2$ .
- □ This shows that *x* is independent Gaussian distributed with common variance  $N_0/2$  and mean vector  $s_i = [s_{i1}, s_{i2}, ..., s_{iN}]$ . Equivalently,

$$f(\mathbf{x} | \mathbf{s}_{i}) = \prod_{j=1}^{N} \frac{1}{\sqrt{\pi N_{0}}} \exp\left[-\frac{1}{N_{0}} (x_{j} - s_{ij})^{2}\right]$$

- **Remaining term in noise** 
  - It is possible that

$$w'(t) = w(t) - \sum_{i=1}^{N} w_i \cdot f_i(t) \neq 0$$

However, it can be shown that (as an error term) w'(t) is orthogonal to  $s_i(t)$  for  $1 \le i \le M$ . Hence, w'(t) will not affect the decision error rate on message *i*.

 $\langle w'(t), s_i(t) \rangle = 0$  with probability 1.

## Likelihood Functions under Equal Prior

An equivalent signal-space channel model  $m = m_i \text{ for } 1 \le i \le M \rightarrow s = c(m) \rightarrow x = s + w$  $\rightarrow \hat{m} = d(x) \in \{m_1, \dots, m_M\}$ 

□ The best decision function d() that minimizes the decision error is:

$$d(\mathbf{x}) = m_i, \text{ if } P\{m_i \mid \mathbf{x}\} \ge P\{m_k \mid \mathbf{x}\} \text{ for all } 1 \le k \le M$$
$$= \arg \max_{m \in \{m_1, \dots, m_M\}} P\{m \mid \mathbf{x}\}$$

This is the maximum a posteriori probability (MAP) decision rule.

## Likelihood Functions under Equal Prior

□ With equal prior probabilities,

$$d(\boldsymbol{x}) = \arg \max_{m \in \{m_1, \dots, m_M\}} P\{m | \boldsymbol{x}\}$$
  
=  $\arg \max \{P\{m_1 | \boldsymbol{x}\}, P\{m_2 | \boldsymbol{x}\}, \dots, P\{m_M | \boldsymbol{x}\}\}$   
=  $\arg \max \left\{ \frac{f(\boldsymbol{x}|m_1)P(m_1)}{f(\boldsymbol{x})}, \frac{f(\boldsymbol{x}|m_2)P(m_2)}{f(\boldsymbol{x})}, \dots, \frac{f(\boldsymbol{x}|m_M)P(m_M)}{f(\boldsymbol{x})} \right\}$   
=  $\arg \max \left\{ \frac{f(\boldsymbol{x}|m_1)\frac{1}{M}}{f(\boldsymbol{x})}, \frac{f(\boldsymbol{x}|m_2)\frac{1}{M}}{f(\boldsymbol{x})}, \dots, \frac{f(\boldsymbol{x}|m_M)\frac{1}{M}}{f(\boldsymbol{x})} \right\}$   
=  $\arg \max \{f(\boldsymbol{x}|m_1), f(\boldsymbol{x}|m_2), \dots, f(\boldsymbol{x}|m_M)\}$ 

 $f(\mathbf{x}|m_i)$  is named the *likelihood function* given  $m_i$  is transmitted. Hence, the above rule is named the *maximum-likelihood* (ML) decision rule.

## Likelihood Functions under Equal Prior

- $\square MAP rule = ML rule, if equal prior probability is assumed.$
- In practice, it is more *convenient* to work on the *log-likelihood functions*, defined by

$$d(\mathbf{x}) = \arg \max\{f(\mathbf{x} \mid m_1), f(\mathbf{x} \mid m_2), ..., f(\mathbf{x} \mid m_M)\}\$$
  
=  $\arg \max\{\log f(\mathbf{x} \mid m_1), \log f(\mathbf{x} \mid m_2), ..., \log f(\mathbf{x} \mid m_M)\}$ 

Why *log-likelihood functions* are more convenient? The decision function becomes "sum of (squared) Euclidean distances" in AWGN channel.

$$d(\mathbf{x}) = \arg \max_{1 \le i \le M} \log f(\mathbf{x} \mid m_i) = \arg \max_{1 \le i \le M} \log f(\mathbf{x} \mid \mathbf{s}_i)$$
  
=  $\arg \max_{1 \le i \le M} \log \prod_{j=1}^{N} \frac{1}{\sqrt{\pi N_0}} \exp \left[ -\frac{1}{N_0} (x_j - s_{ij})^2 \right]$   
=  $\arg \max_{1 \le i \le M} \sum_{j=1}^{N} \left( -\frac{1}{2} \log \pi N_0 - \frac{1}{N_0} (x_j - s_{ij})^2 \right)$   
=  $\arg \min_{1 \le i \le M} \sum_{j=1}^{N} (x_j - s_{ij})^2$   
=  $\arg \min_{1 \le i \le M} ||\mathbf{x} - \mathbf{s}_i||^2$  (=  $\arg \min_{1 \le i \le M} ||\mathbf{x} - \mathbf{s}_i||$ )

Upon the reception of received signal point x, find the signal point  $s_i$  that is closest in Euclidean distance to x.

## Coherent Detection: Maximum Likelihood Decoding

#### □ Signal constellation

The set of *M* signal points in the signal space

□ Example. Signal constellation for 2B1Q code



## Coherent Detection: Maximum Likelihood Decoding

 $\square Decision regions for$ <math>N = 2 and M = 4



## Coherent Detection: Maximum Likelihood Decoding

- Usually,  $s_1, s_2, ..., s_M$  are named the message points.
- $\Box$  The received signal point x wanders about the transmitted message point in a Gaussian-distributed random fashion.
- □ Constant-energy signal constellation
  - In this case, the ML decision rule can be reduced to an inner-product.

$$d(\mathbf{x}) = \arg\min_{1 \le i \le M} ||\mathbf{x} - \mathbf{s}_i||^2$$
  
=  $\arg\min_{1 \le i \le M} (||\mathbf{x}||^2 - 2\langle \mathbf{x}, \mathbf{s}_i \rangle + ||\mathbf{s}_i||^2)$   
=  $\arg\min_{1 \le i \le M} (-2\langle \mathbf{x}, \mathbf{s}_i \rangle + E_i)$   
=  $\arg\max_{1 \le i \le M} \langle \mathbf{x}, \mathbf{s}_i \rangle$ , if  $E_i$  is constant.

## **Correlation Receiver**

□ If signals do not have equal energy, we can use

$$d(\mathbf{x}) = \arg \max_{1 \le i \le M} \left( \langle \mathbf{x}, \mathbf{s}_i \rangle - \frac{1}{2} E_i \right).$$

to implement the ML rule.

The receiver is *coherent* because the receiver requires to be in perfect synchronization with the transmitter (more specifically, the integration must begin at exactly the right time instance).



Correlation receiver



Correlation receiver

## Equivalence of Correlation and Matched Filter Receivers

The correlator and matched filter can be made equivalent.
Specifically,

$$x_i = \int_0^T x(\tau) f_i(t) dt = \int_{-\infty}^\infty x(\tau) h_i(T-\tau) d\tau$$

if  $h_i(t) = f_i(T-t)$  (and implicitly  $f_i(t)$  is zero outside  $0 \le t \le T$ ).

## Probability of Symbol Error

□ Average probability of symbol error

$$P_e = 1 - P_c = 1 - \sum_{i=1}^{M} P(m_i) P(d(\mathbf{x}) = m_i \mid m_i \text{ transmitted})$$

$$= 1 - \frac{1}{M} \sum_{i=1}^{M} P(d(\mathbf{x}) = m_i \mid m_i \text{ transmitted})$$
  
$$= 1 - \frac{1}{M} \sum_{i=1}^{M} \Pr\left\{ ||\mathbf{x} - \mathbf{s}_i||^2 \le \min_{1 \le j \le M, j \ne i} ||\mathbf{x} - \mathbf{s}_j||^2 \middle| m_i \text{ transmitted} \right\}$$
  
$$= 1 - \frac{1}{M} \sum_{i=1}^{M} \int_{Z_i} f(\mathbf{x} \mid \mathbf{s}_i) d\mathbf{x}$$
  
where  $Z_i = \left\{ \mathbf{x} \in \Re^N : ||\mathbf{x} - \mathbf{s}_i||^2 \le \min_{1 \le j \le M, j \ne i} ||\mathbf{x} - \mathbf{s}_j||^2 \right\}$ 

© Po-Ning Chen@ece.nctu

## Invariance of Probability of Symbol Error

- Probability of symbol error is invariant with respect to basis change (i.e., rotation and translation of the signal space).
- □ Specifically, the symbol error rate (SER) only depends on the *relative "Euclidean distances"* between the message points.

$$P_e = 1 - \frac{1}{M} \sum_{i=1}^{M} \Pr\left\{ || \mathbf{x} - \mathbf{s}_i ||^2 \le \min_{1 \le j \le M, j \ne i} || \mathbf{x} - \mathbf{s}_j ||^2 | m_i \text{ transmitted} \right\}$$

## Invariance of Probability of Symbol Error

□ Specifically, if **Q** is a reversible transform (matrix), such as rotation, then

$$\left\{ \boldsymbol{x} \in \mathfrak{R}^{N} : \| \boldsymbol{x} - \boldsymbol{s}_{i} \|^{2} \leq \min_{1 \leq j \leq M, j \neq i} \| \boldsymbol{x} - \boldsymbol{s}_{j} \|^{2} \right\}$$
$$= \left\{ \boldsymbol{x} \in \mathfrak{R}^{N} : \| \boldsymbol{Q}\boldsymbol{x} - \boldsymbol{Q}\boldsymbol{s}_{i} \|^{2} \leq \min_{1 \leq j \leq M, j \neq i} \| \boldsymbol{Q}\boldsymbol{x} - \boldsymbol{Q}\boldsymbol{s}_{j} \|^{2} \right\}$$

- □ The invariance in SER for translation can be likewise proved.
  - Is the transmission power invariant for rotation and translation?

## Minimum Energy Signals

□ Since SER is invariant to rotation and translation, we may rotate and translate the signal constellation to minimize the transmission power without affecting SER.

$$E_g = \sum_{i=1}^M p_i ||\mathbf{s}_i||^2$$

Find *a* and **Q** such that  $E_g(a, \mathbf{Q}) = \sum_{i=1}^{M} p_i ||\mathbf{Q}(s_i - a)||^2$  is minimized.

Since **Q** does not change the norm (i.e., transmission power), we only need to determine the right **a**.

## Minimum Energy Signals

 $\Box$  Determine the optimal a.

$$E_{g}(\boldsymbol{a}) = \sum_{i=1}^{M} p_{i} || \boldsymbol{s}_{i} - \boldsymbol{a} ||^{2}$$
  
=  $\sum_{i=1}^{M} p_{i} (|| \boldsymbol{s}_{i} ||^{2} - 2\boldsymbol{a}^{T} \boldsymbol{s}_{i} + || \boldsymbol{a} ||^{2})$   
=  $\sum_{i=1}^{M} p_{i} || \boldsymbol{s}_{i} ||^{2} - 2\boldsymbol{a}^{T} (\sum_{i=1}^{M} p_{i} \boldsymbol{s}_{i}) + || \boldsymbol{a} ||^{2}$   
 $\Rightarrow \boldsymbol{a}_{\text{optimal}} = \sum_{i=1}^{M} p_{i} \boldsymbol{s}_{i} \text{ and } E_{g}(\boldsymbol{a}_{\text{optimal}}) = \sum_{i=1}^{M} p_{i} || \boldsymbol{s}_{i} ||^{2} - \left\| \sum_{i=1}^{M} p_{i} \boldsymbol{s}_{i} \right\|^{2}$ 

Union bound  $|P(A \cup B) \leq P(A) + P(B)|$  $P_{e} = 1 - \frac{1}{M} \sum_{i=1}^{M} \Pr\left\{ || \mathbf{x} - \mathbf{s}_{i} ||^{2} \le \min_{1 \le j \le M, j \ne i} || \mathbf{x} - \mathbf{s}_{j} ||^{2} | m_{i} \text{ transmitted} \right\}$  $= \left(\frac{1}{M}\sum_{i=1}^{M} 1\right) - \frac{1}{M}\sum_{i=1}^{M} \Pr\left\{ \begin{array}{l} \left( \| \boldsymbol{x} - \boldsymbol{s}_{i} \|^{2} \leq \| \boldsymbol{x} - \boldsymbol{s}_{i} \|^{2} \right) \wedge \cdots \\ \cdots \wedge \left( \| \boldsymbol{x} - \boldsymbol{s}_{i} \|^{2} \leq \| \boldsymbol{x} - \boldsymbol{s}_{M} \|^{2} \right) \right\} m_{i} \text{ transmitted} \right\}$  $= \frac{1}{M} \sum_{i=1}^{M} \Pr \left\{ \frac{\left( || \boldsymbol{x} - \boldsymbol{s}_i ||^2 > || \boldsymbol{x} - \boldsymbol{s}_1 ||^2 \right) \vee \cdots}{\left( || \boldsymbol{x} - \boldsymbol{s}_i ||^2 > || \boldsymbol{x} - \boldsymbol{s}_M ||^2 \right)} \middle| m_i \text{ transmitted} \right\}$  $\leq \frac{1}{M} \sum_{i=1}^{M} \sum_{j=1}^{M} \Pr\left\{ || \boldsymbol{x} - \boldsymbol{s}_{i} ||^{2} > || \boldsymbol{x} - \boldsymbol{s}_{j} ||^{2} |\boldsymbol{m}_{i} \text{ transmitted} \right\}$ 

$$P_{e} \leq \frac{1}{M} \sum_{i=1}^{M} \sum_{j=1, j \neq i}^{M} P_{2}(\boldsymbol{s}_{i}, \boldsymbol{s}_{j})$$
  
where  $P_{2}(\boldsymbol{s}_{i}, \boldsymbol{s}_{j}) = \Pr\left\{ \|\boldsymbol{x} - \boldsymbol{s}_{i}\|^{2} > \|\boldsymbol{x} - \boldsymbol{s}_{j}\|^{2} |\boldsymbol{m}_{i} \text{ transmitted} \right\}$ 

Notably, given  $m_i$  transmitted, x is Gaussian distributed with mean  $s_i$ .



Since  $\boldsymbol{x} = \boldsymbol{s}_i + \boldsymbol{w}$  when  $\boldsymbol{s}_i$  was transmitted, we have

$$\Pr \left\{ \|\boldsymbol{x} - \boldsymbol{s}_i\|^2 > \|\boldsymbol{x} - \boldsymbol{s}_j\|^2 | \boldsymbol{s}_i \text{ transmitted} \right\} \\
= \Pr \left\{ \|(\boldsymbol{s}_i + \boldsymbol{w}) - \boldsymbol{s}_i\|^2 > \|(\boldsymbol{s}_i + \boldsymbol{w}) - \boldsymbol{s}_j\|^2 | \boldsymbol{s}_i \text{ transmitted} \right\} \\
= \Pr \left\{ \|\boldsymbol{w}\|^2 > \|\boldsymbol{w} + (\boldsymbol{s}_i - \boldsymbol{s}_j)\|^2 | \boldsymbol{s}_i \text{ transmitted} \right\} \\
= \Pr \left\{ \|\boldsymbol{w}\|^2 > \|\boldsymbol{w}\|^2 + \|\boldsymbol{s}_i - \boldsymbol{s}_j\|^2 + 2(\boldsymbol{s}_i - \boldsymbol{s}_j)^T \boldsymbol{w} | \boldsymbol{s}_i \text{ transmitted} \right\} \\
= \Pr \left\{ (\boldsymbol{s}_i - \boldsymbol{s}_j)^T \boldsymbol{w} < -\frac{1}{2} \|\boldsymbol{s}_i - \boldsymbol{s}_j\|^2 | \boldsymbol{s}_i \text{ transmitted} \right\} \\
= \Pr \left\{ n < -\frac{1}{2} \|\boldsymbol{s}_i - \boldsymbol{s}_j\|^2 | \boldsymbol{s}_i \text{ transmitted} \right\}$$

where  $n \triangleq (\boldsymbol{s}_i - \boldsymbol{s}_j)^T \boldsymbol{w}$ .

Observe that  $\boldsymbol{w}$  is zero-mean Gaussian distributed with covariance matrix  $E[\boldsymbol{w}\boldsymbol{w}^T] = \frac{N_0}{2}\mathbb{I}$ , where  $\mathbb{I}$  is the identity matrix. Hence,  $n \triangleq (\boldsymbol{s}_i - \boldsymbol{s}_j)^T \boldsymbol{w}$  is Gaussian distributed with

$$E[n] = E[(\mathbf{s}_i - \mathbf{s}_j)^T \mathbf{w}] = (\mathbf{s}_i - \mathbf{s}_j)^T E[\mathbf{w}] = (\mathbf{s}_i - \mathbf{s}_j)^T \mathbf{0} = 0$$
  

$$E[n^2] = E[(\mathbf{s}_i - \mathbf{s}_j)^T \mathbf{w} \cdot ((\mathbf{s}_i - \mathbf{s}_j)^T \mathbf{w})^T]$$
  

$$= E[(\mathbf{s}_i - \mathbf{s}_j)^T \mathbf{w} \mathbf{w}^T (\mathbf{s}_i - \mathbf{s}_j)]$$
  

$$= \frac{N_0}{2} (\mathbf{s}_i - \mathbf{s}_j)^T \mathbb{I}(\mathbf{s}_i - \mathbf{s}_j)$$
  

$$= \frac{N_0}{2} ||\mathbf{s}_i - \mathbf{s}_j||^2.$$

This implies that  $w \triangleq n/||\mathbf{s}_i - \mathbf{s}_j||$  is Gaussian distributed with mean zero and variance  $N_0/2$ .

9-47

As a result,

$$\Pr\left\{n < -\frac{1}{2} \|\boldsymbol{s}_{i} - \boldsymbol{s}_{j}\|^{2} \middle| \boldsymbol{s}_{i} \text{ transmitted} \right\}$$

$$= \Pr\left\{\|\boldsymbol{s}_{i} - \boldsymbol{s}_{j}\| w < -\frac{1}{2} \|\boldsymbol{s}_{i} - \boldsymbol{s}_{j}\|^{2} \middle| \boldsymbol{s}_{i} \text{ transmitted} \right\}$$

$$= \Pr\left\{w < -\frac{1}{2} \|\boldsymbol{s}_{i} - \boldsymbol{s}_{j}\| \middle| \boldsymbol{s}_{i} \text{ transmitted} \right\}$$

$$= \Pr\left\{w > \frac{1}{2} \|\boldsymbol{s}_{i} - \boldsymbol{s}_{j}\| \middle| \boldsymbol{s}_{i} \text{ transmitted} \right\},$$

where the last equality is valid because the probability density function of a zero-mean Gaussian random variable is symmetric with respect to w = 0 (hence,  $\Pr[w > a] = \Pr[w < -a]$  for any a > 0).

□ Hence,

when 
$$N = 1$$
,  

$$P_{2}(\boldsymbol{s}_{i}, \boldsymbol{s}_{j}) = \Pr\left\{ ||\boldsymbol{x} - \boldsymbol{s}_{i}||^{2} > ||\boldsymbol{x} - \boldsymbol{s}_{j}||^{2} |\boldsymbol{m}_{i} \text{ transmitted} \right\}$$

$$= \Pr\left\{ w > \frac{1}{2} |s_{i} - s_{j}| \right\}$$

$$= \int_{d_{i}/2}^{\infty} \frac{1}{\sqrt{\pi N_{0}}} \exp\left(-\frac{v^{2}}{N_{0}}\right) dv, \text{ where } d_{ij} = |s_{i} - s_{j}|$$

$$= \frac{1}{2} \operatorname{erfc}\left(\frac{d_{ij}}{2\sqrt{N_{0}}}\right), \text{ where } \operatorname{erfc}(\mathbf{u}) = \frac{2}{\sqrt{\pi}} \int_{u}^{\infty} \exp(-z^{2}) dz.$$

Union Bound on Probability of  
Error  
For 
$$N = 2$$
,  
 $P_2(s_i, s_j) = \Pr\{ || \mathbf{x} - s_i ||^2 > || \mathbf{x} - s_j ||^2 || m_i \text{ transmitted} \}$   
 $= \Pr\{w_1 > \frac{1}{2}d_{ij} \text{ and } w_2 = \text{ don't care} \}, \text{ where } d_{ij} = || s_i - s_j ||$   
 $= \int_{d_{ij}/2}^{\infty} \frac{1}{\sqrt{\pi N_0}} \exp\left(-\frac{v^2}{N_0}\right) dv$   
 $= \frac{1}{2} \operatorname{erfc}\left(\frac{d_{ij}}{2\sqrt{N_0}}\right), \text{ where } \operatorname{erfc}(\mathbf{u}) = \frac{2}{\sqrt{\pi}} \int_u^{\infty} \exp(-z^2) dz.$   
The same formula is valid for any  $N$ .

□ Consequently, the *union bound* for symbol error rate is:

$$P_{e} \leq \frac{1}{M} \sum_{i=1}^{M} \sum_{j=1, j \neq i}^{M} P_{2}(\boldsymbol{s}_{i}, \boldsymbol{s}_{j}) = \frac{1}{M} \sum_{i=1}^{M} \sum_{j=1, j \neq i}^{M} \frac{1}{2} \operatorname{erfc}\left(\frac{d_{ij}}{2\sqrt{N_{0}}}\right)$$

- □ The above bound can be further simplified when additional condition is given.
  - For example, if the signal constellation is *circularly symmetric* in the sense that " $\{d_{i1}, d_{i2}, ..., d_{iM}\}$  is a permutation of  $\{d_{k1}, d_{k2}, ..., d_{kM}\}$  for  $i \neq k$ ," then

$$P_{e} \leq \sum_{j=1, j \neq i}^{M} \frac{1}{2} \operatorname{erfc}\left(\frac{d_{ij}}{2\sqrt{N_{0}}}\right)$$

© Po-Ning Chen@ece.nctu

- □ Another simplification of union bound
  - Define the minimum distance of a signal constellation as:

$$d_{\min} = \min_{1 \le i \le M, 1 \le j \le M, i \ne j} d_{ij}$$

Then, by the strict decreasing property of erfc function,

$$\operatorname{erfc}\left(\frac{d_{ij}}{2\sqrt{N_0}}\right) \le \operatorname{erfc}\left(\frac{d_{\min}}{2\sqrt{N_0}}\right)$$

$$\implies P_{e} \leq \frac{1}{M} \sum_{i=1}^{M} \sum_{j=1, j \neq i}^{M} \frac{1}{2} \operatorname{erfc}\left(\frac{d_{ij}}{2\sqrt{N_{0}}}\right) \leq \frac{1}{M} \sum_{i=1}^{M} \sum_{j=1, j \neq i}^{M} \frac{1}{2} \operatorname{erfc}\left(\frac{d_{\min}}{2\sqrt{N_{0}}}\right) = \frac{M-1}{2} \operatorname{erfc}\left(\frac{d_{\min}}{2\sqrt{N_{0}}}\right)$$

□ We may use the bound for erfc function to realize the relation between SER and  $d_{\min}$ .

$$\operatorname{erfc}(u) \le \frac{\exp(-u^2)}{\sqrt{\pi}} \text{ for } u > 0.608131$$

$$\Rightarrow P_{e} \leq \frac{M-1}{2} \operatorname{erfc}\left(\frac{d_{\min}}{2\sqrt{N_{0}}}\right) \leq \frac{M-1}{2\sqrt{\pi}} \exp\left(-\frac{d_{\min}^{2}}{4N_{0}}\right), \text{ if } d_{\min}^{2} > 1.47929N_{0}.$$

Conclusion: *SER* decreases *exponentially* as the *squared minimum distance* grows.

- □ The information bits are transmitted in group of  $log_2M$  bits to form an *M*-ary symbol.
- □ This gives the result that a large *symbol error rate* (SER) may not cause a large *bit error rate* (BER).
  - For example, a symbol error (for large *M*) may be due to only 1 bit error.
  - Optimistically, if every symbol error is due to a single bit error, then (assuming that *n* symbols are transmitted)

$$BER = \frac{n \cdot SER}{n \cdot \log_2(M)} = \frac{SER}{\log_2(M)}. \quad \left(\text{In general, } BER \ge \frac{SER}{\log_2(M)}.\right)$$

Pessimistically, if every symbol error causes log<sub>2</sub>M bit errors, then (assuming that n symbols are transmitted)

$$BER = \frac{n \cdot \log_2 M \cdot SER}{n \cdot \log_2 M} = SER. \quad (In \text{ general, } BER \le SER.)$$

Summary:



□ If the statistics for "number of bit error patterns that causes one symbol error" is known, we can determine the exact relation between BER and SER.

$$BER = \frac{n \cdot SER \cdot \sum_{j=1}^{M-1} \#(\boldsymbol{b}_j) \cdot P(\boldsymbol{b}_j)}{n \cdot \log_2 M}$$

where  $\#(\boldsymbol{b}_j) = \text{number of 1's in } \boldsymbol{b}_j$ ,

and  $\boldsymbol{b}_i$  represents a binary permutation of  $\log_2 M$  bit pattern.

Here, a 1's in  $b_j$  means a bit error occurs in the corresponding position; hence, the all-zero pattern is excluded because it represents no symbol error.

**Example**. If all bit error patterns (including no error pattern) are equally likely, then

$$BER = \frac{n \cdot SER \cdot \sum_{j=1}^{M-1} \#(\boldsymbol{b}_j) \cdot P(\boldsymbol{b}_j)}{n \cdot \log_2(M)} = \frac{SER \cdot \sum_{j=1}^{M-1} \#(\boldsymbol{b}_j) \cdot \frac{1}{M}}{\log_2(M)}$$
$$= \frac{SER}{M \log_2(M)} \sum_{u=1}^{\log_2(M)} u \binom{\log_2(M)}{u} \qquad (Note \ \sum_{u=1}^k u \binom{k}{u} = k2^{k-1}.)$$
$$= \frac{SER}{M \log_2(M)} \log_2(M) \frac{M}{2}$$
$$= \frac{1}{2}SER$$

#### Summary

- Geometric Representation of Signals
- Gram-Schmidt Orthogonalization Procedure
- □ Signal Space Concept
- Coherent Detection: Maximum Likelihood Decoding
- Equivalence of Correlation and Matched Filter Receivers
- □ Union Bound on Probability of Error
- □ Relation between BER and SER