Part 9 Signal-Space Analysis



Introduction

m: . Si(t) X(f) . ﬁlz.
I —» Transmitter Receitver —

Statistical model for a genetic digital communication
system

B Message source: A priori probabilities for information

source
p,=P(m)fori=12,..,.M

B Transmitter: The transmitter takes the message source
output m; and (en-)codes it into a distinct signal s,(¢)
suitable for transmission over the channel. So:

p.=P(m)=P(s,(t)) fori=1,2,... M
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Introduction

s(t) must be a real-valued energy signal (1.€., a
signal with finite energy) with duration 7.

E = si(t)dt <.

B Channel: The channel 1s assumed /inear and with a
bandwidth wide enough to pass si(¢) with no distortion.

A zero-mean additive white Gaussian noise (AWGN)
is also assumed to facilitate the analysis.
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A Mathematical Model

[1 We can simplify the previous system block diagram to:

» X(7)

Si(t) :C

%

w(t)

[0 Upon the reception of x(¢) with a duration of T, the receiver
makes the best estimate of m;. (We haven’t defined what “the best”
means.)
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Criterion for the “Best” Decision

Best = Minimization of the average probability of symbol
eIror.

M
})e :Zpi.P(’/h¢mi |mz)
i=1

B [t is optimum in the minimum-probability-of-error sense.

B Based on this criterion, we begin to design the receiver
that can give the best decision.
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Geometric Representation of Signals

Signal space concept

B Vectorization of the (discrete or continuous) signals
removes the redundancy in signals, and provides a
compact representation for them.

B Dectermination of the vectorization basis

Gram-Schmidt orthogonalization procedure
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Gram-Schmidt Orthogonalization Procedure

Given v,,V,,...,V,, how to find an orthonormal basis for them?

—

. . v
(stepi) Let u, =——.
v, |l
(stepii) u,=v,—(v, u)lu,. Set u,=—>—.
la, |l
(step iii) Fori=3,4,...,
Let ﬁi =‘_;i_(vi.ﬁi—l)ﬁi—l_(vi.ﬁi—2)ﬁi—2 _“._(‘_}i.ﬁl)ﬁl'
I
Set u, =——.
2, |l

(step iv) Then (i, i,, i, ) forms an orthonormal basis.
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Properties:

(i) vector: ¥ = (v1,...,Vpn)

v

.o . — — '’
(ii) inner product: Uy - Uy = Y. 4 ;1042

(i11) orthogonal, if inner product = 0

(1v) norm: ||17|| — \/’Ui2 + -+ ’U%

(v) orthonormal, if inner product = 0, and individual norm = 1
(vi) linearly independent, if none can be represented as a linear
combination of others

(vii) triangle inequality: ||v; + Ua]| < ||U1 ]| + ||va]]
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(viil) Cauchy Schwartz inequality:
01 - V| < [|Un]] - [|U2
with equality holding if 7] = avs

(x1) Norm square:

|01 + B2 = [|#1]|° + [|92]|* + 297 - T
(x) Pythagorean property: If orthogonal,
101 + V2 |* = [[oL]|* + |||

(x1) matrix transformation w.r.t. matrix 4:
'171 — A'l_)'g
(xi1) eigenvalues w.r.t. matrix A4:

solution A\ of det|[A — AI| =0

(x111) eigenvectors w.r.t. eigenvalue ) :

solution v of Av = \v
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Signal Space Concept for Continuous Functions

Properties for continuous functions

(1) (complex-valued) signal: z(7)

(ii) inner product: (z(t), 2(t)) = [* 2(t)z*(t)dt
(i11) orthogonal, 1f inner product = 0

(iv) norm: ||5(8) | = \/ [ 2(t)|

(v) orthonormal, if inner product = 0, and individual norm = 1

(vi) linearly independent, if none can be represented as a linear

combination of others
(vii) triangle inequality: ||2(t) + 2(2)|| < [[z(¢)[| + [[2(2)]
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(viil) Cauchy Schwartz inequality:

[(z(2), 2(E))| < llz@)]l - [I2@)]l

with equality holding if 2(t) = a - 2(t),where a is a complex number

(x1) norm square:

1z(¢) + 2() 11 = [lz(@)[1* + [I2@)1* + (=(2), 2(2)) + (£(2), 2(2))
(x) Pythagorean property: If orthogonal,

1z(¢) + 2()11* = [lz(E)1I* + [|2(2) (|2
(xi) transformation w.r.t. a function C'(t, 1) :

5(t) = [P C(t,7)z(r)dr  (Recall vij = 377, ajivai )
(xii.a) eigenvalues and eigenfunctions w.r.t. a function C(¢,7):

solution A and {¢x(t)}72, of Ax - dx(t) = f; C(t, 7)o (7T)dT

and C(t,7) can be represented as

C(t, ) = Y pey Ok(t) - Ak - 5(7)
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(xii.b) Give a deterministic function {s(¢),¢ € [0,T)} and a set of
orthonormal basis {¥k(t) }1<k<oco that can span s(¢). Then

oo

s(t) = zaklbk(t) 0<t<T,

k=1

where aj, = [ s(t)0}(t)dt.
(xi1.c) If orthonormal set {4 (t)}1<k<x does not span the space, then
it is possible that §(t) = Zszl arYr(t) # s(t) for all choices of

{ak}1<k<k.
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Problem : How to minimize the “energy” of e(t) =s(t)—s(t) ?

/_: le(t)|?dt

= /—oo [s(t) - gak'ﬁbk(t)] [s(t) - gak@bk(t)]*dt

o

K K o K o~ o
= Z|ak|2—zak/ "r/)k(t)s*(t)dt—Za;;/ T,b,:(t)s(t)dt-i-/ |s(t)|*dt
k=1 k=1 —00 k=1 — O — 0
K o 2 00 K 8o 2
= ax — s(t)yr(t)dt| + |s(t)|%dt — s(t)vi(t)dt

= af = /_00 s(t)yr(t)dt

o

Q.E.D.
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S()

d, = <S(t), '7”1(t)> ‘
a, = (s(t),y, (1)) _~ %) 220

/ s(1)

W, (1)

oC

Hence, (e(t), §(t)) = / e(t)3* (t)dt = 0.

— 00

Interpretation

B g, is the projection of s(¢) onto the ¥(#)-axis.
M |q* is the energy-projection of s(f) onto the ¥(f)-axis.
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a =0 ()
a, = (s, (0) N ety "0
/ s()
W, (1)
Slide 9-13 also yields:
o0 00 K 00 2
e(t)|?dt = |s()|%dt — s(t)r(t)dt
| kel /- > | st

o0 K
/ s(t)2dt — 3 |ax|’
Lo k=1

o0 K
and / |3(2)|%dt = Z |ax|?.
o0 k=1
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Signal Space Concept for Continuous Functions

For simplicity, we now focus on real-valued functions.

Completeness

B [f every finite energy signal s(¢) satisfies

60 K
/ s%(t)dt = E a;

k—1
{¥x(t)}E_, is a complete orthonormal set.

B Example. Fourier series

\/z cos 2 ikt \/z Gin 2 ikt complete for signals
T T J\T T )|, _ defined over [0, 7)
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Geometric Representation of Signals

N
s()=)5,/,(), 0<t<T,i=12,..M
j=1

Si1 /OTdt L s,
S Hi(@)
Si2 4?_\ si) R /Tdt — Sp
A0 20
: { £, orthonormal
SiN T ATdt —— Si
i Sl.j = J:) Sl(f)][j(t)dt, ‘ N
@) i=12,.M,j=12,.,N ()
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Geometric Representation of Signals

Through the signal space concept, s(¢) (where 1 < i < M)
can be unambiguously represented by an N-dimensional
signal vector (s;1, Sp,..., S;y) over an N-dimensional signal
space.

The design of transmitters becomes the selection of M
points over the signal space, and the receivers make a guess
about which of the M points was transmitted.

In the N-dimensional signal space,

B |ength square of the vector = energy of the signal .-
B angle between vectors = energy correlation between ,

| l T N
signals cos(6,) - (.0:5.0) | ||5.(0) = J-O (i = Zsf
||Sl(t)||||Sk(t)|| j=1
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Geometric Representation of Signals

B The length square of a vector and the angle between

vectors are independent of the basis used (Note that no
translation of the origin 1s allowed).

From this view,

B the transmitter may be viewed as a synthesizer, which
synthesizes the transmitted signal by a bank of N
multipliers.

B the receiver may be viewed as an analyzer, which
correlates (product-integrate) the common input into
individual informational signal.
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Euclidean Distance

After vectorization, we can calculate the Euclidean distance
between two signals, which is the squared root of:

[ (s.()=s, (00 drt =l|5,() - sk<t>||—z<s =
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Cauchy-Schwarz Inequality

Cauchy-Schwarz inequality and angle between signals

B Cauchy-Schwarz inequality said that

(s,(0).5, (z)>|2 <ll's, () IP -ll s, (£) I’ with equality holding if s, (¢) = cs, (£).

B Also, the angle between signals gives that

l l
Cos(elz): <S1( )9S2( )>
[, []- 1l s,(2) ]
B Hence, Cauchy-Schwarz inequality can be equivalently
stated as:

|cos(8,,) I’<1 with equality holding if 6,, =0 or
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Basis

The (complete) orthonormal basis for a signal space is not
unique!

B So, the synthesizer and the analyzer for the transmission
of the same informational messages are not unique!

One way to determine a set of orthonormal basis 1s the
Gram-Schmidt orthogonalization procedure.
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Vectorization of Continuous AWGN Channel

Influence of the AWGN noise to the signal space concept
x(2) = 5,(2) + w(?)

where w(?) 1s zero-mean AWGN with PSD N,/2.

After the correlator at the receiver, we obtain: i X,
(x(0. £,(0) =(5,(0. £,O) + (w(n). () * gy 1O

B Equivalently, x, =s,+w..

B Notably, there is no “information loss”

by the signal space representation.
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Vectorization of Continuous AWGN Channel

Statistics of {w;}

X Sii 4

X Sin Wy

Since {s;} 1s deterministic, the distribution of x 1s a mean-
shift of the distribution of w.

Observe that w 1s Gaussian distributed because w(¥) 1s
AWGN. The distribution of w can, therefore, be determined
by its mean vector and covariance matrix.
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Vectorization of Continuous AWGN Channel

Mean

W ]= Elf w(t) fj(t)dt]: [ Elw()1£,(H)dt =0

Covariance
Elww |=E [(I w(s) f, (S)dsx_[ w(t) f, (t)a’t)]
=| | E[w(s)w(®)]f.(s)f,(0)dsdt

JO J0

o pT

. 705@ — 1) £(5) f,(t)dsd

JO J0

N o N, L oi=
zjfoﬁ(t)ﬁ(t)dﬁ?é; & {o, i #
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Vectorization of Continuous AWGN Channel

As aresult, [wy, w,, ..., wy] are zero-mean 1.1.d. Gaussian
distributed with variance Ny/2.

This shows that x is independent Gaussian distributed with
common variance Ny/2 and mean vector s; = [s;1, Si, ..., Siv].
Equivalently,
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Vectorization of Continuous AWGN Channel

Remaining term in noise
B |t 1s possible that

W0 = W)= 3w, (1) 0

B However, it can be shown that (as an error term) w’(¢) 1s
orthogonal to s/¢) for 1 <i < M. Hence, w'(¢) will not
affect the decision error rate on message i.

<w‘ (1), Sl.(t)> = 0 with probability 1.
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Likelihood Functions under Equal Prior

An equivalent signal-space channel model

m=m;for1<i<M —>s=c(m) >x=8+w
—)T'h:d(w) G{ml,...,mM}

The best decision function d( ) that minimizes the decision
eIror 1s:

d(x)=m,if Plm |x}2>P{m, |x}foralll<k<M

=arg max P{m|x}

me{m ,...,m,, }

B This 1s the maximum a posteriori probability (MAP)
decision rule.
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Likelihood Functions under Equal Prior

With equal prior probabilities,

dlx) = arg max P{m|x}

me{mi,....,mnr}

= argmax {P{mi|x}, P{mz|x},..., P{my|x}}

_ argmax<rf(w|m1)P(m1) f(x|mz2)P(m2) f(-’B|mM)P(mM)}
( f(z) ’ f(x) T f(z)

= argmax ’f(m|m1)ﬁ f(m|m2)% f(mlmM)%

 eogm { i)y Sty Solmady)

= arg max{f(w|m1), f(mlmZ)a sy f(w|mM)}

flx|m;) 1s named the likelihood function given m; 1s transmitted. Hence,
the above rule is named the maximum-likelihood (ML) decision rule.
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Likelihood Functions under Equal Prior

MAP rule = ML rule, 1f equal prior probability 1s assumed.

In practice, it is more convenient to work on the /og-
likelihood functions, defined by

d(x)=argmax{f(x|m,), f(x|m,),..., f(x|m,,)]
= argmax{log f(x | m,),log f (x| m,),...,log f (x| m,,)}

Why log-likelihood functions are more convenient? The

decision function becomes “sum of (squared) Euclidean
distances” in AWGN channel.
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d(x)= argmaxlogf(xlm) argmaxlogf(xls)

l=i=sM lsisM

1
= are max lo expl——(x; —s;
g max g]_[ " p[ ( )}

N
1 1 >
= arggf%z(—glognNo —Vo(xj - 5;) )

j=I1

= argmlnz(x -5, )

lsisM

=argmin |l x - sII2 (=argminllx-s;, Il
lsisM l<i<sM

Upon the reception of received signal point x, find the
signal point s; that is closest in Euclidean distance to x.
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Coherent Detection:
Maximum Likelihood Decoding

Signal constellation

B The set of M signal points in the signal space

Example. Signal constellation for 2B1Q code

S 52 83 %4
I I I I > 1
3 1 1 3
decision region decision region decision region decision region
for s, for s, for s, for s,
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Coherent Detection:
Maximum Likelihood Decoding

Decision regions for
N=2and M =4
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Coherent Detection:
Maximum Likelihood Decoding

Usually, s, s, ..., 53, are named the message points.

The received signal point x wanders about the transmitted

message point in a Gaussian-distributed random fashion.

Constant-energy signal constellation

B In this case, the ML decision rule can be reduced to an
inner-product.

J— . - 2
d(x)=argmin || x—s, ||

— argmin(| x [P ~2(x,s )+ ||, IF)

1<isM

= arg min(— 2(x,s,)+ E,-)

I<isM

= arg max<x, sl.>, if £, 1s constant.
1<is<M
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Correlation Receiver

If signals do not have equal energy, we can use

d(x)=arg max(<x, sl.> 1 Ej

1<isM 2

to implement the ML rule.

B The receiver 1s coherent because the receiver requires to
be in perfect synchronization with the transmitter (more
specifically, the integration must begin at exactly the
right time instance).
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N product- xTs,

integrators or ———
correlators
T X 1
/ dt Y| .1 E
0 2
x’s,
Accumulator
S0 X Output
T X Largest
dt s
)@, /0 2 1,
S2(2)
xTsy
T AN Accumulator
[
0
SN ‘1 En
() 2
demodulator or N
detector decision maker

Correlation receiver
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sample Accumulator
atr=1T
X1
fiTn—" J LE,
x's,
Accumulator
X T Output
Largest
X2
x(?) (Tt — 5, -
xTsy
XN Accumulator
fTn—" T
Sy ;EN
matched filter decision maker

Correlation receiver
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Equivalence
of Correlation and Matched Filter Receivers

The correlator and matched filter can be made equivalent.

Specifically,
T o0
T; = / z(7T) fi(t)dt = / z(T)hi(T — 7)dT
0

— 00

if h;(t) = f;(T —t) (and implicitly f;(¢) is zero outside 0 <t < T).
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Probability of Symbol Error

Average probability of symbol error

P =1-P =1-) P(m,)P(d(x)=m,|m, transmitted)
i=1

1 & .

=1—HZP(d(x):mi | m_ transmitted)
i=l

1 & ) . ) .
:1——ZPr |x—s |[< min |[|x—s. | ‘m transmitted

M = ! 1<j<M,j#i J !

1 M
=1-—2 [/ (x|s)dx

M i=1 Z,

where Z, ={erRN J|x—s [[< min [x—s, ||2}

1<7<M | j#i
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Invariance of Probability of Symbol Error

|
Probability of symbol error is invariant with respect to basis
change (i.e., rotation and translation of the signal space).

Specifically, the symbol error rate (SER) only depends on
the relative “Euclidean distances” between the message

points.
1 M

P =1-—> Pri[[x—s,|[< min | x—s, |’|m, transmitted
M — I<j<M ,j#i
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Invariance of Probability of Symbol Error

|
Specifically, if Q 1s a reversible transform (matrix), such as
rotation, then

weR fx—s F< min [|x—s,|f

I<j<M, j#i

{XEERN ||Qx Qs ||< mln ||Qx QSJ- ||2}

I<j<M,j

The invariance in SER for translation can be likewise
proved.

B s the transmission power invariant for rotation and
translation?

© Po-Ning Chen@ece.nctu 9-41



Minimum Energy Signals

Since SER 1is invariant to rotation and translation, we may
rotate and translate the signal constellation to minimize the
transmission power without affecting SER.

M
E =Y plsIf
i=1

Find @ and Q such that £ (a,Q) = Z p. 11Q(s, —a) | is minimized.

B Since Q does not change the norm (1.e., transmission
power), we only need to determine the right a.
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Minimum Energy Signals

Determine the optimal a.

E@=3p s -al
>pls IF 245+ lal)
>l F~20"( s |+ af

M 2

> ps,

i=1

M M
:> aoptimal — Zpisi and Eg(aoptimal) — sz || Si ||2 o
i=1 i=1
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Union Bound on Probability of Error

Union bound [P(AUB) < P(A)+ P(B)

1 & : :
P =1——ZPr{||x—sl. < min ||x—s, |[|m, transrmtted}
i=1

¢ M “ I<j<M ,j#i

N

Py g | Ux=siix—sP)A-
=|—>1|——>P ~transmitted
(M;) 27 2 A (s <, )|

kil
L/

L [(lx=siP>lx=sF)v--
= — ) Pr! m, transmitted
2 2 v (= s, ol —s, IF)|™

L];f'fl

Vo

1 & & :
< MZ ZPr{Hx—si > x—s, | ‘mi transmltted}
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Union Bound on Probability of Error

1 M, M
Pegﬁz Z})Z(Si’sj)

i=l j=1,j#i
where P,(s,,s,) = Pr|| x — s, |F>|| x =, |} |, transmitted |

Notably, given m, transmitted, x 1s Gaussian distributed with mean s..

S
7]
<

@) O o ©)
/

1
5.5,
2
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Union Bound on Probability of Error

Since *x = s; + w when s; was transmitted, we have
Pr{||x — s;]|° > ||& — s,|*|s; transmitted }

= Pr{|(si + w) — 5| > ||(s; + w) — s;||°|s; transmitted }
= Pr{||lw|]® > |w+ (s; — s;)||*|s; transmitted }

= Pr{|w|®> ||w|*+ s — s;||* + 2(s; — s;)" w|s; transmitted }

1
— Pr {(sZ — sj)T’w < —§||sz~ — stQ

S; transmitted}

1
— Pf{n<—§|‘82—83||2

S; transmitted}

where n = (s; — s;)Tw.
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Union Bound on Probability of Error

Observe that w is zero-mean Gaussian distributed
with covariance matrix Flww?] = 221, where I is the identity matrix.

Hence, n = (s; — s;)Tw is Gaussian distributed with
Eln) = E[(s; — 8,)"w] = (s, — 8,)" Elw] = (s; — )70 =0
ERn*] = E|(s; — ;) w ((Sz - SJ)Tw)T}
= B(si — ;) ww’ (s; — 55)]

= (si—s;)  Elww’](si — ;)
No

= 5 (8- s;) 1(si — s;)
No
= llsi = s

This implies that w = n/||s; — s;|| is Gaussian distributed

with mean zero and variance N /2. 247




Union Bound on Probability of Error

As a result,

1
Pr {n < —iHSi — Sj||2

S; transmitted}

1
— Pr {||3Z — s||lw < —5 |s; — stQ

S; transmitted}

1
= Pr {w < —§Hsi — 5|8 transmitted}

1
= Pr {’LU > §||SZ — Sj”

S; transmitted},

where the last equality is valid because the probability density function of a
zero-mean Gaussian random variable is symmetric with respect to w = 0 (hence,
Prlw > a| = Prlw < —a] for any a > 0).
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Union Bound on Probability of Error

Hence,
B when N=1,

P(s,s,) = Pr{|x s, [F>[|x—s, |} |m, transmitted |

=Pr{w>l|sl.—sj |}
2

o | v
:L,]./z \/TNOGXPL

N,
1 g

2
= —erfc , where erfc(u) = —— | exp(—z”)dz.
: ( . WJ W=7 | exp(-2*)

jdv, whered, =|s, —s, |
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Union Bound on Probability of W
Error T

B ForN=2,
P,(s;,8,)=Pr{ llx=s, ">l x— s, I |m; transmitted }

= Pr{w1 > lal.. and w, = don't care}, where d; =ll's, — s |l
2 ij Yy ! J
V2
exp(——)dv

) where erfc(u) = % f ooexp(—zz)alz.
JT u

_fd /ZW
ierfc(z |

B The same formula is valid for any M.
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Union Bound on Probability of Error

Consequently, the union bound for symbol error rate is:

P <MZ Zp(sl,s )=— Z Z —erfc{ \/7}

i=l j=l,j=i 11/1]7&1

The above bound can be further simplified when additional
condition 1s given.

B For example, if the signal constellation 1s circularly
symmetric in the sense that “{d;, d;, ..., d;y;} 1s a
permutation of {dy, ds», ..., dyy,} fori #k,” then
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Union Bound on Probability of Error

Another simplification of union bound

B Define the minimum distance of a signal constellation

as:
d = mmn d.

M giem 1<j<M iz Y

Then, by the strict decreasing property of erfc function,

erfc[zj;j\TJ < erfc[ \/r&j

M -1 d
=P <— —erfc —erfc| —2o erfc| —2o
P ( rj W22 [ rj [zm
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Union Bound on Probability of Error

We may use the bound for erfc function to realize the
relation between SER and ;...

. 2
erfo(u) < P9 for > 0.608131

Jr

= P < M _lerfc[ o j M - 1exp( dm‘“j if d°. >1.47929N,.

2N, 4N,

B Conclusion: SER decreases exponentially as the squared
minimum distance grows.
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Relation between BER and SER

The information bits are transmitted in group of log,M bits
to form an M-ary symbol.

This gives the result that a large symbol error rate (SER)
may not cause a large bit error rate (BER).

B For example, a symbol error (for large M) may be due to
only 1 bit error.

B Optimistically, if every symbol error 1s due to a single bit
error, then (assuming that » symbols are transmitted)

aEp - MSER SER SER j

= . | In general, BER > :
n- 10g2 (M) logz (M) ( 10g2 (M)
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Relation between BER and SER

B Pessimistically, i1f every symbol error causes log,M bit
errors, then (assuming that » symbols are transmitted)

BER = -log, M -SER
n-log, M
B Summary:
SER <BER <SER
log, M

=SER. (In general, BER <SER.)

© Po-Ning Chen@ece.nctu

9-55



Relation between BER and SER

If the statistics for “number of bit error patterns that causes

one symbol error” is known, we can determine the exact
relation between BER and SER.

n- SER-Af#(bJ.)-P(bJ.)

BER =
n-log, M

where #(b;)=number of 1's in b,,

and b; represents a binary permutation of log, M bit pattern.

Here, a 1°s in b; means a bit error occurs in the corresponding position; hence,
the all-zero pattern is excluded because it represents no symbol error.
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Relation between BER and SER

are equally likely, then

BER =

n-SER- Y10 " #(b;)- P(b;)  SER- 1" #(b) -

n - log, (M)

SER ‘°‘*22(:M) log,, (M)
M log,(M) “ U

u=1
SER M
= Mog, (1) M)

= 1SER
2

logy (M)

Example. If all bit error patterns (including no error pattern)
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Summary

Geometric Representation of Signals

Gram-Schmidt Orthogonalization Procedure

Signal Space Concept

Coherent Detection: Maximum Likelithood Decoding

Equivalence of Correlation and Matched Filter Receivers

Union Bound on Probability of Error
Relation between BER and SER
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