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Introduction

o Statistical model for a genetic digital communication 
system
n Message source: A priori probabilities for information 

source

n Transmitter: The transmitter takes the message source 
output mi and (en-)codes it into a distinct signal si(t) 
suitable for transmission over the channel. So:

MimPp ii ,...,2,1for  )( ==
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Transmitter ReceiverChannelmi si(t) x(t)
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Introduction

o si(t) must be a real-valued energy signal (i.e., a 
signal with finite energy) with duration T.

n Channel: The channel is assumed linear and with a 
bandwidth wide enough to pass si(t) with no distortion.
o A zero-mean additive white Gaussian noise (AWGN) 

is also assumed to facilitate the analysis.
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o We can simplify the previous system block diagram to:

o Upon the reception of x(t) with a duration of T, the receiver 
makes the best estimate of mi. (We haven’t defined what “the best” 
means.)
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A Mathematical Model

si(t) x(t)

w(t)
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Criterion for the “Best” Decision

o Best = Minimization of the average probability of symbol 
error.

n It is optimum in the minimum-probability-of-error sense.
n Based on this criterion, we begin to design the receiver 

that can give the best decision.
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Geometric Representation of Signals

o Signal space concept
n Vectorization of the (discrete or continuous) signals 

removes the redundancy in signals, and provides a 
compact representation for them.

n Determination of the vectorization basis
o Gram-Schmidt orthogonalization procedure
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Gram-Schmidt Orthogonalization Procedure 

Given  !v1,
!v2,…, !vk,  how to find an orthonormal basis for them?

(step i)    Let  !u1 =
!v1

|| !v1 ||
.

(step ii)   !u2
' =
!v2 − (!v2 ⋅

!u1)!u1.   Set  !u2 =
!u2

'

|| !u2
' ||

.

(step iii)  For i = 3, 4,...,   
            Let !ui

' =
!vi − (!vi ⋅

!ui−1)!ui−1 − (!vi ⋅
!ui−2 )!ui−2 −"− (!vi ⋅

!u1)!u1.   

            Set  !ui =
!ui

'

|| !ui
' ||

.

(step iv)   Then !u1,
!u2,", !uk( )  forms an orthonormal basis.
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Properties:

(i) vector: 

(ii) inner product:

(iii) orthogonal, if inner product = 0

(iv) norm:

(v) orthonormal, if inner product = 0, and individual norm = 1

(vi) linearly independent, if none can be represented as a linear 

combination of others

(vii) triangle inequality:  
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(viii) Cauchy Schwartz inequality:

with equality holding if 
(xi) Norm square:

(x) Pythagorean property: If orthogonal,

(xi) matrix transformation w.r.t. matrix A:

(xii) eigenvalues w.r.t. matrix A:

(xiii) eigenvectors w.r.t. eigenvalue     : 
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Signal Space Concept for Continuous Functions

Properties for continuous functions
(i) (complex-valued) signal: z(t) 
(ii) inner product:
(iii) orthogonal, if inner product = 0
(iv) norm:
(v) orthonormal, if inner product = 0, and individual norm = 1
(vi) linearly independent, if none can be represented as a linear 

combination of others
(vii) triangle inequality:  
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(viii) Cauchy Schwartz inequality:

with equality holding if                          where a is a complex number 
(xi) norm square:

(x) Pythagorean property: If orthogonal,

(xi) transformation w.r.t. a function              :
(Recall                                  .)

(xii.a) eigenvalues and eigenfunctions w.r.t. a function              :
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(xii.b) Give a deterministic function                              and a set of 
orthonormal basis                            that can span s(t). Then

where  
(xii.c) If orthonormal set                            does not span the space, then

it is possible that                                                  for all choices of
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o Problem : How to minimize the “energy” of ?   )(ˆ)()( tstste -=

Q.E.D.
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)(ts

)(1 ty

)(2 ty

)(ˆ ts
)(),( 22 ttsa y=

)(),( 11 ttsa y=
)(te

o Interpretation
n aj is the projection of s(t) onto the Yj(t)-axis.
n |aj|2 is the energy-projection of s(t) onto the Yj(t)-axis.
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Slide 9-13 also yields:
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Signal Space Concept for Continuous Functions

o For simplicity, we now focus on real-valued functions.
o Completeness

n If every finite energy signal s(t) satisfies

n Example. Fourier series

is a complete orthonormal set.

complete for signals 
defined over [0, T)
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Geometric Representation of Signals
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Geometric Representation of Signals

o Through the signal space concept, si(t) (where 1 £ i £ M) 
can be unambiguously represented by an N-dimensional 
signal vector (si1, si2,…, siN) over an N-dimensional signal 
space.

o The design of transmitters becomes the selection of M
points over the signal space, and the receivers make a guess 
about which of the M points was transmitted.

o In the N-dimensional signal space,
n length square of the vector = energy of the signal
n angle between vectors = energy correlation between 

signals
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Geometric Representation of Signals

n The length square of a vector and the angle between 
vectors are independent of the basis used (Note that no 
translation of the origin is allowed).

o From this view, 
n the transmitter may be viewed as a synthesizer, which 

synthesizes the transmitted signal by a bank of N
multipliers.

n the receiver may be viewed as an analyzer, which 
correlates (product-integrate) the common input into 
individual informational signal.
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Euclidean Distance

o After vectorization, we can calculate the Euclidean distance
between two signals, which is the squared root of:

åò
=

-=-=-
N

j
kjijki

T

ki sststsdttsts
1

22

0

2 )(||)()(||))()((



© Po-Ning Chen@ece.nctu 9-21

Cauchy-Schwarz Inequality

o Cauchy-Schwarz inequality and angle between signals
n Cauchy-Schwarz inequality said that

n Also, the angle between signals gives that

n Hence, Cauchy-Schwarz inequality can be equivalently 
stated as:

s1(t), s2 (t)
2
≤|| s1(t) ||2 ⋅ || s2 (t) ||2  with equality holding if s1(t) = cs2 (t).

||)(||||)(||
)(),(

)cos(
21

21
12 tsts

tsts
×

=q

| cos(θ12 ) |2≤1 with equality holding if θ12 = 0 or π
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Basis

o The (complete) orthonormal basis for a signal space is not 
unique!
n So, the synthesizer and the analyzer for the transmission 

of the same informational messages are not unique!
o One way to determine a set of orthonormal basis is the 

Gram-Schmidt orthogonalization procedure.
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Vectorization of Continuous AWGN Channel

o Influence of the AWGN noise to the signal space concept

where w(t) is zero-mean AWGN with PSD N0/2.
o After the correlator at the receiver, we obtain:

n Equivalently,
n Notably, there is no “information loss” 

by the signal space representation.
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o Statistics of {wj}

o Since {sij} is deterministic, the distribution of x is a mean-
shift of the distribution of w.

o Observe that w is Gaussian distributed because w(t) is 
AWGN. The distribution of w can, therefore, be determined 
by its mean vector and covariance matrix.
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Vectorization of Continuous AWGN Channel
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o Mean

o Covariance
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Vectorization of Continuous AWGN Channel
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o As a result, [w1, w2, …, wN] are zero-mean i.i.d. Gaussian 
distributed with variance N0/2.

o This shows that x is independent Gaussian distributed with 
common variance N0/2 and mean vector si = [si1, si2, …, siN]. 
Equivalently,
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o Remaining term in noise
n It is possible that

n However, it can be shown that (as an error term) w’(t) is 
orthogonal to si(t) for 1 £ i £ M. Hence, w’(t) will not 
affect the decision error rate on message i.
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Vectorization of Continuous AWGN Channel



o An equivalent signal-space channel model

o The best decision function d( ) that minimizes the decision 
error is:

n This is the maximum a posteriori probability (MAP) 
decision rule.
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Likelihood Functions under Equal Prior 
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o With equal prior probabilities, 

f(x|mi) is named the likelihood function given mi is transmitted. Hence, 
the above rule is named the maximum-likelihood (ML) decision rule.

Likelihood Functions under Equal Prior 
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o MAP rule = ML rule, if equal prior probability is assumed.
o In practice, it is more convenient to work on the log-

likelihood functions, defined by

o Why log-likelihood functions are more convenient? The 
decision function becomes “sum of (squared) Euclidean 
distances” in AWGN channel.
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Likelihood Functions under Equal Prior 



d(x) = argmax
1≤i≤M

log f (x |mi ) = argmax
1≤i≤M

log f (x | si )

= argmax
1≤i≤M

log 1
πN0

exp −
1
N0

(x j − sij )
2

⎡

⎣
⎢

⎤

⎦
⎥

j=1

N

∏

= argmax
1≤i≤M

−
1
2

logπN0 −
1
N0

(x j − sij )
2

⎛

⎝
⎜

⎞

⎠
⎟

j=1

N

∑

= argmin
1≤i≤M

(x j − sij )
2

j=1

N

∑

= argmin
1≤i≤M

|| x − si ||2   ( = argmin
1≤i≤M

|| x − si ||)
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Upon the reception of received signal point x, find the 
signal point si that is closest in Euclidean distance to x.



o Signal constellation
n The set of M signal points in the signal space

o Example. Signal constellation for 2B1Q code
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Coherent Detection: 
Maximum Likelihood Decoding

decision region 
for s1

decision region 
for s2

decision region 
for s3

decision region 
for s4

f1

s4s3s2s1

-3 -1 1 3
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o Decision regions for 
N = 2 and M = 4

Coherent Detection: 
Maximum Likelihood Decoding



o Usually, s1, s2, …, sM are named the message points.
o The received signal point x wanders about the transmitted 

message point in a Gaussian-distributed random fashion.
o Constant-energy signal constellation

n In this case, the ML decision rule can be reduced to an 
inner-product.
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Coherent Detection: 
Maximum Likelihood Decoding
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Correlation Receiver

o If signals do not have equal energy, we can use

to implement the ML rule.
n The receiver is coherent because the receiver requires to 

be in perfect synchronization with the transmitter (more 
specifically, the integration must begin at exactly the 
right time instance).
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demodulator or 
detector decision maker
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N product-
integrators or 

correlators

Correlation receiver

f1(t)

f2(t)

fN(t)

x1

x2

xN

…
.

x(t)

Output
Largest

Accumulator +_

Accumulator +_

Accumulator +_

s1

s2

sN

xTs1

xTs2

xTsN

x

…
.



fN(T-t)

f2(T-t)

f1(T-t)

matched filter decision maker
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Correlation receiver

x1

x2

xN

…
.

x(t)

Output
Largest

Accumulator +_

Accumulator +_

Accumulator +_

s1

s2

sN

xTs1

xTs2

xTsN

x

…
.

sample 
at t = T
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Equivalence 
of Correlation and Matched Filter Receivers

o The correlator and matched filter can be made equivalent.
o Specifically,
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Probability of Symbol Error

o Average probability of symbol error
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Invariance of Probability of Symbol Error

o Probability of symbol error is invariant with respect to basis 
change (i.e., rotation and translation of the signal space).

o Specifically, the symbol error rate (SER) only depends on 
the relative “Euclidean distances” between the message 
points.
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Invariance of Probability of Symbol Error

o Specifically, if Q is a reversible transform (matrix), such as 
rotation, then

o The invariance in SER for translation can be likewise 
proved.
n Is the transmission power invariant for rotation and 

translation?
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Minimum Energy Signals

o Since SER is invariant to rotation and translation, we may 
rotate and translate the signal constellation to minimize the 
transmission power without affecting SER.

n Since Q does not change the norm (i.e., transmission 
power), we only need to determine the right a.
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Minimum Energy Signals

o Determine the optimal a.
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Union Bound on Probability of Error

o Union bound
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Union Bound on Probability of Error
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Union Bound on Probability of Error

Since x = si + w when si was transmitted, we have

Pr
�
�x � si�2 > �x � sj�2

��si transmitted
�

= Pr
�
�(si + w) � si�2 > �(si + w) � sj�2

��si transmitted
�

= Pr
�
�w�2 > �w + (si � sj)�2

��si transmitted
�

= Pr
�
�w�2 > �w�2 + �si � sj�2 + 2(si � sj)

T w
��si transmitted

�

= Pr

�
(si � sj)

T w < �1

2
�si � sj�2

����si transmitted

�

= Pr

�
n < �1

2
�si � sj�2

����si transmitted

�

where n � (si � sj)T w.
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Union Bound on Probability of Error
Observe that w is zero-mean Gaussian distributed
with covariance matrix E[wwT ] = N0

2 I, where I is the identity matrix.

Hence, n � (si � sj)T w is Gaussian distributed with

E[n] = E
�
(si � sj)

T w
�

= (si � sj)
T E[w] = (si � sj)

T 0 = 0

This implies that w � n/�si � sj� is Gaussian distributed
with mean zero and variance N0/2.

E[n2] = E
�
(si � sj)

T w · ((si � sj)
T w)T

�

= E
�
(si � sj)

T wwT (si � sj)
�

= (si � sj)
T E

�
wwT

�
(si � sj)

=
N0

2
(si � sj)

T I(si � sj)

=
N0

2
�si � sj�2.
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Union Bound on Probability of Error
As a result,

Pr

�
n < �1

2
�si � sj�2

����si transmitted

�

= Pr

�
�si � sj�w < �1

2
�si � sj�2

����si transmitted

�

= Pr

�
w < �1

2
�si � sj�

����si transmitted

�

= Pr

�
w >

1

2
�si � sj�

����si transmitted

�
,

where the last equality is valid because the probability density function of a
zero-mean Gaussian random variable is symmetric with respect to w = 0 (hence,
Pr[w > a] = Pr[w < �a] for any a > 0).
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Union Bound on Probability of Error

o Hence,
n when N = 1, 
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n For N = 2, 

n The same formula is valid for any N.
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Union Bound on Probability of 
Error

w

ji ss -
2
1

P2 (si, s j ) = Pr  || x − si ||2>|| x − s j ||2  mi  transmitted{ }

= Pr w1 >
1
2
dij  and w2  =  don't care

⎧
⎨
⎩

⎫
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, where dij =|| si − s j ||

=
1
πN0

exp −
v2
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⎛

⎝
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⎟dv

dij /2

∞

∫

=
1
2
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dij

2 N0

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟,  where erfc(u) = 2
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Union Bound on Probability of Error

o Consequently, the union bound for symbol error rate is:

o The above bound can be further simplified when additional 
condition is given.
n For example, if the signal constellation is circularly 

symmetric in the sense that “{di1, di2, …, diM} is a 
permutation of {dk1, dk2, …, dkM} for i ¹ k,” then
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Union Bound on Probability of Error

o Another simplification of union bound
n Define the minimum distance of a signal constellation 

as:

Then, by the strict decreasing property of erfc function,
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Union Bound on Probability of Error

o We may use the bound for erfc function to realize the 
relation between SER and dmin.

n Conclusion: SER decreases exponentially as the squared 
minimum distance grows.
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Relation between BER and SER

o The information bits are transmitted in group of log2M bits 
to form an M-ary symbol.

o This gives the result that a large symbol error rate (SER) 
may not cause a large bit error rate (BER).
n For example, a symbol error (for large M) may be due to 

only 1 bit error.
n Optimistically, if every symbol error is due to a single bit 

error,  then (assuming that n symbols are transmitted)
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Relation between BER and SER

n Pessimistically, if every symbol error causes log2M bit 
errors, then (assuming that n symbols are transmitted)

n Summary:
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Relation between BER and SER 

o If the statistics for “number of bit error patterns that causes 
one symbol error” is known,  we can determine the exact 
relation between BER and SER.

Mn
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1
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å
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=

bb

where #(bj ) = number of 1's in bj, 
          and bj  represents a binary permutation of log2M  bit pattern.

Here, a 1’s in bj means a bit error occurs in the corresponding position; hence, 
the all-zero pattern is excluded because it represents no symbol error.
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Relation between BER and SER

o Example. If all bit error patterns (including no error pattern) 
are equally likely, then
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Summary

o Geometric Representation of Signals
o Gram-Schmidt Orthogonalization Procedure
o Signal Space Concept 
o Coherent Detection: Maximum Likelihood Decoding
o Equivalence of Correlation and Matched Filter Receivers
o Union Bound on Probability of Error
o Relation between BER and SER


