
Part 8 Techniques to Compensate for 
Intersymbol Interference and 
AWGN



© Po-Ning Chen@ece.nctu 8-2

Introduction

o Transmission of digital data (bit stream) over a noisy
baseband channel typically suffers two channel 
imperfections
n Intersymbol interference (ISI)
n Background noise (e.g., AWGN)

o These two interferences/noises often occur simultaneously.
o However, for simplicity, they are often separately 

considered in analysis.
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o Matched filter is a device for the optimal detection of a 
digital pulse. It is so named because the impulse response
of the matched filter matches the pulse shape. 

o System model without ISI
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Matched Filter

channel
Linear 

time-invariant filter
h(t)

g(t)
x(t) y(t) y(T)

sample at t = T

white noise
w(t)
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Design Criterion

o To find h(t) such that the output signal-to-noise ratio SNRO
is maximized.
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Analysis of Matched Filter 
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Analysis of Matched Filter 
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Analysis of Matched Filter

o By Cauchy-Schwarz inequality,
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This is a constant bound, independent of the choice of h(t).
Hence, the optimal h is achieved by:
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Analysis of Matched Filter

o Hence, under additive white noise, the optimal received 
filter matches the input signal in the sense that it is a time-
inversed and delayed version of the complex-conjugated 
input signal g(t).

hopt(t) =

Z 1

�1
k ·G⇤(f) exp(�j2⇡fT ) exp(j2⇡ft)df

= k

✓Z 1

�1
G(f) exp(j2⇡f(T � t))df

◆⇤

= kg⇤(T � t).
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o The maximum output signal-to-noise ratio only depends on 
the energy of the input, and has nothing to do with the pulse 
shape itself.
n Namely, whether the pulse shape is sinusoidal, 

rectangular, triangular, etc is irrelevant to the maximum 
output signal-to-noise ratio, as long as these pulse shapes 
have the same energy. 

Properties of Matched Filter
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Matched Filter for Rectangular Pulse

Also h(t)

A
g(t)=h(t)

T0

Matched filter output go(t)

2T

A2T



o hopt(t) in this example can be implemented as integrate-and-
dump circuit
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Matched Filter for Rectangular Pulse

Rectangular pulse

Sample at t = T

Output of integrate-and-dump

T t0
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Error Rate due to Noise

o In what follows, we analyze the error rate of polar non-
return-to-zero (NRZ) signaling in a system with optimal 
matched filter receiver over AWGN channel.

Matched 
filter

1
-1 y

Sample 
at t = T

w(t)

s(t)
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For notational convenience, we brief y(T)/k by y.

Note: The integration can be taken over [0,T) since g(t) is 
zero outside this range (as text does). I, however, use the 
entire real line as the integration range here for convenience.  
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Error Rate due to Noise under Uniform Input

o In order to free the system dependence on N0 estimate, a 
uniform I is transmitted in which case, p = ½.

o The best decision now becomes y 0.
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Error Function

o Error function

o Complementary error function

o Q-function
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Error Function

o Bounds for error function
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Symbol Error Rate

o The optimal BER formula is important in communications:

o The best decision is y 0.

÷
÷
ø

ö
ç
ç
è

æ
=÷

÷
ø

ö
ç
ç
è

æ
=

00
opt

2
erfc
2
1

N
E

Q
N
E

BER gg

1+
>
1-
<



g

TT

b EdttgIEdttsEE

ItgIts

===

+-Î×=

òò 0

22

0

2 )(][)]([ case,  thisIn

}.1,1{  where),()(

© Po-Ning Chen@ece.nctu 8-23

Eb/N0 (dB)

Pe
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Intersymbol Interference

o The channel is usually dispersive in nature.
o In this section, we only consider discrete pulse-amplitude 

modulation (PAM). Consideration of PDM and PPM will 
be similar but out of the scope of this section.
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Intersymbol Interference

o Notably, in the previous section, we only consider one 
interval of input. 

This is justifiable because of no ISI.
o However, in this section, we have to consider

since ISI is involved.
o We also assume perfect synchronization to simplify the 

analysis.
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Information of ak is carried at [kTb, (k+1)Tb).
We sample at iTb = (k+1)Tb to retrieve ak.

PAM
transmit

filter
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filter
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h(t)
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ISI and Background Noise

o If H(f)=1, then the matched filter suffices to eliminate ISI. 
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Information of ai is actually carried during [iTb, (i+1)Tb).
So, in order to recover ai, “correlation” (convolution) operation should start at iTb, and end 
(i.e., is sampled) at (i+1)Tb.
Hence, y((i+1)Tb) is used to reconstruct ai.

However, this index system requires …, p(-2Tb)=0, p(-Tb)=0, p(0)=0, p(Tb)=1, 
p(2Tb)=0, …., which, due to its non-symmetry, may not facilitate the derivation of 
spectrum condition for p(t). Thus, in what follows, we assume …, p(-2Tb)=0, p(-Tb)=0, 
p(0)=1, p(Tb)=0, p(2Tb)=0, …., i.e., the information of ai is carried during [(i-1)Tb, iTb). 
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Nyquist’s Criterion 
for Noiseless Baseband Transmission

o Is it possible to completely eliminate ISI (in principle) by 
selecting proper g(t) and c(t) ?

PAM
transmit

filter
g(t)

receive
filter
c(t) 𝜆

0
1

{bk} {ak} s(t) x0(t) x(t) y(t) y(ti)channel
h(t)

w(t)
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o Let P(f) = G(f)H(f)C(f).
o Sample p(t) with sampling period Tb to produce Pd(f). 
o From Slide 6-4, we get:

o Also from Slide 6-4, we have:
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o This concludes that the condition for zero ISI is:

o This is named Nyquist’s criterion.
n The overall system frequency function P(f) suffers no 

ISI for samples taken at interval Tb if it satisfies the 
above equation.

n Notably, P(f) represents the overall accumulative effect 
of transmit filter, channel response, and receive filter.
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Nyquist’s Criterion 
for Noiseless Baseband Transmission
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Ideal Nyquist Channel

o The simplest P(f) that satisfies Nyquist’s criterion is the 
rectangular function:
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1 0 1 1 1 0 0

The information of ai is carried during [(i-1)Tb, iTb) and sampled at t = iTb.
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Infeasibility of Ideal Nyquist Channel

o Rectangular P(f) is infeasible because:
n p(t) extends to negative infinity, which means that each ak

has already been transmitted at t = – ∞!
n A system response being flat from –W to W, and zero 

elsewhere is physically unrealizable.
n The error margin is quite small, as a slight (erroneous) 

shift in sampling time (such as, iTb+e), will cause a very 
large ISI.
o Note that p(t) decays to zero at a very slow rate of 1/|t|.
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Infeasibility of Ideal Nyquist Channel

o Examination of timing error margin
n Let Dt be the sampling time difference between 

transmitter and receiver.

n For simplicity, set i = 0.
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Question: How to make p(t) decays faster?
Answer: Make P(f) smoother.



© Po-Ning Chen@ece.nctu 8-39

Raised Cosine Spectrum

a

a

a

For a nonnegative function p(t),
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Raised Cosine Spectrum

o We extend the bandwidth of p(t) from W to 2W, and require 
that

n So, the price to pay is a larger bandwidth.
n One of the P(f) that satisfies the above condition is the 

raised cosine spectrum.
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Raised Cosine Spectrum

o The transmission bandwidth of the raised cosine spectrum 
is equal to:

where a is the rolloff factor, which is the excess bandwidth
over the ideal solution.

)1(2 a+= WBT
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Raised Cosine Spectrum

o consists of two terms:

n The first term ensures the desired zero crossing of p(t).
n The second term provides the necessary tail 

convergence rate of p(t).

o The special case of a = 1 is known as the full-cosine rolloff
characteristic.
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Raised Cosine Spectrum
o Useful property of full-cosine spectrum.

n We have more “zero-crossing” at ±3Tb/2, ±5Tb/2, ±7Tb/2,…
in addition to the desired ±Tb, ±2Tb, ±3Tb…

n This is useful in synchronization. (Think of when 
“synchronized,” the quantity should be small both at ±3Tb/2,
±5Tb/2, ±7Tb/2,… and at ±Tb, ±2Tb, ±3Tb…)

n However, the price to pay for this excessive synchronization 
information is to “double the bandwidth.”
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Correlative-Level Coding

o ISI, when generated in an uncontrolled manner, is an 
undesirable phenomenon.

o However, ISI may become a friend if it is added to the 
transmitted signal in a controlled manner.
n Known fact: A signal of bandwidth W can be 

distortionlessly transmitted using its samples with 
sampling rate ³ 2W.

n Conversely, in a channel with bandwidth W Hz, the 
theoretical maximum signal rate is 2W symbols per 
second.
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Correlative-Level Coding

-W W
-B B

-W W

-W W
.secondper  samples 2

 is rate signal maximum The
W

A channel with bandwidth W Hz
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Correlative-Level Coding

o Why intentionally adding ISI? Answer: To have better 
bandwidth efficiency.
n Ideal Nyquist pulse shaping is efficient; it cannot be 

realized.
n Raised cosine pulse shaping is realizable; it is 

bandwidth inefficient.
n By adding ISI to the transmitted symbols in a controlled 

manner, we can achieve the Nyquist rate 2W in a 
channel bandwidth of W Hertz.
o Correlative-level coding or Partial-response 

signaling



o Duobinary signaling (or class I partial response)
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An Example of Correlative-Level Coding

i.i.d. }{  where kb

Delay
Tb

HNyquist(f)

HduoB(f) HI(f)

{ak} {ck}
Sample 

at t = kTb



o Duobinary signaling (or class I partial response)
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An Example of Correlative-Level Coding

Delay
Tb

HNyquist(f)

HduoB(f) HI(f)

{ak}

{ck}

Sample 
at t = kTb

HduoB(f)
transmit

filter
g(t)

receive
filter
c(t)

channel
h(t)

{ak}

HNyquist(f)

Sample 
at t = kTb

{ck}

This part can be HNyquist(f) or Hraised cosine(f)
or any filter that guarantees no ISI.
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o Let us ignore the effect of HNyquist(f) first in the block 
diagram in the previous slide. We directly obtain:

n Note that ck has three levels (–2, 0, 2).
o The transfer function of the overall system is thus:

)2exp(1)( bDuoB fTjfH p-+=Þ

Duobinary Signaling
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Duobinary Signaling

o HNyquist(f):
n Give that

n As shown in the next slide, the response HI(f) is 
realizable.

Þ
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Duobinary Signaling

o HI(f)

2

0

0
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Duobinary Signaling

o hI(t):

)()( NyquistNyquist bTthth -+=Þ
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Duobinary Signaling

o hI(t):

-2Tb -Tb Tb 2Tb 3Tb 4Tb

hI (t)

1/𝑇!

0

t
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Duobinary Signaling

o Bandwidth efficiency of duobinary signaling
n Example.

å
¥

-¥=

-
k

bk kTta )(d
)(tg

The input to this filter may not be WSS! 
Then, we should use the time-average autocorrelation function.

Transmitted signal 
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Duobinary Signaling

å
¥

-¥=

-=
k

bk kTtatX )()( d
)(tg

å
¥

-¥=

-=
k

bk kTtgatY )()(
(to channel)
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Duobinary Signaling

0–T T

 themof 2ely Approximat
bT
T



22 |)(||)(|1)( fHfG
T

fS DuoB
b

Y =Þ
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Duobinary Signaling

å
¥

-¥=

-=
k

bk kTtatX )()( d

)(tg )(thDuoB (to channel)
Y (t)

Delay
Tb

HduoB(f)
transmit

filter
g(t)

receive
filter
c(t)

channel
h(t)

HNyquist(f)

Sample 
at t = kTb

å
¥

-¥=

-=
k

bk kTtatX )()( d
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Duobinary Signaling
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0,1
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Duobinary Signaling

o Conclusions
n By adding ISI to the transmitted signal in a controlled (and 

reversible) manner, we can reduce the requirement of bandwidth of 
the transmitted signal.

n Hence, in the previous example, {ck} can be transmitted in every 
Tb/2 seconds!
o Doubling the transmission capacity without introducing 

additional requirement in bandwidth!
n Duobinary signaling : “Duo” means “doubling the transmission 

capacity of a straight binary system.”
n A larger SNR is required to yield the same error rate because of an 

increase in the number of signal levels (from –1, +1 to –2, 0, 2). 
Detailed discussion on error rate impact is omitted here!
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Duobinary Signaling

o Conclusions (cont.)
n The duobinary signaling is also named class I partial 

response.
o Full response: The transmission wave at each time 

instance is fully determined by a single information 
symbol.

o Partial response: The transmission wave at each time 
instance is only partially determined by one 
information.



o Recovering of {ak} from {ck}

n It requires the previous decision to determine the current 
symbol.

n So, the system should feedback the previous decision.
n Error, therefore, may propagate!

n How to avoid error propagation? Answer: Precoding.
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Decision Feedback for Correlative-Level Coding

1ˆˆ --= kkk aca Delay
Tb

Ideal 
channel
HNyquist(f)

  )(   fHduoB

{ak}

Sample
at t = kTb

{ck}
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Precoding of Correlative Coding

11 1~2~~}i.i.d. }1,0{{ -- +=®-=®Å=®Î kkkkkkkkk aacbabbbb
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Precoding of Correlative Coding

o Final notes
n The precode must not change the  “duo- of the 

transmission capacity of a straight binary system.”
n Hence, { !bk} must have the same distribution as {bk} 

and hence must be i.i.d.

Rectifier 1

{ck} {|ck|}
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Invariance in Statistics by Precoding

o Uniform i.i.d. of
n It suffices to show  
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Q.E.D.

n For uniformity, 
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Modified Duobinary Signaling

o The PSD of the signal is nonzero at the origin.
o This is considered to be an undesirable feature in some 

applications, since many communication channels cannot 
transmit a DC component.

o Solution: Class IV partial response or modified duobinary 
technique.
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Modified Duobinary Signaling

22 1~2~~}i.i.d. }1,0{{ -- -=®-=®Å=®Î kkkkkkkkk aacbabbbb

)( fHMDuoB

)4exp(1)( bMDuoB fTjfH p--=Þ

Delay
2Tb

Pulse 
amplitude 
modulator

Delay
2Tb

Ideal 
channel
HNyquist(f)

{bk} {ak}

Sample
at t = kTb

{ck}
+ _
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Modified Duobinary Signaling
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Modified Duobinary Signaling

o Precoding is added to eliminate error propagation in 
decision system.
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Generalized Form 
of Correlative Level 
Coding (CLC) or 
Partial Response 
Signaling

Delay
Tb

Delay
Tb

Delay
Tb

…

…

{ak} {ck}

w0

w1

w2

wN-1
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Generalized Form of Correlative-Level Coding or 
Partial-Response Signaling

Type of Class N w0 w1 w2 w3 w4 Comments
I 2 1 1 Duobinary coding
II 3 1 2 1

III 3 2 1 –1
IV 3 1 0 –1 Modified duobinary coding
V 5 –1 0 2 0 –1
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Baseband M-ary PAM

Gray code

Any dibit differs from 
an adjacent dibit in a 
single bit position.

0     0 1     1      1     0 0     1      1     1

T=2Tb

data stream
Dibit Amplitude

00 -3
01 -1
11 +1
10 +3
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Baseband M-ary PAM

o For M-ary PAM transmission, there are M possible symbols 
with symbol duration T. 
n 1/T is referred to as the signaling rate or symbol rate or 

symbols per second or baud.
o Some equivalences

n Each symbol can be equivalently identified with log2M
bits.

n The baud rate 1/T can be equivalently transformed to 
bps as:

)(log2 MTT b=

Baud = the number of times a 
signal changes state per second
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Baseband M-ary PAM

o Equivalences
n Virtually fix the symbol error, i.e., fix the level distance 

(to be 2). For example, (+1, –1) for M = 2, and (+3, 
+1, –1, –3) for M = 4. Then, the transmitted power per 
unit time for M-ary PAM transmission becomes:
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Baseband M-ary PAM

)(log3
)1(1][
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For fixed Rb = 1/Tb (bps) and level distance = 2, the 
transmitted power of an M-ary PAM transmission signal is 
increased by a factor M2/log2M.
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Digital Subscriber Lines (DSL)

o A DSL operates over a local loop (often less than 1.5km) that 
provides a direct connection between a user terminal (e.g., 
computer) and a telephone company’s central office (CO).
n Since it is a direct connection, no dialup is necessary.
n The information-bearing signal is kept in the digital domain 

all the way from the user terminal to an Internet service 
provider.

SONET: Synchronous Optical Networking

digital
subscriber
line (DSL)

Central
Office 
(DSL)

broadband
backbone
network SONET Internet

service
provider

upstream

downstream
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Digital Subscriber Lines (DSL)

o DSL is intended to provide high data-rate, full-duplex, 
digital transmission capability using local cost 
configuration (such as twisted pairs for ordinary telephonic 
communications).

o One of two possible modes can be used to achieve the full-
duplex goal.
n Time compression multiplexing (TCM) mode
n Echo-cancellation (EC) mode 
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Digital Subscriber Lines (DSL)

n Time-compression multiplexing (TCM) mode
o A guard time is often inserted between bursts in the 

two opposite directions of data.
o The required line rate is slightly greater than twice 

the data rate.

Transmitter

Receiver

Transmitter

Receiver
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Digital Subscriber Lines

n Echo-cancellation (EC) mode
o Support the simultaneous flow of data along the 

common line in both directions.
o In this mode, the line rate is the same as the data rate.

Transmitter

Receiver

Hybrid
Circuit

+
_

Transmitter

Receiver

Hybrid
Circuit

+
_

Echo
Canceller

Echo
Canceller
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Digital Subscriber Lines (DSL)

o Comparison between TCM mode and EC mode
n EC offers a much better data transmission performance 

at the expense of higher complexity.
n However, with the recent advance in VLSI, complexity 

is no longer a main system concern. So, in North 
America, the EC mode has been adopted as the basis for 
designing the transceiver.
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Digital Subscriber Lines (DSL)

o Other impairments to DSL
n ISI and Crosstalk

o The transfer function of a twisted pair line can be 
approximated by

pair.  twisted theof
 length actual and length reference ly therespective are  and 

and pair,  twisted theofconstant  physicala  is  , where

0

0

ll

k
l
lk=a
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Digital Subscriber Lines (DSL)

n ISI

)1()( -+ tt dd

�0 = 0.1
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Digital Subscriber Lines (DSL)

n Crosstalk
o Capacitive coupling that exists between adjacent 

twisted pairs in a cable
n Near-end crosstalk (NEXT) and Far-end crosstalk (FEXT)

Near-end crosstalk Far-end crosstalk



© Po-Ning Chen@ece.nctu 8-88

Digital Subscriber Lines (DSL)

n Crosstalk (cont.)
o FEXT suffers the same line loss as the signal, 

whereas NEXT does not.
n This is close to the phenomenon of near-far effect

of wireless channel.
o Accordingly, NEXT will be a more serious problem 

than FEXT. So, we can ignore the effect of FEXT, 
and add NEXT filter to the twisted pair channel 
model.
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Digital Subscriber Lines (DSL)

o Other features of DSL channel
n The PSD of the transmitted signal should be zero at zero 

frequency because no DC transmission through a hybrid 
transformer is possible.

n The PSD of the transmitted signal should be low at high 
frequencies because
o transmission attenuation in a twisted pair is most 

severe at high frequency;
o crosstalk due to capacitive coupling between 

adjacent twisted pairs increases dramatically at high 
frequency (recall that the impedance of a capacitor is 
inversely proportional to frequency).
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Digital Subscriber Lines (DSL)

o Possible candidates for line codes that are suitable for DSL
n Manchester code

o Zero DC component but large spectrum at high 
frequency so it is vulnerable to NEXT and ISI.

n Bipolar return to zero (BRZ) or Alternate mark 
inversion (AMI) code
o Successive 1’s are represented alternately by positive 

and negative but equal levels, and 0 is represented by 
a zero level.

o Zero DC component. Its NEXT and ISI performance 
is slightly inferior to the modified duobinary code on 
all digital subscriber loops.
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Digital Subscriber Lines (DSL)
o Possible candidates for line codes that are suitable for DSL

n Modified duobinary code
o Of no DC component and moderately spectrally efficient. 

However, its robustness against NEXT and ISI is about 2 
to 3 dB poorer than that of (2B1Q) block codes on worst-
case subscriber lines.

n 2B1Q code
o Two binary bits encoded into one quaternary symbol 

(four-level PAM signal).
o Zero DC component, and offers the best performance 

among all the codes introduced. So, it is adopted as the 
standard as the North American standard for DSL.
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Digital Subscriber Lines (DSL)

o Possible candidates for line codes that are suitable for DSL
n 2B1Q code

0     0 1     1      1     0 0     1      1     1

T=2Tb

Dibit Amplitude
00 -3
01 -1
11 +1
10 +3
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Digital Subscriber Lines (DSL)

n 2B1Q code (cont.)
o With 2B1Q line coding, adaptive equalizer and echo 

cancellation, it is possible to achieve BER = 10–7

operating full duplex at 160 kb/s.
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Asymmetric Digital Subscriber Lines

o ADSL is targeted to simultaneously support three services 
at a single twisted-wire pair
n Data transmission downpstream at 9 Mbps
n Data transmission upstream at 1Mpbs
n Plain old telephone service (POTS)

o Some notes
n It is named asymmetric because the downstream bit rate 

is much higher than the upstream bit rate.
n The actually achievable bit rates depend on the length of 

the twisted pair used to do the transmission.
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Asymmetric Digital Subscriber Lines

o Frequency-division multiplexing (FDM) technique is used 
to combine analog voice and DSL data.

o Upstream and downstream data transmission are placed in 
different frequency band to avoid crosstalk.

PSTN Upstream Downstream

0-4
25.875

-138 138-1104

KHz
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Asymmetric Digital Subscriber Lines

o Various applications can be applied to asymmetric 
transmissions, such as video-on-demand (VoD).
n For example

o Downstream = 1.544 Mbps (DS1) for video data
o Upstream = 160 kbps for real-time control 

commands.
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Optimal Linear Receiver

o Zero-forcing equalizer
n A receiver design is to use a zero-forcing equalizer

followed by a decision-making device.
n The design objective of a zero-forcing equalizer is to 

force the ISI to “zero” at all sampling instances t = kTb
for k ¹ 0, provided that “the channel noise w(t) is zero.”
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Optimal Linear Receiver

o Zero-forcing equalizer (cont.)
n This reduces to Nyquist’s criterion.
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Optimal Linear Receiver

o Zero-forcing equalizer (cont.)
n A serious consequence of the ignorance of w(t) in the 

design of a zero-forcing equalizer is the performance 
degradation due to noise enhancement.
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Optimal Linear Receiver

o Example of noise enhancement
n Suppose that the receiver filter is a tapped-delay-line 

equalizer, which is of the form

n Assume ideally that G(f) = 1. Hence, Nyquist’s criterion 
becomes:
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The above c(t) can successfully remove ISI, provided w(t) = 0.
Now, add the additive white Gaussian noise w(t), which also 
passes the filter c(t).

[ ] 22

0

22

0

2

0 3
42VarVar               

:becomes  then variancenoise sampled The

ww
k

k
w

k
knk

k
knk wcwc sss >===úû

ù
êë

é ååå
¥

=

-
¥

=
-

¥

=
-

At any time instance nTb, the sampled noise becomes� �

��
w(�)c(nTb � �)d� =

� �

��
w(�)

��

k=0

ck�(nTb � kTb � �)d�

=
��

k=0

ck

� �

��
w(�)�(nTb � kTb � �)d� =

��

k=0

ckw(nTb � kTb) =
��

k=0

ckwn�k

PAM
transmit

filter
g(t)

receive
filter
c(t) 𝜆

0
1

{bk} {ak} s(t) x0(t) x(t) y(t) y(ti)channel
h(t)

w(t)



o An easier way to interpret the noise enhancement phenomenon
n Nyquist’s criterion requires that:

n A sufficient condition for Nyquist’s criterion is that:

n When H(f) is very small at some frequency range, C(f) has 
to be very large at the same frequency range in order to 
“equalize” the spectrum.

n Thus, the noise spectrum SW(f)|C(f)|2 after passing through 
C(f) will be “enhanced.” 
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Optimal Linear Receiver

o To alleviate noise enhancement phenomenon, it is better to 
simultaneously consider the ISI and channel noise.

o An approach of this kind is to use the mean-square error 
criterion, and find a balanced solution to the problem of 
reducing the effects of both channel noise and intersymbol 
interference.
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:minimize  to wishes thencriterionerror  squared mean The
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Assume white w(t) with PSD N0/2.

E[ni
2 ]= c(τ1)c(τ2 )E[w(iTb −τ1)w(iTb −τ2 )]dτ1 dτ2−∞
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3rd term

.1][ 2 =iaEFor i.i.d. {ak} where ak = ± 1,

4th and 5th term
By independence of {ak} and w(t), and zero mean of ni, 
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E[�iai] =
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Substitute all six terms into Ji.

where the last step follows from the observation that E[�iai] must be a real
number, and Cr(f) and Ci(f) are respectively the real and imaginary parts of
C(f), i.e., C(f) = Cr(f) + ıCi(f), and similarly Q(f) = Qr(f) + ıQi(f).
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A(f) =
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⇒C( f ) = Q*( f )
Sq ( f )+ N0 / 2

   for MMSE equalizer.

An equalizer that is so designed is referred to as the minimum-
mean square error (MMSE) equalizer.
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MMSE Equalizer

o Summary
n The MMSE equalizer can be viewed as the 

concatenation of two filters:
o A matched filter Q*(f) to Q(f) = G(f)H(f)
o An equalizer whose frequency response is the 

inverse of Sq(f) + N0/2.
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MMSE Equalizer

o Property of Sq(f)

n The text wrote that                                             , which 

is periodic with period 1/Tb.  This implies that Rq(t) 
consists of a series of pulse train with width Tb, which is 
not entirely true.
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Realization of MMSE Equalizer
o One can approximate 1/[Sq(f) + N0/2] by a periodic function  

with:

o Since Qq(f) =                               is periodic with period 1/Tb, 
we obtain by Fourier series that
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Realization of MMSE Equalizer

o We can approximate Qq(f) by its main 2N+1 terms as:
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One can therefore approximate 1/[Sq(f) + N0/2] by a transversal tapped-delay-line equalizer. 
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Realization of MMSE Equalizer

o We can approximate Qq(f) by its main 2N+1 terms as:
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One can therefore approximate 1/[Sq(f) + N0/2] by a transversal tapped-delay-line equalizer. 
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Realization of MMSE Equalizer

o Final notes
n In a real-life telecommunication environment, the 

channel is usually time-varying.
n Therefore, an adaptive receiver that provides the 

adaptive realization of both the matched filter and the 
equalizer in a combined manner is usually necessary.
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Adaptive Equalization
o The equalizer is adjusted under the guidance of a training 

sequence transmitted through the channel.
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Adaptive Equalization

o Least-mean-square (LMS) algorithm

o Design objective
n To find the filter coefficients w0, w1, …, wN so as to 

minimize index of performance J:

å
=

--=-=
N

k
k knxwndnyndne

0

][][][][][

][2 neJ =



© Po-Ning Chen@ece.nctu 8-122

o To minimize J, we should update wi toward the bottom of 
the J-bowel.

n So, when gi > 0, wi should be decreased.
n On the contrary, wi should be increased if gi < 0.
n Hence, we may define the update rule as:

where µ is a chosen constant step size, and ½ is 
included only for convenience of analysis.
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Adaptive Equalization
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Adaptive Equalization

o Some notes on LMS algorithm
n There is no guarantee that the algorithm converges to a 

local minimum (could converge to a saddle point).
n There is even no guarantee that the algorithm converges.

) Repeat
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Adaptive Equalization

o Some notes on LMS algorithm (cont.)
n If µ is too large, high excess mean-square error may 

occur.
n If µ is too small, a slow rate of convergence may arise.
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Operation of the Equalizer

o Two modes of operations for adaptive equalizer
n Training mode
n Decision-directed mode
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Decision-Directed Mode

o In normal operation, the decisions made by the receiver are 
correct with high probability.

o Under such premise, we can use the previous decisions to 
calibrate or track the tap coefficients.

o In this mode,
n if µ is too large, high excess mean-square error may 

occur.
n if µ is too small, a too-slow tracking may arise.
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Eye Patterns

o A good tool to examine ISI is the eye pattern.
o Eye pattern: The synchronized superposition of all possible 

realizations of the signal viewed within a particular 
signaling interval.
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Eye Patterns

o The eye pattern for pulse shaping function p(t) that is half-cycle sine 
wave with duration Tb, and with error-free        transmission.
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o The eye pattern for pulse shaping function p(t) that is half-cycle sine 
wave with duration 2Tb, and with error-free        transmission.
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Eye Patterns
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o The eye pattern for 
error-free       
transmission but 
insufficient transmission 
bandwidth.
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Eye Patterns
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Eye Patterns

o The eye pattern for 
error-free 4PAM 
transmission but 
insufficient 
transmission bandwidth.
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Summary

o ISI and background noise
o Matched filter
o Nyquist’s criterion (Raised cosine spectrum)
o Correlative level coding (Duobinary and modified 

duobinary)
o DSL and ADSL
o Optimal linear receiver and MMSE equalizer
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