Part 6 Pulse Modulation,
Quantization and Line Coding

analog modulation

(continuous in both time and value)
- pulse modulation

(discrete 1n time but could be continuous 1n value)
- digital modulation

(discrete 1n both time and value)



Pulse Modulation

Families of pulse modulation
B Analog pulse modulation

A periodic pulse train 1s used as carriers (similar to
sinusoidal carriers)

Some characteristic feature of each pulse, such as
amplitude, duration, or position, 1s varied in a
continuous matter in accordance with the sampled
message signal.

B Digital pulse modulation

Some characteristic feature of carriers is varied in a
digital manner in accordance with the sampled,
digitized message signal.
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Sampling Theorem

T, sampling period
g;(t)=Y gnT)5(t—nT)) f.=1/T, sampling rate

Nn=—00

G,(f) = Y g(nT)[” 5(—nT)exp(- 2t = Y g(nT)exp(~ j2mT f)

n=—00 =
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Sampling Theorem

Given: G,(f)= ig(nTS)exp(— j27mTSf)

Claim: G,(f)=f iG(f—mfs)

G(f) Gs(f)

/ —2If,. —f w0 W f 2f g

W 0 W

In this figure, f; > 2W.
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Spectrum of Sampled Signal

Proof:
Let L(f)=f. Z G(f —mf ), and notice that it is periodic with period f .

— By Fourier Series Expansion,

L(f) = Zc exp( jZE% f], where ¢ = % jf;:ZL( f)exp(— j27r% fjdf

1 prr2 27
=6 =7 jfs/zaf)exp(— J Tfjdf
= jsz( >G(f - mﬁ)) exp(— jZTﬂnfjdf
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N 27n
c, = 2 _fs/zG(f—me)eXp(—]Tf)df, s=f-mf
N 27n
- mzw f o G(s)exp(— ]TS(S+ m]g))ds
= i ffs/z_mfs G(s)exp —j@s ds
L J L2, f.
= foo G(S)exp(—jzﬂs)ds
N f;
= g(=nT))

= L(f) = ig(—nﬂ)exp[ﬁﬂ%f]

n=—0a0 B

— m;Og(st)eXp(— j2mmT f), where m = —n. Q.ED.
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First Important Conclusion from Sampling

G(f) Gs(f)
In this figure, f; > 2W.

W 0 I

G(0
(Ww () ﬁ ?\ﬁ ()
v —2If —f w0 w f 2f /

Uniform sampling at the time domain results 1n a periodic
spectrum with a period equal to the sampling rate.

8:(1)= Y g(T)8(t-nT) = G,(f) = f. X.G(f =)

n=—00
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Reconstruction from Sampling

Take f, > 2W.

Gs(f)

Ideal lowpass filter

G(F) = = Gs(f) for |f] < W.

fs
/
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Aliasing due to Sampling

A

N G(f)
/T

VARN

»

\/

o <f o f. o
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Second Important Conclusion from Sampling

A band-limited signal of finite energy with bandwidth W

can be completely described by its samples of sampling rate
> 2W.

B 2V 1s commonly referred to as the Nyquist rate.

How to reconstruct a band-limited signal from its samples?
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o) = [ " G

B/2 |
- / G(f)e’*™/tdf (Because B > 2W)
_B/2

B/2 1 oo ) )
— / . Z g(nTS)e—g27rnTsf 6_727rftdf
—B/2 fs

1

B
- fs 2

(Because G5(f) = i g(nTs)e 7?11 and G(f)

n=—oo

Gs(f) for [f|<W <

1 00 B/2

_ gnTs/ ejZWf(t—nTS)df
fs Z ( ) —B/2

n=—oo

= )  g(nT.)- BT,sinc(B(t — nTy))

n=—oo

As aresult, BT,sinc(B(t — nT,)) plays the role of an
interpolation function.
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Band-Unlimited Signals

The signal encountered 1n practice 1s often not strictly band-
limited.

Hence, there 1s always “aliasing” after sampling.

To combat the effects of aliasing, a low-pass anti-aliasing
filter i1s used to attenuate the frequency components outside
[—1./2, 1./2].

In this case, the signal after passing the anti-aliasing filter is
often treated as bandlimited with bandwidth W =1 /2.
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Interpolation in terms of Filtering

Observe that

g® = Y gTy) BT, sinc(B(t — nT,))

n=—oo

is indeed a convolution between g¢) and BT,sinc(Bt).

gs(t) x BT sinc(Bt) /_00 95(7) - BTssinc(B(t — 7))dr

— /_Oo ( Z g(nTy) - 6(1 — nTs)) BT, sinc(B(t — 7))dt

n=-—oo

= Z g9(nTs) /_00 O(17 — nTs)BTssinc(B(t — 7))dr

n=—oo
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(Continue from the previous slide.)

(00]

gs(t) * BT,sinc(Bt) = z g(nT) BT, sinc(B(t — nTy))

n=—oo

= Reconstruction (interpolation) filter h(t) = BT,sinc(Bt)

= H(f) = Tsrect(g)

»

HY) 1 .
g;5(1) ° g(?)

\ 4
v

\4

N| S
N| &
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Physical Realization of Reconstruction Filter

An 1deal lowpass filter 1s not physically realizable.

Instead, we can use an anti-aliasing filter of bandwidth W7,
and use a sampling rate f, > 2W. Then, the spectrum of a
reconstruction filter can be shaped like:

o NG
[ / )
1 \
I \ \
r \ \
AN A
_f T 0 T f
f AW fo—W
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Signal spectrum with bandwidth W

Signal spectrum after
sampling with f, > 2W

The physically realizable
reconstruction filter

-W 0 w
P Ga(h)
I \
I , \
I \
I / \
] / \ \
I / \
W a ,
- f 8 T 0 f 8
W fo—W

9s (t) * hrelizable (t) — GS (f)Hrealizable(f) = G6 (f)Hideal (f) = 9s (t) * hideal(t)
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Pulse-Amplitude Modulation (PAM)

PAM

B The amplitude of regularly spaced pulses is varied in
proportion to the corresponding sample values of a
continuous message signal.

Notably, the top of each
pulse is maintained flat.

r | | - So, this is PAM, not
"" T, | }“/ | natural-sampling for

i g ) I [ which the message
signal is directly
multiplied by a periodic
train of rectangular
pulses.
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Pulse-Amplitude Modulation (PAM)

The operation of generating a PAM modulated signal 1s
often referred to as “sample and hold.”

This “sample and hold” process can also be analyzed
through “filtering technique.”

s(t)= > m(nT,h(t - nT,) = m,(1) * (1)

-

1, O<t<T )
where h(1)=11/2, t=0,6=T andmy(t)= ) m(nT)5(t—nT)).

n=—00

| 0, otherwise
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Pulse-Amplitude Modulation (PAM)

By taking “filtering” standpoint, the spectrum of S(f) can be
derived as:

S(f)=M,()H(f)
- (fs S M(f —kﬂ)jH(f)

k=—o0

~ . Y MU= KH()

B M(f) 1s the message signal with bandwidth W (or having
experienced an anti-aliasing filter of bandwidth 7).

m >0
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Pulse-Amplitude Modulation (PAM)
(over the range [-W , W ]of M(f))

rerea Ga(f)
Lo/ 0
TS AU DAL
I, /1 \
W NVAP

—f.q_.S/T\ - 0 Vfg'ii‘;“,f’ " H(f)

Reconstruction

s(?) | filter

Equalizer [——— m(%)

S() = 1. S M(f ~KH(S)

= LM(DH )+ | DB )

Reconstruction Filter Equalizer

- M(HH) — M(f)
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Feasibility of Equalizer Filter

The distortion of M(f) is due to M(f)H(f),

(1, O0<t<T
where (1) =41/2, t=0,t=T or H(f)=Tsinc(fT)exp(— j=T)

| 0, otherwise

-

1 1 |
= E(f)=1H(f) Tsinc( fT)eXp(me), fEW

0, otherwise

.

Question: Is the above E(f) feasible or realizable?
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1 1 E(f)
—>—=f >2W. N
T T; d-s
| st | E.g.,T=1, W=1/8.
~ , <W
EH={Tsincry
0, otherwise :

This gives an equalizer:

i(1) N 0(t) | 5(t+T/2)or || o(t)
E(S) | exp(jnfT) '

A 4

A

A lowpeiss filter non-realizable! Why?

Because "o,(f)=0 fort<0" does not imply "o(¢)=0 for¢<0."
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Feasibility of Equalizer Filter

Causal

i(¢) o(?)

h(t)

B A reasonable assumption for a feasible linear filter
system 1s that:

B A necessary and sufficient condition for the above
assumption to hold 1s that 4(¢) = 0 for # < 0.
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Aperture Effect

The distortion of M(f) due to M(f)H(f)

(1, O0<t<T

where h(f)=41/2, t=0,t=T or H(f)=Tsinc(fT )exp(— j=T)
0, otherwise

\

1s very similar to the distortion caused by the finite size of
the scanning aperture in television. So, it is named the
aperture effect.

If /T, = 0.1, the amplitude distortion is less than 0.5%;
hence, the equalizer may not be necessary.
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( 1

E(f)=1 Tsinc(/T)’

0,

\

S

otherwise

and

1

1

—>—=f >2W.

T

T

N

-

1

\

0,

= E(f)=+ sinc(f)’

| £ < 0.04

otherwise

for T=1,7 =10,W =0.04

E(f)

/

0.8 |
0.6 |
0.4 |

0.2 |

1.00264

-0.06

-0.04

-0.02

0.02

0.04

0.06
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Pulse-Amplitude Modulation

Final notes on PAM

B PAM is rather stringent in its system requirement, such
as short duration of pulse.

B Also, the noise performance of PAM may not be
sufficient for long distance transmission.

B Accordingly, PAM is often used as a mean of message
processing for time-division multiplexing, from which
conversion to some other form of pulse modulation 1s

subsequently made. Details will be discussed in Part 7
(Section 3.9).
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Other Forms of Pulse Modulation

Pulse-Duration Modulation (or Pulse-Width Modulation)

B Samples of the message signal are used to vary the
duration of the pulses.

Pulse-Position Modulation

B The position of a pulse relative to 1ts unmodulated time
of occurrence 1s varied in accordance with the message
signal.
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0.8 [

0.6 1
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PDM and PPM

Comparisons between PDM and PPM

B PPM i1s more power efficient because excessive pulse
duration consumes considerable power.

Final note

B |t is expected that PPM 1s immune to additive noise,
since additive noise only perturbs the amplitude of the
pulses rather than the positions.

B However, since the pulse cannot be made perfectly
rectangular in practice (namely, there exists a non-zero
transition time in pulse edge), the detection of pulse
positions 1s somehow still affected by additive noise.
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2
. . B ,Carson
See Slide 5-46 figure-of-metric x D? = ( SRasRon 1)

Trade-Off between Bandwidth and Performance

PPM seems to be a better form for analog pulse modulation
from noise performance standpoint. However, its noise
performance is very similar to (analog) FM modulation as:

B ts figure of merit 1s proportional to the square of
transmission bandwidth (i.e., 1/7) normalized with

respect to the message bandwidth (7). (l.e.,B, =B, /W)

B There exists a threshold effect as SNR 1is reduced.

Question: Can we do better than the “square” law 1n figure-
of-merit improvement? Answer: Yes, by means of Digital
Communication, we can realize an “exponential” law (with

respect to error rates)!
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Quantization

Transform the continuous-amplitude m = m(nT,) to discrete
approximate amplitude v = v(nT))

Quantizer

()

Such a discrete approximate 1s adequately good in the sense
that any human ear or eye can detect only finite intensity

differences.
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Quantization

We may drop the time instance n7 for convenience, when
the quantization process 1s memoryless and instantaneous
(hence, the quantization at time »n7 1s not affected by earlier
or later samples of the message signal.)

Types of quantization
B Uniform

Quantization step sizes are of equal length.
B Non-uniform

Quantization step sizes are not of equal length.
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An alternative classification of quantization
B Midtread
B Midrise

4 — routput

~output

4L [ [ [ i
L |
-4 2 0 2 4 4
-4 2

______________________________________ mmput
midrise
0 2 4
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Quantization Noise

Uniform midtread
quantizer in the
previous slide

m(t) = 3sin(m = 1)

m(t) - g(m(®) o/

-0.5 +
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Quantization Noise

Define the quantization noise tobe Q=M — V = M — g(M),
where g( ) 1s the quantizer.

Let the message M be uniformly distributed in (—m1,,,,y,
Myax)- S0, M has zero mean.

Assume g( ) 1s symmetric and of midrise type; then, V=
g(M) also has zero-mean, and so does Q=M — V.

7

Then, the step size of the quantizer is given by: Example.

n/lmax=1 add Ak A=l
2mmax ==Hs=: 2

L L=4 —>

A=

where L 1s the total number of representation levels.
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Quantization Noise

Assume that g( ) assigns the midpoint of each step interval
to be the representation level. Then,

V=M-MmodA + % A
= Q=M-V=MmodA — 2. 0, qg<=7
A g 1 A A
PriO<gi=Pri(M modA)——<g;=1—+—, ——=<g<—
o= a)=rrl(modn)-Fqb =14l ~Ssqed
A
1, > —
1 2
Example. o
| A A
df f,(¢)=—13——=<¢qg<— Sl B 1
pdf £, (q) = { <4 2} O
L=4 >
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Quantization Noise 1%

M —Q

So, the output signal-to-noise ratio 1s equal to:

SR - FP P _ P _3P,

ety Lo 1(2m, Y m
-A/2 A 12 12 L

The transmission bandwidth of a quantization system 1s
conceptually proportional to the number of bits required per

sample, 1.e., R = log,(L).
We then conclude that SNR, oc 4%, which increases
exponentially with transmission bandwidth.
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Sinusoidal Modulating Signal

Let m(t) = A,, cos(2xf,t). Then

2

A

= SNRp = UM/ 12 - 34R — 10log,,(3/2) + R - 101og,,(4) dB ~ (1.8 + 6R) dB

Az,
L R SNR, (dB)
32 5 31.8
64 6 37.8
128 7 43.8

256 8 49.8

* Note that in this example, we assume a full-load quantizer, in
which no quantization loss 1s encountered due to saturation.
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Quantization Noise

In the previous analysis of quantization error, we assume

the quantizer assigns the mid-point of each step interval to
be the representative level.

Questions:

B Can the power of quantization noise be further reduced
by adjusting the representative levels?

B Can the power of quantization noise be further reduced
by adopting a non-uniform quantizer?
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Optimality of Scalar Quantizers

Representation
level Vi V2 Vi1 VL
Partitions I I, .. I; I;

L
UI =4, 4) Notably, interval I, may not be
k=l a “consecutive” single interval.

Let d(m, v;) be the distortion by representing m by v;,.

Goal: To find {/;} and {v;} such that the average distortion
D = E[d(M, g(M))] 1s minimized.
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Optimality of Scalar Quantizers

Solution:

L
minmin D = minmiand(m,vk)fM (m)dm
b Uy} el e} =1

(I) For fixed {v;}, determine the optimal {/.}.
(II) For fixed {/;}, determine the optimal {v,}.

(D) If d(m, vy) = d(m, v;), then m should be assigned to J;
rather than /..

=1, ={me[~A4,4):d(m,v,)<d(m,v,)forall 1< j < L|
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(II) For fixed {/;}, determine the optimal {v,}.

mmZJ‘d(m v,) [, (m)dm

Since —[i j d(m,v,) fM(m)dmj — a%[ ]j d(m,v,) fM(m)de

l]k

od(m,v,)
:j ov

1. J

J

Sy (m)dm

a necessary condition for the optimal v, 1s:
j od(m,v,)
oV

I j

f,, (m)dm = 0.

Lloyd-Max algorithm i1s to repetitively apply (I) and (II)
for the search of the optimal quantizer.
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Mean-Square Distortion

d(m, vy) = (m — Vk)2

(D)1, =tme[-A4,4): (m—v,)* <(m—v ) forall1 < j< L}

should be a consecutive interval.

Representation
level V1 e Vi-1 2
Partitions 1, I, I Iy
I | | I | |
m1=~/1 m», ms mr» mr_q mp;= A
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Mean-Square Distortion

(II) A necessary condition for the optimal v is :

[ 2 st = -2 [ ) sty =0

m; Ov; m,

J, mt (mydm
j S (m)dm

= V.

=E[M|m,<M<m ]

7, 0pt1ma1

Exercise: What is the best {m;} and {v;} if M is uniformly
distributed over [-4,4).

XL: Tk ( My + Mgy )
Hint: minmin D = — min dm
{11} {vr} A {mx} — )
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Pulse-Code Modulation (PCM)

Continuous Lowpass
time analog — (anti-aliasing)
signal filter
Reconstructed

analog signal

sampler

BN

Quantizer

PCM
Encoder

Reconstruction
filter

PCM
Decoder

| EJ
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Pulse-Code Modulation (PCM)

Non-uniform quantizers used for telecommunication (ITU-
TG.711)

B [TU-T G.711: Pulse Code Modulation (PCM) of Voice
Frequencies (1972)

It consists of two laws: A-law (mainly used in
Europe) and p-law (mainly used in US and Japan)

B This design helps to protect weak signal, which occurs
more frequently in, say, human voice.
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Quantization Laws

Quantization Laws
B A-law
13-bit uniformly quantized

Conversion to 8-bit code

B u-law

14-bit uniformly quantized

Conversion to 8-bit code.

B These two are referred to as compression laws since
they use 8-bit to (lossily) represent 13-(or 14-)bit
information.
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A-law 1in G.711

A-law (A=87.6)

-

A < |
1+log(A4) " ] < A
P (1) = L+log(d|m])] 1
sgn(m) S , —<|m|<
\ 1+1log(A) A

Linear mapping

Logarithmic mapping
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FA-laW (m) 1

08 |

0.6 + ]

0.2+ _

output
o
1
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8 bit PCM code A piecewise linear approximation to the law.
128

112
96 | —

80

64 . [N
FA—law \”/l)

48 ¢

32 ¢ _

output

64 | 256 7
-80 ¢ ,/ 12

96 | rd
112 ¢ — -1

2
256
-1 28 1 I L1

-4096 -2048 -1024-512 0 512 1024 2048 4096

input

- .\
N 4= )

¢

13 bit uniform quantization
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Compressor of A-law (assume nonnegative m)

Input Values Compressed Code Word

Chord Step

Bitsell 1098703543210 Bits: 6 5432.10

0 000000abcdx 000abcd

0 000001abcdx 00labecd

0 000:0.1 abeidxx 010abcd

0 0001 abcdxx X 0Ollabecd

U 0U0UlabcadxxxXx ] 00abcd

U U0labedXxXxXx XX 1 01l abcd

0 labcdxxxXx XX ] 10abcd

l abedxXXXXXX l111abcd
E.g. (3968),,—> (1111,1000,0000),—>(111,1111),—>(127) 5
E.g. (2176) ) —>(1000,1000,0000),——>(111,0001),—>(113) ,,
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Expander of A-law (assume nonnegative m)

Compressed Code Word | Output Values

Chord Step

Bits:6 5432110 Bits:11 109876 5432110
000abcd D000000abec
00labececd 0000001 abe
01 0abcecd D00001labececd
Ol labcecd 00001 abcecdl
l00abececd 000l abcdlO0
l0labcd 0O0labcdl 0O
l10abcd Olabcdl1000
l1labcd labcdl1000O0

oo oo — A A
OO OO O -

E.g. (113), — (111,0001), — (1000,1100,0000), — (2240),,

In other words, =

(1001,0000,0000), +(1000,1000,0000),  (2304),, +(2176),,

2

2

=(2240),,
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u-law i G.711

u-law (1= 255)

log(1+ ,u‘m‘)
1+log(u)

F, 1 (m) =sgn(m) for ‘m‘ <1I.

M [t 1s approximately linear at low m.

B [t 1s approximately logarithmic at large m.
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F,u-law(m) 1

0.8

0.6

0.4

0.2
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8 bit PCM code A piecewise linear approximation to the law.
128
112 ¢ _

96
50 ~ _
ot | / -

48 T F . m) .
32

6 | _

b

LS

I\S(I(3’ PR

112t 444 1
47

-8159 4063  -2015-991 0 991 2015 4063 8159
14 bit uniform quantization (213 = 8192)

[
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Compressor of p-law (assume nonnegative m)

Raised Input Values

Compressed Code Word

Chord Step

Bits:l2 11 109876543210 Bits: 6 543210
0 0 000001 abcdx 000abcd

O 0 00001 abecdxx 00labcd

0 0 0001l abcecdxx X 0l Oabecd

0 0 00labcdxxxx Ol labecd

0 O 0]l abecdxxxxx ] 00abcd

0 O 1labecdXXX XXX ] 0Ol abcd

O 1 abcdXxXxXXXXXX ] 10abcd

. @4 e dXXXX XXX 1 11 abeid

Raised Input = Input + (33) ;) = Input + 21H

(For negative m, the raised input becomes (input — 33).)
An additional 7th bit 1s used to indicate whether the input signal is positive

(1) or negative (0).
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Expander of 1-law (assume nonnegative m)

Compressed Code Word

Rairsed Output Values

Chord Step

Bits:6 543210 pirts:l2 11 109876545210
000abcd 0 0000001 abcecdl
00l abececd 0 0 0000OIabecdlO0O
0l O0Oabecd 0 0 000OlabcecdlO0O0
Ol labecd 0 0 00labcdlO0OO0O0
] 00abcd 0 0O 0labecdIlOO0O0O0
] 0labcd 0 0O 1abcdIlIO0O0O0O0O0
] 10abcd 0 1 abcdIlIO0O000O0O0
] 11 abcd ] a bcdI1I 0000000

Output = Raised QOutput — 33

Note that the combination of a compressor and an expander 1s

called a compander.
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Comparison of 4-law and u-law specified in G.711.

1 ! ! T T T T T

0.8
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Coding

After the quantizer provides a symbol, representing one of
256 possible levels (8 bits of information) at each sampled
time, the encoder will transform the symbol (or several
symbols) into a code character (or code word) that 1s
suitable for transmission over a noisy channel.

Example. Binary code.

11100100 77T 1T ) O=change

1 1 1 0 0 1 0 0 l=unchange
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Coding

Example. Ternary code (Pseudo-binary code).

00011011 -ACABBCBB

Through the help of coding, the receiver may be able to
detect (or even correct) the transmission errors due to noise.
For example, it 1s impossible to receive ABABBABB, since

this 1s not a legitimate code word (character).
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Coding

Example of error correcting code : Three-times repetition
code (to protect Bluetooth packet header).

00011011— 000,000,000,111,111,000,111,111

Then, the so-called majority law can be applied at the
recerver to correct one-bit error.

Channel (error correcting) codes are designed to
compensate the channel noise, while line codes are simply
used as the electrical representation of a binary data stream
over the electrical line.
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Line Codes

(a) Unipolar nonreturn-to-zero
(NRZ) signaling

(b) Polar nonreturn-to-zero (NRZ)
signaling

(c) Unipolar return-to-zero (RZ)
signaling

(d) Bipolar return-to-zero (BRZ)
signaling

(e) Split-phase (Manchester code)
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Derivation of PSD

From Slide 2-30, we obtain that the general PSD formula is:

PSD = lim—— E[S(/)S;, (/)] where s,, (1) = 5(0)- 1{| < T},

For a line coded signal, s(t) = Z ang(t—nlTy), where g(t) = 0 outside [0, T},).

n=——oo
o

Hence, S(f) = G(f) Z ane 2™ "o and Sonr (f) = G(f) z_: ape I2m Ty,

n——0o0 n=—N
o

= PSD = limy o0 57 |G (f ( Z Z Elana*, Je~ 727/ (n= m)Tb>

n=—oo m=—N
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For i.i.d. {an}, = (

~°2NT,

1
=G(I hmm(

m=—N n=—w

=G(f)f hmm(

m=—N k=

=G(f)f F( _Z% (k)e™ W"T”j

PSD = lim b [G(NI [ i > Ela,a, ]ejz,ﬂ,,,mmj
Z i(ﬁa (n— m)efzmmmj
Z i¢ (k)ejzzy‘kn,j

> Galk)

k=—oc0

(i.i.d.

= independent and identically distributed)

j27Tfka> _

(See Slide 6-4.) =

0?2 2 &
a a —712w fkTY
T, T k_z_:ooe
2
U

o( k/T;
Tb k_z_oo (f —k/Ty)
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PSD of Line Codes

Unipolar nonreturn-to-zero (NRZ) signaling
B Also named on-off signaling.

B Disadvantage: Waste of power due to the non-zero-

mean nature (i.e., PSD does not approach zero at zero

frequency). ({an y _ 1szero/onei.i.d.,

s(t) = Zang(t —nT,), where - A, 0<t<T,
— g(t) = .
0, otherwise
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PSD of Line Codes

B PSD of Unipolar NRZ

PSDu.NRz

k=—o0
2 2 o
22 5o 2 9 | Ha
oy Lo N S(f - kT,
ATy sinc” (fTy) (Tb + T2 2 o(f —k/ b))
;- sinc (fTy) (1—|— Tbk_g_ 5(f—k/Tb))
ATy,

e (113) (14 7200 )
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PSD of Line Codes ]

Polar nonreturn-to-zero (NRZ) signaling

B The previous PSD of Unipolar NRZ suggests that a
zero-mean data sequence 1s preferred.

{a )" is £1 iid,
4, 0<¢t<T7T,

0, otherwise

N=a g(t- T.), wh
s(1) n;oang( n )Were<g(t):{

\

2 2 o0
PSDpxrz = |G| 22+ 52 S 6(f — k/Ty)
T, T§ ~—.
= A*Tysinc?(f1;)
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PSD of Line Codes

Unipolar return-to-zero (RZ) signaling

B An attractive feature of this line code is the presence of
delta functions at f=-1/T}, 0, 1/7} 1n the PSD, which
can be used for bit-timing recovery at the receiver.

B Disadvantage: It requires 3dB more power than polar
return-to-zero signaling.

-

{a } __ 1szero/onel.i.d.,

s(t) = E a g(t—nT,), where - A, 0<t<T,/2
— g(1) = .
\ 0, otherwise
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PSD of Line Codes

B PSD of Unipolar RZ

2 2 S
L 2 Oq Ha
PSDu.rz = |G(f) (Tb + T—kaZE_OO(S f

A2T2 T, 2
— 1 b sinc? (%) (;Z +
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PSD of Line Codes

Bipolar return-to-zero (BRZ) signaling

B Also named alternate mark inversion (AMI) signaling

B No DC component and relatively insignificant low-
frequency components in PSD.

s(t) = iang(t —nT,), where g(t) =

n=—00

A, 0<¢t<T, /2
0, otherwise

0 1 0 0 1
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PSD of Line Codes

B PSD of BRZ
{a,} 1s no longer 1.1.d.
Ela,]= (0) + (= 1)—+(+1)

1

Ela n n+1] ( 1)___2

Ela,a,,]= (1)(1)—+(1)( 1)—+( 1)(1)—+( D(= 1)——

1_1
42

Ela ]1=0 for m>1.
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PSD of Line Codes

1 = |
PSDgrz = |G(f)I* = ( ) asa(k)emf”b)
b =—00
AQTb2 o ( [Th 1 1 . 1 |
— ' SO | 2Ty 4~ —i27fTY
1 sinc ( 5 ) T ( 46 + 5 46
A2T? T, 1 /1 1
— . b sinc? (%) : Tb <§ ~5 COS(27TfTb)>
AT, fT,
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PSD of Line Codes

Split-phase (Manchester code)

B This signaling suppressed the DC component, and has
relatively insignificant low-frequency components,
regardless of the signal statistics.

B Notably, for P-NRZ and BRZ, the DC component 1s
suppressed only when the signal has the right statistics.

{a V" is +1iid.,

- (A4, 0<t<T /2
s(t)= ) a,g(t—nT,), where b
n=—co g(t)y=1—-4, T,/2<t<T,

0, otherwise

_ .
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PSD of Line Codes

B PSD of Manchester code

PSD Manchester
2

= 1G()P (;‘;+5§ > 5(f—k/Tb))

k=—o0

T T 2
= A*T{sinc? (%) sin” (WJ; b) (;,—: + % o(f — k/Tb))

b k=—oc0
T w1
42TbSi :2 (f b) si 2 ( f b)
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Let 7,=1, and adjust 4 such that the total power of each line
code 1s 1. This gives a fair comparison among line codes.

1 1

power= 5 PSDy.nrz = §SiHC2(f) T 55(f) A=V2

H
power=1 PSDp_ngrz = sinc (f) A=1
power= = PSDy.pz = 1smc2 =~ | + ! i sinc? r o(f — k)

i% o 4 2 4 k=—o0

B A=2
i Y

power=1 PSDpgry = sinc § S1n (7Tf) A=2
power=1  PSDwanchester = sinc” (g) sin” (W_Qf) A=1
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U-NRZ
P-NRZ
U-RZ ——
BRZ
0.8 - Manchester - i
0.6 - |
0.4} ]
A
0.2} |
0 2
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Summary

Sampling — transform analog waveform to discrete-time
continuous wave

B Nyquist rate

Quantization — transform discrete-time continuous wave to
discrete data.

B Human can only detect finite intensity difference.
PAM, PDM and PPM
Line coding and 1ts PSD
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