Part 2 Fourier Analysis and Power
Spectrum Density



Fourier Analysis

1 Fourier Transform Pair

Fourier Transform of g(7): G(f)= f g(t)exp(—j2rft)dt
Inverse Fourier Transform of g(¢): g(¢) = j_oo G(f)exp(j2rt)df

1 Fourier Transform G(f) 1s the (frequency)
spectrum content of a signal g(7).

B |G(f)| magnitude spectrum
B arg{G(f)} phase spectrum
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Dirichlet’s Condition

1 Dirichlet’s condition

B [n every finite interval, g(¢) has a finite number of
local maxima and minima, and a finite number of
discontinuity points.

1 Sufficient conditions for the existence of
Fourier transform

B g(7) satisties Dirichlet’s condition
B Absolute integrability: I i | g(?) | dt < 0
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Dirichlet’s Condition

1 “Existence” means that the Fourier transform
pair 1s valid only for continuity points.

n
(1) = I, —-1l<t<l]; 4 3()= 1, —-1<¢t<L1;
S0, e S0, i1

has the same Fourier transform G(f).

Note that the above two functions are not equal at ¢ =
land r=-1
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Dirac Delta Function

1 It is a function that exists only in principle.

_| Define the Dirac delta function as a function o(?)
satisfies:

siy=1" 7% 4 [ sdi=1
“lo, ¢=0. | sdi=1

B 0(¢) can be thought of as a limit of a unit-area pulse

function. . 1 |
lims, (£) = 5(¢), where s,()=1"" "2, ' <2,
HOO 0, otherwise.

.
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Properties of Dirac Delta Function

1. Sifting property
B [f g(¢) 1s continuous at ¢, then

[ g()5(t—1,)de =g(t,)

(j_o:o g(t)s (t—t,)dt = Lt0+1/(2n

0o—1/(2n)

'g(t)n-di g(%))

B The sifting property 1s not necessarily true at ¢, 1f
2(?) 1s discontinuous at ¢,.
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Properties of Dirac Delta Function

2. Replication property
B For every continuous point of g(¢),

g()=[ g(r)s(t-r)de

3. Constant spectrum

[" s(0yexp(~j2afydi = [ 5(t~0)exp(~j2aftydr =1.

Thus, the inverse Fourier transform of 1 is (by definition) §(%).
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Properties of Dirac Delta Function

4. Scaling after integration | /) g = [ fedx=[ gty 22

B Although
o(t)=2-0(t) =+

(

o, t=0

0, ¢t#0
their integrations (by replication property) are different

jw S(t)dt =1 while f 25(f)dt =2.

B Hence, the “multiplicative constant” to the Dirac delta
function 1s significant, and shall never be 1gnored!
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Fourier Series

[ The Fourier transform of a periodic function
does not exist!

B E.g., for integer £,
{1, 2k <t<2k+1;
g(l)=

0, otherwise.

e} P a S s 10
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Fourier Series

B Theorem: If g,(7) 1s a bounded periodic function
with period 7 and satisfies Dirichlet’s condition,
then

g, (1) = icn exp(j%mtj

n=—o0o

at every continuity points of g(¢), where

1 er/2

2
C, = F T/ng(t)eXp(—]Tfjdf

© Po-Ning Chen@ece.nctu 2-10



Relation between a Periodic Function and its
Generating Function

1 Define the generating function of a periodic
function g(¢) with period T as:

g (1), —T/2<t<T/2;
g(t) = .
0, otherwise.

B Then

g, ()= g(t-mT)

m=—00
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Relation between a Periodic Function and its
Generating Function

[1 Let G(f) be the spectrum of g(¢) (which is
assumed to exist).

[1 Then, from the Theorem in Slide 2-10,

Chn = — gr(t) exp (—j27r—t) t
T J_1/2 T
1 /T/2 n
= = g(t)exp (—3277—15) dt
T J_1/9 (t) T

- Lo(3)
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Relation between a Periodic Function and its
Generating Function

1 This concludes to Poisson’s sum formula.

g, (1) = % iG(%) exp(jZﬂ%t)

n=—00

S0 N

[e—— T—>| > /ix‘\“\ 1 ;; n

—f

1
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Spectrums through LTI Filter

x;(2)

excitation
x5(?)

h(t)

1(9)

h(t)

response
Vo(2)

A linear filter satisfies the principle of superposition, i.c.,

x1() + xo(2)

h(t)

yi(1) + y(2)
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Linearity and Convolution

1 A linear time-invariant (LTI) filter can be

described by convolution integral

y(O) = h(@)x(t-r)r.

B Example of a nonlinear system

x(2)

h(7)

o V

() = x(£)—0.1-x°(7) 1
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Linearity and Convolution

y(0) = h(r)x(t-7)dz

and -

Convolution 1n time = Multiplication in Spectrum

()= [ x(f)exp(j2afi)df

(@)= [ H(f)exp(j2f7)df
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Y(f) = [ y()exp(-j2aft)dt

@00

_ [ [" h()xe- r)dr} exp(— j271)d!

o —0C0

j:h(r) j “; x(t—7)exp(— jzﬂﬁ)dt}dr

= [ h@)| [ x(s)exp(—j2af (s + T))ds}a’r, s=t-71

= [ h(x)exp(- jzfgff)[ [ x(syexp(- jzm)ds}d’r

= x(f)|_h(r)exp(-j2afr)dz
= x(/)H(f)
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Impulse Response of LTI Filter

L] Impulse response = Filter response to Dirac
delta function (an application of the replication

property)
20)

h(t) h(?)

v =[ h@)x(t-1)dr = | h(D)5(t-1)dz = h(2).

provided h(7) is continuous at 7 = ¢.
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Frequency Response of LTI Filter

[] Frequency response = Filter response to a
complex exponential input of unit amplitude

and of frequency f,
exp(j2 7ifyt) ! _gi(_tz = /_Oo h(T)x(t — 7)dt

_ /_ " h(r) exp(i2n folt — 7))dr

exp(j2m fot) /_ h(7) exp(—j2m for)dT

exp(ijfot)H(fo)
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Measures for Frequency Response

Expression 1

H()=|H(f)|-exp[jB(f)], where {| H(f)| amplitude response

B(Sf) phase response

Expression 2

log H(/) =log | H(f) | +A(/)
—a(f)+jBS)  where {O‘(f )

B(f) phaseresponse
a(f)=In|H(f)| nepers
=20log,, |H(f)|dB

gain
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Power Spectral Density

Deterministic x(t) I TI y(t) = IZ h(t)x(t—71)drt
> h(z-) —

WSS X(0) Lt | YO =] h()X(t-1)de

i |G I

vty = [ T h(e)ux(t - T)dr
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Power Spectral Density

1 How about the spectrum relation between filter
input and filter output?

B An apparent relation is:

Deterministic x(f) I TI y(f)=H()x(f)
- H N
X(f) ; ITI Y(f)=H(f)X(f)

—>

H(f)

© Po-Ning Chen@ece.nctu 2-22



Power Spectral Density

1 This is however not adequate for a random
process.

B For a random process, what concerns us 1s the
relation between the input statistic and output
statistic.
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Power Spectral Density

1 How about the relation of the first two
moments between filter input and output?

B Spectrum relation of mean processes
w,()=E[Y ()] = EUO:oh(r)X(t — Z')dl':l
= [ h(@)p,(t-7)dz

=ty () = 1, (SHH(S)
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Time-Average Autocorrelation Function

[1 For a non-stationary process, we can use the
time-average autocorrelation function to define
the average power correlation for a given time
difference.

Rx(r )—Tll_r>nooﬁ/ E[X(t+ 7)X*(£)]dt

B [t is implicitly assumed that R (z) is independent
of the location of the integration window. Hence,
37/2

Rx (1) = Th_I)noo % /_T/2 E(X(t+7)X™(t)]dt
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Time-Average Autocorrelation Function

B E.g., fora WSS process,

Rx(T)

= E[X(t+ 7)X*(¢)]

B E.g. for a deterministic function

Rx (7)

Iim —
T—oo 2

Am o

/ Ela(t + )" (£)]dt
/T z(t + 7)x" (t)dt

© Po-Ning Chen@ece.nctu

2-26



Time-Average Autocorrelation Function

B E.g., for a cyclostationary process,

Rx( QT/ E[X(t+ 17)X*(t)]dt

where T 1s the cyclostationary period of X(7).
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Time-Average Autocorrelation Function

[1 The time-average power spectral density 1s the
Fourier transform of the time-average
autocorrelation function.

Sx(f) = /_ " ( Tlggoﬁ / E[X(t+7)X*(t )]dt) e=92mITdr

1 .
. s * —j32wfT
= Th—l;rcio 2TE [/_oo (/_OOX(t+T)X2T(t)dt> e dT]

~ lim %E[X( X2 (f)], where Xor 2 X(£) - 1{|t| < T}.
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Time-Average Autocorrelation Function

B Fora WSS process, S (f)=25,(f).
B For a deterministic process,

5:() = lim = x(/ )3, (/).
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Power Spectral Density

B Relation of time-average PSDs

Ry (t+1,t) = / / “(o)Rx(t+7 — 711,t — T2)dmodm
Ry (1) = jlgnoo ﬁ/ / / “(o)Rx(t + 7 — 11,t — To)drodridt
1 T
T — 00 2T -T
= / / “(12)Rx (T — 7 + T2)dTodTm;
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- (o) ([ ) (]
(s ([osere) ([

Rx(u)e_j%f“du)

Rx(u)e_j%f“du>
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Power Spectral Density under WSS Input

[ For a WSS filter input,

ux (t) = constant = ux
= px (f) = [T px exp(—j2n ft)dt = pxo(f)

Rx (1) = Rx(r) )
= Sy (f) =Sy (f) =|H()|I?Sx(f) = |H(f)I?Sx (f)
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Power Spectral Density under WSS Input

[ Observation
E[Y (8) / Sy (f)df = / 12Sx (f)df

B L[|Y(?)]?] is generally viewed as the average power
of the WSS filter output process ¥(?).

B This average power distributes over each spectrum

frequency f through S,(f). (Hence, the fotal average
power 1s equal to the integration of Si(f).)

B Thus, S,(f) 1s named the power spectral density
(PSD) of Y(2).
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Power Spectral Density under WSS Input

B The unit of E[|Y(?)|?] 1s, e.g., Watt.
B So the unit of Sy(f) is therefore Watt per Hz.
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Operational Meaning of PSD

[1 Example. Assume A(71) is real, and |H(f)| 1s
given by:

Ap HO)

_ 1.0

_fc fc
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Operational Meaning of PSD

-] sins

. / H(f)2Sx (f)df

fetAf/2 —fet+Af/2
_ / Sx(f)df + / Sx (f)df
fe—Af/2 —fe—Af/2

~ Af-[Sx(fe) + Sx(—f.)]

The filter passes only those frequency components of the input
random process X(¢), which lie inside a narrow frequency band
of width Af, centered about the frequency 7. and —7..

Then, E[|Y(t)?]
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Properties of PSD

Property 0. Wiener-Khintchine-Einstein relation

B Relation between autocorrelation function and PSD
of a WSS process X(7)

5. = [ Ru(e)exp(=j2f7)dz

R ()= S.(f)exp(j2f7)df
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Properties of PSD

Property 1. Power density at zero frequency

S.(0) [Watt/Hz]=S,(0) [Watt-Second]
= J: R.(7)[Watt]dz [Second]

Property 2: Average power

BIX () (Watt] = [ Sx(f) [Wate/H) df (32
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Properties of PSD

Property 3: PSD i1s real.
PI/'OOf g* (/OC RX(T)e_jwaTd7.>

x (f)
= /oo R (1)e*™ T dr

*

B /_OO Rx(-7)e’*"I"dr  (Rx(r) = Rx(-T))

= / Rx(s)e 7?™¢dr (s = —7)

= Sx(f) Q.E.D.
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Properties of PSD

Property 4: If R,(7) 1s real, PSD 1s an even function:
Sy(f)=S(=1).

Proof. sy(p) = ([ rxtemrmar)

w .
R% (7‘)6327Tf7-d7‘
— OO
o0

Rx(-7)e’*"'7dr (Rx(r) = Rx(-7))

— —

(© @)

= Rx(s)e™92™/sd(—s) (s = —7)

oo

8

Rx(s)e 2™ %ds = Sx(f) Q.E.D.

I
—

— 00
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Properties of PSD

Property 5: Non-negativity for WSS processes
Sx (/)20

Proof: Pass X(¢) through a filter with transfer
function satisfying |H(f)|"2=0o(f — f.).
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Properties of PSD

E(Y ()] = /

oo

Sy (f)df This step requires that S(f)
00 1S continuous at f = /..
o0

/_ H()*Sx (f)df

[ 8- sosx(nas

— 00

= Sx(fe)
Therefore, by passing through a proper filter,

Sx(fe) = E[Y (#)[*] =2 0
for any f.,.
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Example: Signal with Random Phase
(See Slide 1-28)

[1Let X(?) = A cos(2nf.t + ®), where O is
uniformly distributed over [—m, ).

o 2
S.(f)= j_ 7005(277”07)8_]2’#%2'
— A_z j B [ejzw 4 o ]e—ﬂﬂff dr
4

2
— AT[ I AR O ALE I L AL dr}

R, (7)= %COS(ZQ‘ z') A2 (

S(f+f)+8(f - 1))
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Example: Signal with Random Phase

—fe 0 fe
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Example: Signal with Random Delay
(See Shide 1-33)

1] et

X(t) = iA.ln-p(z—nT—td)

where ..., [ ,, 1 , 1, I, I,, ... are independent,
and each /; 1s either —1 or +1 with equal

probability, and

p(t) =+

(

1, 0<t<T

0, otherwise
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Example: Signal with Random Delay

( , _m
RX(T)=<A( Tj’ wit

| 0, otherwise
S (=] A{ |;|j dr j”'dV:“"“I"'d”
42 _|T| 1 —j27ft ' 2 _l 1 —j27ft
=A (1 7 j(—ﬂzzfe j J. A ( ngn(r)j( ]2@[6 jdr

Az T _i2af
= — 'ZﬁTJngn(T)e dr
j _
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(Continue from the previous slide.)
AZ
j2mT
A’ re . _j2afr 0 : _j2afr
= — )UO (— ]27_27‘”)6 dt — J:T (— ]27;7‘)e drj

(24T N j2nf
T 47z;4f T ((e_jm D ) (Q_W OTD

S (f)=— jTT sen(z)e 7 dr

2

== fsz (e—ﬂ’ﬂ —1-1+ eﬂ’ﬂ)

T

A2
= T (2-2cos(27T))

AZ
= o7 sin”(7fT) = A°Tsinc” (fT)

7T
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Energy Spectral Density

1 Energy of a (deterministic) function p(¢) is
given by j p(6) [ dt.

B Recall that the average power of p(?) 1s given by

hm— j | p(2) [ dt.

B Observe that
[1p0Fdi=]" payp e

(7 e ar | e arar
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(Continue from the previous slide.)

e de=[ ([ pnear || v (redr i
[ [ e[
=1 pHp (M= 1)dfdsf
=[ p(NHp (NHdf
=[ 1p(NFdf

For the same reason as PSD, |p(f)* is named energy spectral
density (ESD) of p(?).
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Example

[1 The ESD of a rectangular pulse of amplitude 4
and duration 7 1s given by

2
E.(f)= jOTAe—Wdt — A*T%sinc*(/T)
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Example: Quadrature-Modulated Random
Processes (See Slide 1-45)

1Let Y(¢) = X(¢) cos(2nf .t + ®), where @ is
uniformly distributed over [—7, 7), and X(?) 1s
WSS and independent of ®.
R, (t,u)=E[X(t)X(u)cos(2rf t+O)cos(2nf u+0O)]
= E[X ()X (u)]E[cos2af t + ®O)cos(2af u+ O)]

R (t-u) cos(27y‘20(t —u))

= 5,(N) =[5,/ = )+, + 1)
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How to Measure PSD?

L1 If X(¢) is not only (strictly) stationary but also
ergodic, then any (deterministic) observation
sample x(¢) in [T, T) satisfies:

x(t)dt = E[X(1)] = p,

-T

lim — J
T—o0 2T
l l

Sample‘average Ensemble average

B Similarly,

" x(t+7)x(0)dt = R, (1)

-T

o1
lim— |
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How to Measure PSD?

[1 Hence, we may use the time-limited Fourier
transform of the time-averaged autocorrelation
function:

¢

lim — / U a(t 4 )t (1)t ; / U a(t 4 ) (0)dt

T—oo 21 T N2_ T

to approximate the PSD.

© Po-Ning Chen@ece.nctu 2-54



(Notably, we only have the values of x(¢) for # in [T, T).) Assume

Sx(f)

Q

Q

approximately
Tt that thi
/ —/ z(t + 7)x* (t)dt | exp(—j2n fr)dr St s
_r | 2T J_¢ integration

has nothing to

T T .
x z*(t) / z(t + 7) exp(—j2n fr)dr | dt ~ dowitht.
2T J -T

1 T T+t
— z* () (/ z(s)exp(—j2nf(s—t)Jds | dt, s=t+ 71
2T J —T+t

1 T T+t

5T o z*(t) exp(j2m ft) (/—Tﬂx(s) exp(—jZWfs)ds)dt

1 ([T . (T .
5T ( /_ =) exp(—ﬂﬂft)dt) ( /_ _2(9) exp(—J27rf8)d8)

e ()
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How to Measure PSD?

[1 The estimate ,
oOT |932T(f )|2

1s named the periodogram.

B To summarize:

1. Observe z(t) for duration (-7, T).
T

2. Calculate zor(f) =/ z(t) exp(—j2m ft)dt
—T

3. Then Sx(f) = |932T(f)|
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Example: PSD of Sum Process

Determine the PSD of sum process Z(¢) = X(¢) + Y(¥)
of two zero-mean WSS processes X(7) and Y(7).

B Answer:

Rz(t, ’U,)

E|Z(t)Z" (u)]
= E[X()+Y(@)(X"(t) +Y"(u)]
= EX()X"(u)] + E[X ()Y (u)]
+EY (8) X" (u)] + E[Y (£)Y " (u)]
= Rx(t,u)+ Rxy(t,u) + Ry x(t,u) + Ry (t,u)

© Po-Ning Chen@ece.nctu 2-57



WSS implies that
RZ (7) = RX (7)+ RX,Y (7)+ RY,X(T) T RY (7).

Hence,

S, ()=Sy () + Sy ()+S, () +S, ()
Q.E.D.

If X(t) and Y (¢) are uncorrelated and zero-mean,
ie., EX(t+71)Y*(t) = E[X(t+ 7)]|E[Y*(t)] =0,

Sz(f) = Sx(f) + Sy (f).

The PSD of a sum process of zero-mean uncorrelated
processes is equal to the sum of their individual PSDs.
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Gaussian Random Process

1 Definition. A random variable 1s Gaussian
distributed, 1f its pdf has the form

£ () = ——— exp{— W= it) }
GY

27T 25;
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Gaussian Random Process

1 Definition. An n-dimensional random vector is
Gaussian distributed, 1f its pdf has the form

1

0= sy P

(—%(i’—ﬁf z%fc—ﬁ)]

where 1 =[E[X,],E[X,],....E[X,]]' is the mean vector, and
Covi{X,,X,} CoviX, X,} -]
> =|Covi{X,,X,} Cov{X,,X,} ---| is the covariance matrix.

— —inXxn
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Gaussian Random Process

implies “independence.”

"CoviX,, X}
>=| o

0
CoviX,, X,}

nxn

1 For a Gaussian random vector, “‘uncorrelation”

sgméﬁ&m>
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Gaussian Random Process

[] Definition. A (complex) random process X(¢) is
said to be Gaussian distributed, if for every
function g(7) satisfying

/ / u)Rx (t,u)dtdu < oo,

we have Y = Lg(r)X (H)dt is a Gaussian random
variable.

T T
Notably, E[|Y|2]=/0 /0 g(t)g* (u)Rx (t,u)dtdu.
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Central Limit Theorem

1 Theorem (Central Limit Theorem). For a
sequence of independent and 1dentically
distributed (1.1.d.) random variables X;, X,
X, ...

lim Pr (X1 _IUX)+"'+(Xn _IUX)

<yl|=[ exp| —— |dx
oy o \n vi=1 NGY p( 2]

where u, =E[X ] and o, = E[X].
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Properties of Gaussian Random Process

Property 1. The output of a stable linear filter 1s a
Gaussian process 1f the mput 1s a Gaussian process.

(This 1s self-justified by the definition of Gaussian
Random process.)

Property 2. A finite number of samples of a Gaussian
process forms a multi-dimensional Gaussian vector.

(No proof. Some books use this as the definition of
Gaussian process.)
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Properties of Gaussian Random Process

Property 3. A WSS Gaussian process 1s also
strictly stationary.
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White Noise

[ A (often implicitly, zero-mean) noise is white 1f
its PSD equals constant for all frequencies.
B [tisdefinedas: S,(f)= %

[] Impracticability
B The noise has infinite power

OV 01= ] 8,(N)df = Svdf =
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White Noise

1 Another impracticability

B No matter how close in time two samples are, they
are uncorrelated!

Ll So impractical, why white noise 1s so popular 1n
the analysis of communication system?

B There do exist noise sources that have a flat power
spectral density over a range of frequencies that 1s
much larger than the bandwidths of subsequent
filters (or measurement devices).
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White Noise

B Some physical measurements have shown that the
PSD of a certain kind of noise has the form

20

a’ +Q2xf)

where k 1s Boltzmann’s constant, 7'1s the absolute
temperature, a and R are the parameters of physical
medium.

B When f << q,
Sy (f)=KIR

S, (f)=kTR

2
22 okrr="0
a” +2nf) 2
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Ideal Lowpass Filtered White Noise

1 After passing through a filter, the PSD of a

zero-mean white noise becomes:
N
: — <B
S (f)=IH()] S, (f)=1 2 |/
0

otherwise
R, (7)= I —exp( j2nf7)df = N,Bsinc(2B7)

= 7 ==k /(2B) for non-zero integer k implies

R, (t)=0,1.e., uncorrelated.
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Ideal Lowpass Filtered White Noise

B So if we sample the noise at rate of 2B times per
second, the resultant noise samples are uncorrelated!

4.7\70 B

Rrw(T) |

2BT
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Ideal “Correlated” White Noise

_______________________________________

———————————————————————

________________________________________

________________________

Local carrier

v 2/Tcos(27rf t)

—F——m e —————

correlator
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Ideal “Correlated” White Noise

In the previous figure, a scaling factor 1s added to the local

carrier to normalize the signal energy.

2
T

2

T
Signal Energy = / (V%cos(waJ)) dt
0

T2
2
= m 2m fot)dt
/0 T €08 (27 f.t)
[T 1+ cos(4n f.t) gt Here, we assume f, is
Lo T a multiple of 1/7. In
sin(47 f.T) practice, f. T 1s usually

= 1+ An f,T large; hence, the last

term can be neglected.

© Po-Ning Chen@ece.nctu 2-72



Ideal “Correlated” White Noise

Noise N = jOT w(t) %cos(27jct)dt

0

u =E jOT w(?) %cos(zfygr)dr = [ Efw() %COS(Zﬂfct)dt —0.

o) =E jOT w(?) %COS(ny‘Ct)dt - jOT w(s) %cos(Zﬂfcs)ds

_ % [ [Etwoyw(s)]cos(2af.1)cos(2f.s)dsdr
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(Continue from the previous slide.)

TN
oy = / / —2§(t — ) cos(2m f..t) cos(27 f.s)dsdt

= ? COS (27rfc )dt
Ny

0
= —+

> Y anfT sin(4mx f.T')

If w(?) 1s white Gaussian, then the pdf of NV 1s uniquely
determined by the first and second moments.
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Narrowband Noise

1 In general, the receiver of a communication
system includes a narrowband filter whose
bandwidth 1s just large enough to pass the
modulated component of the received signal.

1 The noise is therefore also filtered by this
narrowband filter.

1 So, noise’s PSD after being filtered may look
like the figure 1n the next shide.
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Narrowband Noise

|

|

|
/\
fe-B ~f. —f.+B

S~ (f)

|

|

|
A
f.~B f. f.+B




Definitions of Bandwidth

1 The bandwidth is the width of the frequency

range outside which the power 1s essentially

negligible.

B E.g., the bandwidth of a (strictly) band-limited
signal shown below 1s B.

Sn(f) ,

N )
‘)
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Null-to-Null Bandwidth

[1 Most signals of practical interest are not strictly
band-limited.

B Therefore, there may not be a universally accepted
definition of bandwidth for such signals.

B In such case, people may use null-to-null
bandwidth.

[1 Definition. The width of the main spectral lobe that
lies inside the positive frequency region (f > 0).
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Null-to-Null Bandwidth

X (1) = ZA I - p(t—nT —t,), where p(¢)1sarectangular

n=—00

pulse of duration 7" and amplitude A.

= S, (f) = A’Tsinc” (fT)

The null-to-null bandwidth is 1/7.

S.\' (f) A
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Root-Mean-Square Bandwidth

[1 rms bandwidth

(" s
[sanar

B Disadvantage: Sometimes,

[ 28.(df =

even 1f

[ S (Ndf <o,
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Bandwidth of Deterministic Signals

[]1 The previous definition can also be applied to
Deterministic Signals, where PSD 1s replaced
by ESD.

B For example, a deterministic signal with spectrum
G (f) has rms bandwidth:

1/2

(" rienrar
- [lenrdr

B =

rms
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Noise Equivalent Bandwidth

[1 An important consideration in communication
systems 1s the noise power at a linear filter
output due to a white noise input.

B We can characterize the noise-resistant ability of
this filter by 1ts noise equivalent bandwidth.

B Definition. Noise equivalent bandwidth = The
bandwidth of an ideal low-pass filter through which
the same noise power at the filter output 1s resulted.
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Noise Equivalent Bandwidth

B Output noise power for a general linear filter

N

LS OHNE &= NHO o

B Output noise power for an i1deal low-pass filter of

bandwidth B and the same amplitude as the general
linear filter at f = 0.

[ Sp N 1HUT df = % j_BB| H(0) [ df =BN,|H(0)[

| HDNF A
o 20HO)F
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Noise Equivalent

Bandwidth

H()P

[ 1H(OT af

NE 2
__________ do 2[H(0)|
o.. i ?‘.
___///"'-'. E \"\\_ o R
—Byg 0 BnE !
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Time-Bandwidth Product

[1 Time-Scaling Property of Fourier Transform

B Reducing the time-scale by a factor of a extends the
bandwidth by a factor of a.

g(1) 5 G(f) < glar) Foff'iG(ij

la| \a
B This hints that the product of time- and frequency-
parameters should remain constant, which 1s named
the time-bandwidth product or bandwidth-duration
product.
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Time-Bandwidth Product

B Since there are various definitions of time-parameter
(e.g., duration of a signal) and frequency-parameter
(e.g., bandwidth), the time-bandwidth product
constant may change for different definitions.

B E.g., rms duration and rms bandwidth of a pulse g(7)
/ o , , 1/2 / o , , \1/2
["rlgwpa [ 1160 e ar

T, =|"= B, =|*=
L lewfar - [Ienrdar

Then 7. B 2L=O.O7957...

rms rms
4
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Time-Bandwidth Product

Example: g(?) = exp(-nt?). Then G(f) = exp(—nf?).

o , \1/2
( I e dt 1 1
T;ms — Brms — _Ojo - Then T;msBrms R
K I e—Zﬂtzdt ) 2\/; 472'

Example: g(¢) = exp(—|f]). Then G(f) = 2/(1+47>f?).

1/2
1/2(’00 f2 A
_— df
[rera) ey L, 1,1

I B X > :
rms rms J‘e—zﬂdt @00 1 df \/5 272' 472'
\ S S\ = +ant 2y
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Summary

Fourier transform
B Dirichlet’s condition and Dirac delta function
B Fourier series and its relation to Fourier transform

PSD and ESD
Stable LTI filter

B Linearity and convolution

Narrowband process
Bandwidth

B Null to null, rms, noise-equivalent
B Time-bandwidth product

White Noise
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