
Part 2 Fourier Analysis and Power 
Spectrum Density
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Fourier Analysis

o Fourier Transform Pair

o Fourier Transform G(f) is the (frequency)
spectrum content of a signal g(t).
n |G(f)| magnitude spectrum
n arg{G(f)} phase spectrum
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Dirichlet’s Condition

o Dirichlet’s condition
n In every finite interval, g(t) has a finite number of 

local maxima and minima, and a finite number of 
discontinuity points.

o Sufficient conditions for the existence of 
Fourier transform
n g(t) satisfies Dirichlet’s condition
n Absolute integrability: ¥<ò
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Dirichlet’s Condition

o “Existence” means that the Fourier transform 
pair is valid only for continuity points.
n
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has the same Fourier transform G(f).

Note that the above two functions are not equal at t = 
1 and t = −1 !
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Dirac Delta Function

o It is a function that exists only in principle.
o Define the Dirac delta function as a function d(t) 

satisfies:

n d(t) can be thought of as a limit of a unit-area pulse 
function.
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Properties of Dirac Delta Function

1. Sifting property
n If g(t) is continuous at t0, then

n The sifting property is not necessarily true at t0 if 
g(t) is discontinuous at t0.

÷
ø
öç

è
æ ®××=-

=-

òò

ò
+

-

¥

¥-

¥

¥-

)()()()(

)()()(

0

)2/(1

)2/(10

00

0

0

tgdtntgdtttstg

tgdttttg
nt

ntn

d



© Po-Ning Chen@ece.nctu 2-7

Properties of Dirac Delta Function

2. Replication property
n For every continuous point of g(t),

3. Constant spectrum

ò
¥

¥-
-= ttdt dtgtg )()()(

.1)2exp()0()2exp()( =--=- òò
¥

¥-

¥

¥-
dtftjtdtftjt pdpd



© Po-Ning Chen@ece.nctu 2-8

Properties of Dirac Delta Function
4. Scaling after integration

n Although

their integrations (by replication property) are different

n Hence, the “multiplicative constant” to the Dirac delta 
function is significant, and shall never be ignored!
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Fourier Series

o The Fourier transform of a periodic function 
does not exist!
n E.g., for integer k,
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Fourier Series
n Theorem: If gT(t) is a bounded periodic function 

with period T and satisfies Dirichlet’s condition, 
then

at every continuity points of gT(t), where
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Relation between a Periodic Function and its 
Generating Function

o Define the generating function of a periodic 
function gT(t) with period T as:

n Then
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Relation between a Periodic Function and its 
Generating Function

o Let G(f) be the spectrum of g(t) (which is 
assumed to exist).

o Then, from the Theorem in Slide 2-10,
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Relation between a Periodic Function and its 
Generating Function

o This concludes to Poisson’s sum formula.
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Spectrums through LTI Filter

h(t)x1(t) y1(t)

h(t)x2(t) y2(t)

A linear filter satisfies the principle of superposition, i.e.,

h(t)x1(t) + x2(t) y1(t) + y2(t)

excitation response
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Linearity and Convolution

o A linear time-invariant (LTI) filter can be 
described by convolution integral

n Example of a nonlinear system

h(t)x(t) y(t)
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Linearity and Convolution
o Convolution in time = Multiplication in Spectrum
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Impulse Response of LTI Filter

o Impulse response = Filter response to Dirac 
delta function (an application of the replication 
property)

h(t)d(t) h(t)
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Frequency Response of LTI Filter

o Frequency response = Filter response to a 
complex exponential input of unit amplitude 
and of frequency f0

h(t)
exp(j2pf0t)
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Measures for Frequency Response
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Power Spectral Density

LTI
h(t)

Deterministic x(t) ò
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Power Spectral Density

o How about the spectrum relation between filter 
input and filter output?
n An apparent relation is:

LTI
H(f)

Deterministic x(f) )()()( fxfHfy =

LTI
H(f)
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Power Spectral Density

o This is however not adequate for a random 
process.
n For a random process, what concerns us is the 

relation between the input statistic and output 
statistic.
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Power Spectral Density

o How about the relation of the first two 
moments between filter input and output?
n Spectrum relation of mean processes
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Time-Average Autocorrelation Function

o For a non-stationary process, we can use the 
time-average autocorrelation function to define 
the average power correlation for a given time 
difference.

n It is implicitly assumed that            is independent 
of the location of the integration window. Hence, 

)(tXR



© Po-Ning Chen@ece.nctu 2-26

Time-Average Autocorrelation Function

n E.g., for a WSS process,

n E.g., for a deterministic function,
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Time-Average Autocorrelation Function

n E.g., for a cyclostationary process,

where T is the cyclostationary period of X(t).
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Time-Average Autocorrelation Function

o The time-average power spectral density is the 
Fourier transform of the time-average 
autocorrelation function.
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Time-Average Autocorrelation Function

n For a WSS process,
n For a deterministic process,
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Power Spectral Density
n Relation of time-average PSDs
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S̄Y (f) =
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Power Spectral Density under WSS Input

o For a WSS filter input,

R̄X(⌧) = RX(⌧)
) SY (f) = S̄Y (f) = |H(f)|2S̄X(f) = |H(f)|2SX(f)

µX(t) = constant = µX

) µX(f) =
R1
�1 µX exp(�j2⇡ft)dt = µX�(f)
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Power Spectral Density under WSS Input

o Observation 

n E[|Y(t)|2] is generally viewed as the average power
of the WSS filter output process Y(t).

n This average power distributes over each spectrum 
frequency f through SY(f). (Hence, the total average 
power is equal to the integration of SY(f).) 

n Thus, SY(f) is named the power spectral density 
(PSD) of Y(t).
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Power Spectral Density under WSS Input

n The unit of E[|Y(t)|2] is, e.g., Watt.
n So the unit of SY(f) is therefore Watt per Hz.
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Operational Meaning of PSD

o Example. Assume h(t) is real, and |H(f)| is 
given by:

|H(f)|
1.0
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Operational Meaning of PSD

Then,

The filter passes only those frequency components of the input 
random process X(t), which lie inside a narrow frequency band
of width Df, centered about the frequency fc and  - fc.
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Properties of PSD

Property 0. Wiener-Khintchine-Einstein relation
n Relation between autocorrelation function and PSD 

of a WSS process X(t)
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Properties of PSD

Property 1. Power density at zero frequency

Property 2: Average power
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Properties of PSD

Property 3: PSD is real.
Proof.

Q.E.D.
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Properties of PSD

Property 4: If RX(t) is real, PSD is an even function: 

Proof.

).()( fSfS XX -=
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Properties of PSD

Property 5: Non-negativity for WSS processes

Proof: Pass X(t) through a filter with transfer 
function satisfying |H(f)|^2=d(f - fc). 

0)( ³fSX



© Po-Ning Chen@ece.nctu 2-42

Properties of PSD

This step requires that SX(f) 
is continuous at f = fc.

Therefore, by passing through a proper filter,

for any fc.
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Example: Signal with Random Phase 
(See Slide 1-28)

oLet  X(t) = A cos(2pfct + Q), where Q is 
uniformly distributed over [-p, p).
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Example: Signal with Random Phase

f
0
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Example: Signal with Random Delay 
(See Slide 1-33)
oLet 

where …, I-2, I-1, I0, I1, I2, … are independent, 
and each Ij is either -1 or +1 with equal 
probability, and 
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(Continue from the previous slide.)
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Energy Spectral Density

o Energy of a (deterministic) function p(t) is 
given by
n Recall that the average power of p(t) is given by

n Observe that
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For the same reason as PSD, |p(f)|2 is named energy spectral 
density (ESD) of p(t).

(Continue from the previous slide.)
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Example

o The ESD of a rectangular pulse of amplitude A
and duration T is given by
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Example: Quadrature-Modulated Random 
Processes (See Slide 1-45)

oLet  Y(t) = X(t) cos(2pfct + Q), where Q is 
uniformly distributed over [-p, p), and X(t) is 
WSS and independent of Q.
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How to Measure PSD?

o If X(t) is not only (strictly) stationary but also 
ergodic, then any (deterministic) observation 
sample x(t) in [-T, T) satisfies:

n Similarly,
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How to Measure PSD?

o Hence, we may use the time-limited Fourier 
transform of the time-averaged autocorrelation 
function:

to approximate the PSD.
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(Notably, we only have the values of x(t) for t in [-T, T).) Assume 
approximately 
that this 
integration 
has nothing to 
do with t.
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How to Measure PSD?

o The estimate

is named the periodogram.
n To summarize:
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Example: PSD of Sum Process
o Determine the PSD of sum process Z(t) = X(t) + Y(t) 

of two zero-mean WSS processes X(t) and Y(t).
n Answer:
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Q.E.D.

The PSD of a sum process of zero-mean uncorrelated
processes is equal to the sum of their individual PSDs.
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Gaussian Random Process

o Definition. A random variable is Gaussian 
distributed, if its pdf has the form 
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Gaussian Random Process

o Definition. An n-dimensional random vector is 
Gaussian distributed, if its pdf has the form 
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Gaussian Random Process

o For a Gaussian random vector, “uncorrelation” 
implies “independence.”
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Gaussian Random Process

o Definition. A (complex) random process X(t) is 
said to be Gaussian distributed, if for every
function g(t) satisfying

we have                         is a Gaussian random 
variable.
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Central Limit Theorem

o Theorem (Central Limit Theorem). For a 
sequence of independent and identically 
distributed (i.i.d.) random variables X1, X2, 
X3, … 
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Properties of Gaussian Random Process
Property 1. The output of a stable linear filter is a 

Gaussian process if the input is a Gaussian process.
(This is self-justified by the definition of Gaussian 
Random process.) 

Property 2. A finite number of samples of a Gaussian 
process forms a multi-dimensional Gaussian vector.
(No proof. Some books use this as the definition of 
Gaussian process.)



© Po-Ning Chen@ece.nctu 2-65

Property 3. A WSS Gaussian process is also 
strictly stationary.

Properties of Gaussian Random Process
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White Noise

o A (often implicitly, zero-mean) noise is white if 
its PSD equals constant for all frequencies.
n It is defined as:

o Impracticability
n The noise has infinite power
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White Noise

o Another impracticability
n No matter how close in time two samples are, they 

are uncorrelated!
o So impractical, why white noise is so popular in 

the analysis of communication system?
n There do exist noise sources that have a flat power 

spectral density over a range of frequencies that is 
much larger than the bandwidths of subsequent 
filters (or measurement devices).
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White Noise
nSome physical measurements have shown that the 

PSD of a certain kind of noise has the form

where k is Boltzmann’s constant, T is the absolute 
temperature, a and R are the parameters of physical 
medium.

nWhen f << a, 
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Ideal Lowpass Filtered White Noise

o After passing through a filter, the PSD of a 
zero-mean white noise becomes:
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n So if we sample the noise at rate of 2B times per 
second, the resultant noise samples are uncorrelated!

Ideal Lowpass Filtered White Noise
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Ideal “Correlated” White Noise
In the previous figure, a scaling factor             is added to the local 
carrier to normalize the signal energy.

Here, we assume fc is 
a multiple of 1/T. In 
practice, fc T is usually 
large; hence, the last 
term can be neglected.
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(Continue from the previous slide.)

If w(t) is white Gaussian, then the pdf of N is uniquely 
determined by the first and second moments.
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Narrowband Noise

o In general, the receiver of a communication 
system includes a narrowband filter whose 
bandwidth is just large enough to pass the 
modulated component of the received signal.

o The noise is therefore also filtered by this 
narrowband filter.

o So, noise’s PSD after being filtered may look 
like the figure in the next slide.
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Narrowband Noise
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Definitions of Bandwidth

o The bandwidth is the width of the frequency 
range outside which the power is essentially 
negligible.
n E.g., the bandwidth of a (strictly) band-limited 

signal shown below is B.
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Null-to-Null Bandwidth

o Most signals of practical interest are not strictly
band-limited.
n Therefore, there may not be a universally accepted 

definition of bandwidth for such signals.
n In such case, people may use null-to-null 

bandwidth.
o Definition. The width of the main spectral lobe that 

lies inside the positive frequency region (f > 0).
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The null-to-null bandwidth is 1/T.
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Root-Mean-Square Bandwidth

o rms bandwidth

n Disadvantage: Sometimes,

even if 
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Bandwidth of Deterministic Signals

o The previous definition can also be applied to 
Deterministic Signals, where PSD is replaced 
by ESD.
n For example, a deterministic signal with spectrum 

G(f) has rms bandwidth:
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Noise Equivalent Bandwidth

o An important consideration in communication 
systems is the noise power at a linear filter 
output due to a white noise input.
n We can characterize the noise-resistant ability of 

this filter by its noise equivalent bandwidth.
n Definition. Noise equivalent bandwidth = The 

bandwidth of an ideal low-pass filter through which 
the same noise power at the filter output is resulted.



© Po-Ning Chen@ece.nctu 2-83

Noise Equivalent Bandwidth
n Output noise power for a general linear filter

n Output noise power for an ideal low-pass filter of 
bandwidth B and the same amplitude as the general 
linear filter at f = 0.
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Noise Equivalent Bandwidth
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Time-Bandwidth Product

o Time-Scaling Property of Fourier Transform
n Reducing the time-scale by a factor of a extends the 

bandwidth by a factor of a.

n This hints that the product of time- and frequency-
parameters should remain constant, which is named 
the time-bandwidth product or bandwidth-duration 
product.
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Time-Bandwidth Product
n Since there are various definitions of time-parameter 

(e.g., duration of a signal) and frequency-parameter 
(e.g., bandwidth), the time-bandwidth product
constant may change for different definitions.

n E.g., rms duration and rms bandwidth of a pulse g(t)
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Time-Bandwidth Product
Example: g(t) = exp(-pt2). Then G(f) = exp(-pf2).

Example: g(t) = exp(-|t|). Then G(f) = 2/(1+4p2f2). 
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Summary
o Fourier transform

n Dirichlet’s condition and Dirac delta function
n Fourier series and its relation to Fourier transform 

o PSD and ESD
o Stable LTI filter

n Linearity and convolution
o Narrowband process
o Bandwidth

n Null to null, rms, noise-equivalent
n Time-bandwidth product

o White Noise


