
Part 1 Random Processes for 
Communications



o A good mathematical model for a system is the 
basis of its analysis.

o Two models are often considered:
n Deterministic model

o No uncertainty about its time-dependent behavior at 
any instance of time

n Random or stochastic model
o Uncertain about its time-dependent behavior at any 

instance of time
o but certain on the statistical behavior at any instance of 

time
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System Models
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Examples of Stochastic Models

o Channel noise and interference
o Source of information, such as voice
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Notion of Relative Frequency

o How to determine the probability of “head 
appearance” for a coin?

o Answer: Relative frequency.
Specifically, by carrying out n coin-tossing 
experiments, the relative frequency of head 
appearance is equal to Nn(A)/n, where Nn(A) is 
the number of head appearance in these n
random experiments.
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Notion of Relative Frequency

o Is relative frequency close to the true 
probability (of head appearance)?
n It could occur that 4-out-of-10 tossing results are 

“head” for a fair coin!
o Can one guarantee that the true “head 

appearance probability” remains unchanged
(i.e., time-invariant) in each experiment  
performed at different time instance? 
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Notion of Relative Frequency

o Similarly, the previous question can be 
extended to “In a communication system, can 
we estimate the noise by repetitive 
measurements at consecutive but different time 
instance?”

o Some assumptions on the statistical models are 
necessary!
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Conditional Probability

o Definition of conditional probability

o Independence of events
n A knowledge of occurrence of event A tells us no 

more about the probability of occurrence of event B 
than we knew without this knowledge.

n Hence, they are statistically independent.
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Random Variable

o A non-negative function fX(x) satisfies

is called the probability density function (pdf) of 
random variable X.

o If the pdf of X exists, then 
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Random Variable

o It is not necessarily true that
n If

then the pdf of X exists and equals fX(x).

,)()(
x
xFxf X

X ¶
¶

=



© Po-Ning Chen@ece.nctu 1-10

Random Vector
n If its joint density fX,Y(x,y) exists, then

n The conditional density of Y given that [X = x] is

provided that fX(x) ¹ 0.

fX,Y (x, y) =
@2FX,Y (x,y)

@x@y

fY |X(y|x) = fX,Y (x,y)
fX(x)

where 𝐹!,# 𝑥, 𝑦 = Pr[𝑋 ≤ 𝑥 and 𝑌 ≤ 𝑦]



© Po-Ning Chen@ece.nctu 1-11

Random Process

o Random process: An extension of multi-
dimensional random vectors
n Representation of two-dimensional random vector

o (X,Y) = (X(1), X(2)) = {X(j), jÎI}, where the index set I 
equals {1, 2}.

n Representation of m-dimensional random vector
o {X(j), jÎI}, where the index set I equals {1, 2,…, m}.
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Random Process
n How about {X(t), tÎÂ}?

o It is no longer a random vector since the index set is 
continuous!

o This is a suitable model for, e.g., a noise because a 
noise often exists continuously in time.
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Stationarity

o The statistical property of a random process 
encountered in real world is often independent 
of the time at which the observation (or 
experiment) is initiated.

o Mathematically, this can be formulated as that 
for any t1, t2, …, tk and t:
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o Why introducing “stationarity?”
n With stationarity, we can be certain that the 

observations made at different instances of time have 
the same distributions!

n For example, X(0), X(T), X(2T), X(3T), ….

n Suppose that Pr[X(0) = 0] = Pr[X(0)=1] = ½. Can we 
guarantee that the relative frequency of “1’s 
appearance” for experiments performed at several
different instances of time approach ½ by stationarity? 
No, we need an additional assumption!
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Stationarity
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Mean Function

o The mean of a random process X(t) at time t is 
equal to:

where fX(t)(×) is the pdf of X(t) at time t.

o If X(t) is stationary, µX(t) is a constant for all t.
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Autocorrelation 

o The autocorrelation function of a (possibly 
complex) random process X(t) is given by:

o If X(t) is stationary,  the autocorrelation 
function RX(t1, t2) is equal to RX(t1 - t2, 0).
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Autocorrelation 

A short-hand for 
autocorrelation function 
of a stationary process
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Autocorrelation

o Conceptually, 
n Autocorrelation function = “power correlation” 

between two time instances t1 and t2.
n “Variance” is the degree of variation to the standard 

value (i.e., mean).
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Autocovariance
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Autocovariance

o If X(t) is stationary, CX(t1, t2) becomes
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Wide-Sense Stationary (WSS)

o Since in most cases of practical interest, only 
the first two moments (i.e., µX(t) and CX(t1, t2)) 
are concerned, an alternative definition of 
stationarity is introduced.

o Definition (Wide-Sense Stationarity) A 
random process X(t) is WSS if
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Wide-Sense Stationary (WSS)

o Alternative names for WSS
n weakly stationary
n stationary in the weak sense
n second-order stationary

o If the first two moments of a random process 
exist (i.e., are finite), then strictly stationary
implies weakly stationary (but not vice versa).
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Cyclostationarity

o Definition (Cyclostationarity) A random 
process X(t) is cyclostationary if there exists a 
constant T such that
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Properties of Autocorrelation Function for 
WSS Random Process

1. Mean Square Value: RX(0) = E[|X(t)|2]
2. Conjugate Symmetry:

n Recall that autocorrelation function = “power 
correlation” between two time instances t1 and t2.

n For a WSS process, this “power correlation” only 
depends on time difference.

n Hence, we only need to deal with RX(t) here.
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Properties of Autocorrelation Function for 
WSS Random Process

3. Real Part Peaks at zero: |Re{RX(t)}| ≦ RX(0) 
Proof:

Hence,
with equality holding when
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Properties of Autocorrelation Function for 
WSS Random Process

o Operational meaning of autocorrelation 
function:
n The “power” correlation of a random process at t

seconds apart.
n The smaller RX(t) is, the less the correlation 

between X(t) and X(t+t). 
o Here, we assume 𝑋(𝑡) is a real-valued random process.
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Properties of Autocorrelation Function for 
WSS Random Process

n If RX(t) decreases faster, the correlation decreases 
faster.

RX(t)

t
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Example: Signal with Random Phase

o Let  X(t) = A cos(2pfct + Q), where Q is 
uniformly distributed over [-p, p).
n Application: A local carrier at the receiver side may 

have a random “phase difference” with respect to 
the phase of the carrier at the transmitter side.
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Example: Signal with Random Phase

Channel
Encoder

…0110
Modulator

…,-m(t), m(t), m(t), -m(t)

m(t)

T

Ä

Carrier wave
Accos(2pfct)

s(t)
Å

w(t)=0

x(t)=A cos(2pfct)

Ä

Local carrier
cos(2pfct+Q)

ò
T
dt

0
  

correlator

yT>< 0
0110…

X(t)=A cos(2pfct+Q)Local carrier
cos(2pfct)

An equivalent view: 
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Example: Signal with Random Phase

Then
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Example: Signal with Random Phase
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Example: Signal with Random Phase

RX(t)

t
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Example: Signal with Random Delay

o Let 

where …, I-2, I-1, I0, I1, I2, … are independent, 
and each Ij is either -1 or +1 with equal 
probability, and 
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Example: Signal with Random Delay

I0 I1 I2 I3I-1I-2I-3I-4

I0

I1 I2 I3I-1I-2

I-3

I-4
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Example: Signal with Random Delay

Channel
Encoder

…0110
Modulator

m(t) = p(t)

T

No (or ignore)
carrier wave

s(t)
Å

w(t)=0x(t) = A p(t)

correlator

yT>< 0
0110…

…,-m(t), m(t), m(t), -m(t)

R T
0 dt X(t) = A p(t−td)

R T�td
�td

dt

An equivalent view: 
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Example: Signal with Random Delay
n By assuming that td is uniformly distributed over [0, 

T), we obtain:
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Example: Signal with Random Delay
n A useful probabilistic rule: E[X] = E[E[X|Y]]
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Among �� < n < �, there is at most one n that can make

p(t1 � nT � td)p(t2 � nT � td) = 1.
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As a result,
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RX(t)

t

Example: Signal with Random Delay
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Cross-Correlation

o The cross-correlation between two processes 
X(t) and Y(t) is:

o Sometimes, their correlation matrix is given 
instead for convenience:
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Cross-Correlation

o If X(t) and Y(t) are jointly WSS, then

ú
û

ù
ê
ë

é
--
--

=

-=

)()(
)()(

)(),(

,

,

,,

utRutR
utRutR

utut

YXY

YXX

YXYX RR



© Po-Ning Chen@ece.nctu 1-45

Example: Quadrature-Modulated Random 
Delay Processes

o Consider a pair of quadrature decomposition of 
X(t) as:

where Q is independent of X(t) and is uniformly 
distributed over [0, 2p), and 
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Example: Quadrature-Modulated Random 
Delay Processes
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Example: Quadrature-Modulated Random 
Delay Processes
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Example: Quadrature-Modulated Random 
Delay Processes

n Notably, if t = u, i.e., two quadrature components 
are synchronized, then

which indicates that simultaneous observations of 
the quadrature-modulated processes are “orthogonal” 
to each other! 
(See Slide 1-59 for a formal definition of 
orthogonality.)
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Ergodicity
o For a random-process-modeled noise (or random-

process-modeled source) X(t), how can we know its 
mean and variance?
n Answer: Relative frequency. 
n How can we get the relative frequency?

o By measuring X(t1), X(t2), …, X(tn), and calculating their average, 
it is expected that this time average will be close to its mean.

o Question: Will this time average be close to its mean, 
if X(t) is stationary ?
n Even if for a stationary process, the mean function µX(t) is 

independent of time t, the answer is negative!
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Ergodicity
n An additional ergodicity assumption is necessary 

for time average converging to the ensemble 
average µX.
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Time Average versus Ensemble Average

o Example
n X(t) is stationary.
n For any t, X(t) is uniformly distributed over {1, 2, 3, 

4, 5, 6}.
n Then, ensemble average is equal to:
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Time Average versus Ensemble Average

n We make a series of observations at time 0, T, 
2T, …, 10T to obtain 1, 2, 3, 4, 3, 2, 5, 6, 4, 1. 
(These observations are deterministic!)

n Then, the time average is equal to:
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Ergodicity

o Definition. A stationary process X(t) is ergodic 
in the mean if 

where
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Ergodicity

o Definition. A stationary process X(t) is ergodic 
in the autocorrelation function if

where
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Ergodicity

o Experiments (or observations) on the same 
process can only be performed at different time.

o “Stationarity” only guarantees that the 
observations made at different time come from 
the same distribution.
n Example. Rolling two different fair dices will get 

two results but the two results have the same 
distribution.
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Statistical Average of Random Variables

o Alternative names of ensemble average
n Mean
n Expected value, or expectation value
n Sample average

o How about the sample average of a function g( ) 
of a random variable X ?
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Statistical Average of Random Variables
o The nth moment of random variable X

n The 2nd moment is also named mean-square value.
o The nth central moment of random variable X

n The 2nd central moment is also named variance.
n Square root of the 2nd central moment is also named

standard deviation.

E[Xn] =
R1
�1 xnfX(x)dx
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Joint Moments

o The joint moment of X and Y is given by:

n When i = j = 1, the joint moment is specifically 
named correlation.

n The correlation of centered random variables is 
specifically named covariance.
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Joint Moments
n Two random variables, X and Y, are uncorrelated if 

Cov[X, Y] = 0.
n Two random variables, X and Y, are orthogonal if 

E[XY*] = 0.
n The covariance, normalized by two standard 

deviations, is named correlation coefficient of X
and Y.
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Stable Linear Time-Invariant (LTI) System

o Linear
n Y(t) is a linear function of X(t).
n Specifically, Y(t) is a weighted sum of X(t).

o Time-invariant
n The weights are time-independent.

o Stable 
n Dirichlet’s condition (defined later) and
n “Stability” implies that if the input is an energy function (i.e., finite 

energy), the output is an energy function.
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Example of LTI Filter: Mobile Radio Channel

Transmitter Receiver
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Transmitter Receiver
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Example of LTI Filter: Mobile Radio Channel
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o What are the mean and autocorrelation 
functions of the LTI filter output Y(t)?
n Suppose X(t) is stationary and has finite mean.
n Suppose
n Then 

òò

ò
¥

¥-

¥

¥-

¥

¥-

=-=

úû
ù

êë
é -==

ttµttt

tttµ

dhdtXEh

dtXhEtYEt

X

Y

)()]([)(

)()()]([)(

¥<ò
¥

¥-
tt dh |)(|

Stable Linear Time-Invariant (LTI) System



© Po-Ning Chen@ece.nctu 1-64

Zero-Frequency (ZF) or Direct Current 
(DC) Response

nThe mean of the LTI filter output process is equal to 
the mean of the stationary filter input multiplied by 
the DC response of the system. 
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Autocorrelation Relation of LTI system
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Important Fact: WSS Input Induces 
WSS Output
o From the above derivations, we conclude:

n For a stable LTI filter, a WSS input guarantees to 
induce a WSS output.

n In general (not necessarily WSS), 

n As the above two quantities also relate in the  
“convolution” form, a spectrum analysis is perhaps 
better in characterizing their relationship.

µY (t) =

Z 1

�1
h(⌧)µX(t� ⌧)d⌧
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Summary
o Random variable, random vector and random process
o Autocorrelation and crosscorrelation
o Definition of WSS
o Why ergodicity? 

n Time average as a good “estimate” of ensemble average


