Part 1 Random Processes for
Communications



System Models

[1 A good mathematical model for a system is the
basis of 1ts analysis.

1 Two models are often considered:
B Deterministic model

[1 No uncertainty about its time-dependent behavior at
any instance of time

B Random or stochastic model

[1 Uncertain about its time-dependent behavior at any
instance of time

[] but certain on the statistical behavior at any instance of
time
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Examples of Stochastic Models

[1 Channel noise and interference
[ Source of information, such as voice
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Notion of Relative Frequency

(1 How to determine the probability of “head
appearance’ for a coin?

1 Answer: Relative frequency.
Specifically, by carrying out # coin-tossing
experiments, the relative frequency of head
appearance 1s equal to N, (A4)/n, where N, (A) 1s
the number of head appearance 1n these n
random experiments.
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Notion of Relative Frequency

L1 Is relative frequency close to the true
probability (of head appearance)?

B [t could occur that 4-out-0f-10 tossing results are
“head” for a fair coin!

1 Can one guarantee that the true “head
appearance probability” remains unchanged
(1.e., time-invariant) 1n each experiment
performed at different time instance?
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Notion of Relative Frequency

1 Similarly, the previous question can be
extended to “In a communication system, can
we estimate the noise by repetitive
measurements at consecutive but different time
instance?”’

1 Some assumptions on the statistical models are
necessary!
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Conditional Probability

1 Definition of conditional probability

P(B| 4) _N,(ANB)) _ P(ANB)
N,(4) P(A)

1 Independence of events P(B|A4)=P(B)

B A knowledge of occurrence of event A4 tells us no
more about the probability of occurrence of event B
than we knew without this knowledge.

B Hence, they are statistically independent.
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Random Variable

[1 A non-negative function f,(x) satisfies

Fy(x) =PrX<x) = fx fx(t) dt

1s called the probability density function (pdf) of
random variable X.

L] If the pdf of X exists, then

Jy(x) = aFg(x)
X
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Random Variable

[1 It is not necessarily true that

B If
fX (x) — 6Fg(X)
X

then the pdf of X exists and equals f,(x).

b

© Po-Ning Chen@ece.nctu

1-9



Random Vector

B [fits joint density fy y{(x,y) exists, then

0*F :
fxy(oy) = =550

where Fy y(x,y) = Pr[X < xand Y < y]

B The conditional density of Y given that [X = x] 1s

frix(yle) = 25"

provided that fy(x) # 0.
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Random Process

1 Random process: An extension of multi-
dimensional random vectors

B Representation of two-dimensional random vector

L (X)Y)=(X(1), X(2)) = {X(j), jel}, where the index set /
equals {1, 2}.

B Representation of m-dimensional random vector
L {X(j), jel}, where the index set [ equals {1, 2,..., m}.
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Random Process

B How about {X(?), te®R}?

[] It is no longer a random vector since the index set is
continuous!

[ This is a suitable model for, e.g., a noise because a
noise often exists continuously in time.
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Stationarity

1 The statistical property of a random process
encountered in real world 1s often independent
of the time at which the observation (or
experiment) 1s 1nitiated.

(1 Mathematically, this can be formulated as that
forany ¢, t,, ..., t, and :

Fv)((tﬁr),)((t2 +7),.s X (2, +7) (xl > ‘x2 2°°° xk )

— FX(tl),X(tz) X(tk)(x19x2 9"‘9xk)

.....
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Stationarity

1 Why introducing “‘stationarity?”

B With stationarity, we can be certain that the
observations made at different instances of time have
the same distributions!

B For example, X(0), X(7), X(2T), X(37), ....

B Suppose that Pr[.X(0) = 0] = Pr[X(0)=1] = 2. Can we
guarantee that the relative frequency of ““1’s
appearance’ for experiments performed at several
different instances of time approach 2 by stationarity?
No, we need an additional assumption!

© Po-Ning Chen@ece.nctu 1-14



Mean Function

1 The mean of a random process X(7) at time ¢ is
equal to:

()= ELXO]= [ x- £ (x)dx

where fy,(-) 1s the pdf of X(¢) at time z.

1 If X(?) is stationary, u,(t) is a constant for all 7.
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Autocorrelation

[1 The autocorrelation function of a (possibly
complex) random process X(?) 1s given by:

Rx(t1,t2) = E[X(t1) X" (t2)]
= / / 331$§fX(t1),X(t2)(331,332)dﬂ?ldfﬂz

L1 If X(¢) 1s stationary, the autocorrelation
function R(t,, t,) 1s equal to R(¢; — t,, 0).

© Po-Ning Chen@ece.nctu 1-16



Autocorrelation

Rx(t1,t2) = E[X (t1) X" (t2)]

— / / 33133§fX(t1),X(t2)(331,$2)dﬂ?ldfcz

/ / xlm;fX(tl—tg),X(O) (371,332) dx1dzy
—  E[X(t; — t3)X*(0)]
Rx (tl — 12, O) A short-hand for

R+ (t1 — to) < autocorrelation function
X( L 2) of a stationary process
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Autocorrelation

[1 Conceptually,

B Autocorrelation function = “power correlation”
between two time 1nstances ¢, and 7,.

B “Variance” 1s the degree of variation to the standard
value (1.e., mean).

© Po-Ning Chen@ece.nctu 1-18



Autocovariance

Cx(t1,t2)

— E[X (t1)] X (t2)
)]+ px (t1)px (t2)
t1)px (t2)

+ px (t1)px (t2)
= Rx(t1,t2) — px(t1)px (¢2)
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Autocovariance

L1 If X(?) 1s stationary, C\(t,, t,) becomes

Cx(t1,t2) = Rx(t1,t2) — px(t1)px (t2)
= Rx(t1 —t2,0) — |ux|”
= Cx(t; —t,0)
— Cx(t —t)
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Wide-Sense Stationary (WSS)

1 Since in most cases of practical interest, only

the first two moments (i.e., 1 (¢) and C(¢,, 1,))
are concerned, an alternative definition of
stationarity 1s introduced.

1 Definition (Wide-Sense Stationarity) A

random process X(7) 1s WSS if

11, (¢) = constant;
<
\CX(tvtz) =C, (¢ —1,)

OT «

1, (1) = constant;

\RX(ZLDZLZ) =R, (¢, —1,).
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Wide-Sense Stationary (WSS)

1 Alternative names for WSS
B weakly stationary
B stationary in the weak sense
B sccond-order stationary

1 If the first two moments of a random process
exist (1.e., are finite), then strictly stationary
implies weakly stationary (but not vice versa).

© Po-Ning Chen@ece.nctu 1-22



Cyclostationarity

1 Definition (Cyclostationarity) A random
process X(7) 1s cyclostationary 1f there exists a
constant 7 such that

(/U)((t + 1) = 1, (1),
Co(t,+T,t, +T) = Cy(1,,1,).
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Properties of Autocorrelation Function for
WSS Random Process

1. Mean Square Value: R,{(0) = E[|X(?)|?]
2. Conjugate Symmetry:
Rx(7) = Rx(-7)
B Recall that autocorrelation function = “power
correlation” between two time instances ¢, and #,.

B Fora WSS process, this “power correlation” only
depends on time difference.

B Hence, we only need to deal with R,(t) here.
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Properties of Autocorrelation Function for
WSS Random Process

3. Real Part Peaks at zero: |[Re{R(7)}| = R(0)

Proof:
0

IA

E||X(t+7) £ X(t)]
E[[Xt+7) |+ E|X®OP) £ EX(t+7)X*t)]+ EX#)X*(t+7)]
Rx(0) + Rx(0) £ Rx(7) £ Rx(—7) (Rx(—7)= Rx(7))
2RX (O) + ZRG{RX (7‘)}
Hence, —Rx(0) < Re{Rx(7)} < Rx(0)
with equality holding when
PriX(t+7)=X(t)] = Pr[X(T) ( )] =1
or PriX(t+7) = —X(t)] = Pr|X(r) = -X(0)] = 1
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Properties of Autocorrelation Function for
WSS Random Process

[ Operational meaning of autocorrelation
function:

B The “power” correlation of a random process at ¢
seconds apart.

B The smaller R,(7) 1s, the less the correlation
between X(¢) and X(#+7).

[1 Here, we assume X (t) is a real-valued random process.
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Properties of Autocorrelation Function for
WSS Random Process

B [f R(7) decreases faster, the correlation decreases
faster.

y Rx(7)

v
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Example: Signal with Random Phase

1 Let X(¢) = A4 cos(2nf.t + @), where © i1s
uniformly distributed over [—m, 7).

B Application: A local carrier at the receiver side may
have a random “‘phase difference” with respect to
the phase of the carrier at the transmitter side.
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Example: Signal with Random Phase

...0110 ...,—m(t), m(t), m(t), —m(t)

Channel » Modulator
Encoder {

i« [ »
x(t)=A cos(2mf 1)
Local carrier _ Carrier wave
cos21+0) | WO~ 40827t
0110... 1 4 s(t |
- | z O yT OT dt <—O< E v () @7
co?r_é_l_é_fci_rm‘:j_ |

An equivalent view: ~ Local carrier  X{(£)=4 cos(2nf,t+®) 1-29
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Example: Signal with Random Phase

Then  u,(t)= E[Acos(2nf .t +®)]

= r Acos(27z]‘ct+6’)id¢9
7 2

_ A [ cos(0+21f,d0
27 Y

A

- (sin(H + 2@[}))‘7_[
27 ’

_ A4 (sin(7r + 27f 1) —sin(—7 + 27f 1))
27

= 0.
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Example: Signal with Random Phase

R, (¢,t,)=E[Acos(2nf t, +©O)- Acos(2xf t, + O)]

= Azj_ cos(0+27f t)cos(0+27f t, )—d@

;1—2 (cos[(9+27yff )+(0+241,)]
T

+cos|(@+2af.t)— (0 +2xf1,)])d0
A a2 ) ol - o
A2

_ 7Cos(z,yf (t,—t,)).  Hence, X(¢) is WSS.
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Example: Signal with Random Phase

R (1)

\ A NN [

VALVARVARV;




Example: Signal with Random Delay

1 Let

X(t) = iA.ln-p(z—nT—td)

where ..., 1 ,, 1,1, I, I,, ... are independent,
and each /; 1s either —1 or +1 with equal
probability, and

(

1, 0<t<T

[) =+
P(0) 0, otherwise
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Example: Signal with Random Delay

1y

I

I3
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Example: Signal with Random Delay

...0110 ...,—m(t), m(t), m(t), —m(t)

Channel » Modulator
Encoder {

~ | - — -
- — = =
-
—_— -

No (or ignore)

w()=0 carrier wave
0110... | « | yvr [+, | t
2 0 yr Tt—td i s(?)
d
correlator

An equivalent view: foT dt X(¢) =4 p(t—ty) 1-35




Example: Signal with Random Delay

B By assuming that 7, 1s uniformly distributed over [0,
T), we obtain:
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Example: Signal with Random Delay

B A useful probabilistic rule: E[X] = E[E[X]Y]]

So, we have:

ELX(t)X (6= E[E[X () X 0,1, ]

(E[X|Y] = /X:vfxw(wly)dw = g(y)

BIELY]] = | o) fr(w)dy

Yy

Note: |

\
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E[x(t)x @), ]
=F (ZA [ -p(t,—nT —t )j(ZA [ -p(t,—mT —t )jtd

o0 o0

ZZ [1 1 |t,]E[p(t,—nT —t)p(t,—mT —t,)|t,]

o0

= A’ i ZE[[n]m]p(tl _nT_td)p(tz _mT_td)

=—00/ =—00

= A’ ZE[[j]p(tl _nT_td)p(tz _nT_td)

=4 Zp(tl —nT —t,)p(t, —nT —t,)

“Since E[1 1 1=E[l]E[I ]=0 for n # m“
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Among —oo < n < oo, there is at most one n that can make
p(ty = nT —ty)p(te —nT —tg) = 1.

Without loss of generality, we let {1 = mT 4+ £ and to =t — T,
where m is an integer and 0 < & < T'.

p(t1 —nT —tg) =p(ta —nT —tg) =1
&S 0<t1—nT —tg<T and0<ty—nT —tyg<T
t, —t, t, —ty ty —tg ty —tg
and

_ < — <
7 l<n< T 7 l<n< T

th—ta| | t2—ta
e

ml' +§—tqg| |ml+§—7—14
e [

~
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& m-+ {g_th =1m + \Lg—T_th From Sth 1—24,
T T Rx(r) = R (=)
s |7t _|E-T—ta hence, it suffices to
T I T L consider 0 < 7 < T.
§—ta| |§—T—ta|
= T = | T _ =—1lor0

(Note that F;—MJ can only be either —1 or 0 since 0 < §,t; < T'.)

— (E<tg<é+Tandé—T7<t3<€—7+7T)
or({—T<tg<€andé—717-T <t <€—7T)

<ty <€—7+T) or ((-T<tg<€—71) for 0<7<T
(§<ta<T) or (0<t3<&-7), 0<7<E;

{§<td§§—r+T, E<1T<T,

|

where in the last step, we use again 0 <tz < T.
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Example: Signal with Random Delay

R X(’C)“

AN

—T T

© Po-Ning Chen@ece.nctu 1-42



Cross-Correlation

[] The cross-correlation between two processes
X(¢) and Y(?) 1s:

Rx,y(t, u) = E[X(t)Y*(u)]

[1 Sometimes, their correlation matrix is given
instead for convenience:

R,(t,u) R, ,(t,u)

R, ., (t,u)=
X’Y( ) RY,X(tau) Ry(tau)_
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Cross-Correlation

L1 If X(¢) and Y(¢) are jointly WSS, then

Ryy(tu)=Ry,(t-u)
Ry (t—u) Ry y (1 - u)

_RY,X(t —u) Ry (t—u) )
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Example: Quadrature-Modulated Random
Delay Processes

1 Consider a pair of quadrature decomposition of
X(?) as:
X, ()= X(t) cos(2fy’ct + @)

| X,(1) = X(1)sin(2af 1 + ©)

where © 1s independent of X(¢) and 1s uniformly
distributed over [0, 21), and

X(t)= iA']n -p(t—nT —t,)

Nn=—00
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Example: Quadrature-Modulated Random
Delay Processes

R, . (t,u) = ELX, ()X, (u)]
= E[X(t)cos2ft +©)- X (u)sin(2af u + ©)]
= ELX())X (w)]E[sin(22f u + ®) cos(27. + O)
R E[W +sin(27, (u - r))}

= sin(27y‘c(t —u))R, (t,u)
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Example: Quadrature-Modulated Random
Delay Processes

Rx(t,u) = A2 (1 _ ltu ) 1{|t — u| < T}

Set A=T =1 and f. = 4.

0.5

0.4 ' ' ',~||
A

03 | ll" | 'l

[ [

0.2 | A || 'l | s
‘ "(\,ll

RXI ?XQ (T) Ei ‘/\" ‘| " ' l ' ' . ' || l’ lII

8 \/ ||| |‘ |' |‘ i(
-0.1 |'|| “1‘ ‘Q |
0.2 |l| l ' .
Py v ll’ |

-0.4 £ 1

-0.5
=2 =B 0 1

© Po-Ning Chen@ece.nctu 1-47



Example: Quadrature-Modulated Random
Delay Processes

B Notably, if 1 = u, 1.e., two quadrature components
are synchronized, then

R, . (t,1)=0

which indicates that simultaneous observations of

the quadrature-modulated processes are “orthogonal”
to each other!

(See Slide 1-59 for a formal definition of
orthogonality.)
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Ergodicity

For a random-process-modeled noise (or random-
process-modeled source) X(¢), how can we know its
mean and variance?

B Answer: Relative frequency.

B How can we get the relative frequency?

[0 By measuring X(¢,), X(¢,), ..., X(t,), and calculating their average,
it 1s expected that this fime average will be close to its mean.

Question: Will this time average be close to its mean,
1f X(7) 1s stationary ?

B Even if for a stationary process, the mean function z,(?) 1s
independent of time ¢, the answer 1s negative!
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Ergodicity

B An additional ergodicity assumption 1s necessary
for time average converging to the ensemble
average [y.
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Time Average versus Ensemble Average

[1 Example
B X(7) 1s stationary.

B For any 7, X(¢) 1s uniformly distributed over {1, 2, 3,
4,5,6}.

B Then, ensemble average 1s equal to:

1-l+2-l+3~l+4-l+5-1+6-l:3.5
6 6 6 6 6 6
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Time Average versus Ensemble Average

B We make a series of observations at time 0, 7,
2T, ..., 10Ttoobtain 1, 2, 3,4, 3,2, 5, 6,4, 1.

(These observations are deterministic!)

H T

hen, the time average 1s equal to:

1+2+3+4+3+2+5+6+4+1
10

3.1
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Ergodicity

[1 Definition. A stationary process X(?) 1s ergodic
inthe mean it .~ oot

. Pr[hm,uX(T) yX] 1, and
2. ;nn Var[,uX(T)]z

where

1
u ()= [ X0y
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Ergodicity

1 Definition. A stationary process X(¢) is ergodic
in the autocorrelation function 1f

Ensemble
Time avera ge

1. Pr limRX(f;T):RXV(T)]:Land

T—x

2. lim Var|R, (7;T)|=0

Rx(;T) = o

2T

where 1 (T
jX(t+T)X*(t)dt

-T
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Ergodicity

1 Experiments (or observations) on the same
process can only be performed at different time.

1 “Stationarity” only guarantees that the

observations made at different time come from
the same distribution.

B Example. Rolling two different fair dices will get

two results but the two results have the same
distribution.
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Statistical Average of Random Variables

1 Alternative names of ensemble average
B Mean
B FExpected value, or expectation value

B Sample average

(1 How about the sample average of a function g( )
of a random variable X ?

E[g(X)] = g(x)f(x)dx
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Statistical Average of Random Variables

The nth moment of random variable X

E(X" =[O z"fx(z)dz

B The 2nd moment 1s also named mean-square value.

The nth central moment of random variable X

E[IX - px|"] = [, & — px|" fx(¢)da

B The 2nd central moment 1s also named variance.

B Square root of the 2nd central moment 1s also named
standard deviation.
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Joint Moments

[1 The joint moment of X and Y is given by:

syl - [ [ ey s

B Wheni=j=1, the joint moment 1s specifically
named correlation.

B The correlation of centered random variables 1s
specifically named covariance.

Cov[X,Y| = E|[(X — ux)(Y —py)*| = E|XY™| — puxpy
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Joint Moments

B Two random variables, X and Y, are uncorrelated 1f
Cov[X, Y] =0.

B Two random variables, X and Y, are orthogonal 1f
E[XY]=0.

B The covariance, normalized by two standard

deviations, 1s named correlation coefficient of X

and Y.
_ Cov[X,Y]

O xOy

yo,
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Stable Linear Time-Invariant (LTI) System

Impulse

X(?) > Response > 1(9)
h(?)

[J Linear
B Y(7) is a linear function of X(?).
B Specifically, Y(¢) 1s a weighted sum of X(7).
[ Time-invariant
B The weights are time-independent.
[] Stable .
B Dirichlet’s condition (defined later) and |, | A7) [ d7 <o

B “Stability” implies that if the input 1s an energy function (i.e., finite
energy), the output is an energy function.
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Example of LTI Filter: Mobile Radio Channel

(7))
X(@) /@;)\ Y(¢)

Transmitter Recelver

Y(t) = 051X(t— 7'1) -|—042X(t —’7'2) -|-C\{3X(t—7'3)

3
1=1

| L 15

Lo to+ T2 tot+T to+ T3
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Example of LTI Filter: Mobile Radio Channel

X(1) Y (1)
Transmitter Receiver

Y(t) = j:h(z)X(r ~7)dr
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Stable Linear Time-Invariant (LTI) System

1 What are the mean and autocorrelation
functions of the LTI filter output Y(7)?

B Suppose X(7) 1s stationary and has finite mean.

B Suppose f|h(r)|df<oo
B Then

w,(t)=E[Y(?)]= EU:h(T)X(t — z')dr]

= I:h(r)E[X(t —7)|dt=u, [;h(f)df
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Zero-Frequency (ZF) or Direct Current
(DC) Response

Impulse 00
1 > Response > / h(’l‘ ) dt
h(t) —00

B The mean of the LT filter output process 1s equal to
the mean of the stationary filter input multiplied by
the DC response of the system.

Hy = Hy j—oo h(r)dz
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Autocorrelation Relation of LTI system

Ry(t,u) = E[Y(t)Y"(u)]

= If X(t) WSS,
then Ry (7) = / / h(m1)h™(m2)Rx (T — 11 + T2)dT2dm.
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Important Fact: WSS Input Induces
WSS Output

1 From the above derivations, we conclude:

B For a stable LTI filter, a WSS 1nput guarantees to
induce a WSS output.

B [n general (not necessarily WSS),
py (t) = / T)px (t —7)dT
t u / / ’7'2 RX t—Tl,u—TQ)dTQdTl

B As the above two quantities also relate 1n the
“convolution” form, a spectrum analysis 1s perhaps
better in characterizing their relationship.
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Summary

Random variable, random vector and random process
Autocorrelation and crosscorrelation

Definition of WSS

Why ergodicity?

B Time average as a good “estimate” of ensemble average
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