
Introduction to Combinatorics Lecture 16

Combinatorial Optimization

• ”Optimization” plays the most important role in applications.

• If it is not of continuous type, then we refer this type of optimization problems as

combinatorial optimization.

• So, we are aiming at minimizing or maximizing combinatorial objects.

Minimizing problems.

1. Chromatic number, Chromatic index of graphs

2. Domination number

3. Vertex cover, Edge cover

4. Genus, Thickness, Crossing number

5. Decycling number

6. Optical index

7. Minimum spanning tree, Traveling salesman problem (TSP)

8. Connectivity, Edge-connectivity

9. Arboricity, Linear arboricity

Maximizing problems.

1. Independence number, Maximum clique

2. Maximum matching

3. Maximum flow in networks

4. Longest cycle in graphs

5. Diameter, Longest path in graphs (hypergraphs)

1

Introduction to Combinatorics Lecture 16

6. Maximum genus

7. Hamilton cycle problem (Longest cycle, Perimeter of a graph)

Some of the above mentioned problems are solved in the sense of finding an algorithm

which uses polynomial time. For example, the minimum spanning tree problem in a

weighted connected graph, the maximum matching problem, the longest path problem

and the maximum flow problem in a network with rational capacity.

The idea of using algorithm to solve a problem in Graph Theory is known as ”Algorith-

mic Graph Theory”. Almost all problems in Graph Theory can be ”partially” solved or

solved by using algorithm.

If there exists a polynomial time algorithm to find the solution, then we consider the

problem is solved. Of course, we are not limited to consider special classes of graphs if

we claim the problem is solved in general.

MST-problem.

One of the well-known problem that is solved is ”MST-problem”, i.e., finding a minimum

spanning tree (total weights) in a weighted connected graph with real weights.

Figure 16.1

The solution can be obtained by selecting edges with minimum weight among the edges

left as long as we don’t create a cycle.

2

Introduction to Combinatorics Lecture 16

Maximum matching problem.

Another problem that is solved is finding a ”maximum matching” of a graph.

Theorem 16.1. Let G be a graph and M be a matching in G. Then either M is a

matching of maximum cardinality or there exists an M-augmenting path.

Proof. Clearly, if M is of maximum cardinality, then no M -augmenting paths exist. On

the other hand, if M ′ is a matching with larger cardinality than |M |, let G′ = (V,M∪M ′).

Then, 4(G′) = 2. This implies that the components of G′ are either a path or a cycle.

Since |M ′| > |M |, at least one component of G′ contains more edges from M ′ than that

from M . Such a component is in fact an augmenting path.

But, for more problems mentioned above, finding solutions for general graphs are very

difficult. From the ”algorithm” point of view, they are NP-hard, i.e., so far no polynomial

time algorithms have been obtained.

Min-max problems.

A type of problems are called min-max problems. First, we review the well-known

Menger’s Theorem.

Theorem 16.2 (Menger, 1927). The maximum number of internally disjoint s− t paths

is equal to the minimum size of an s− t cut (or 〈s, t〉-separating set).

Remark.

• We can extend s, t to S, T .

• We can extend the undirected version to directed version.

• We can also extend ”vertex-disjoint paths” version to ”edge-disjoint paths” version.

Idea of proof.

• The idea can be depicted as Figure 16.2.

• c ≥ n (in general): trivial observation.

3

Introduction to Combinatorics Lecture 16

The size of an s− t cut: c

Number of s− t internally disjoint paths: n

Figure 16.2

• So, the main proof comes from the existence c1 ”paths” and an s − t cut of size

”c1”. Therefore, c1 is the answer.

• So, we prove that if c1 is the minimum size of an s − t cut, then there exist c1

internally disjoint s− t paths.

This theorem has a beautiful extension to networks.

Definition 16.1 (Flow). Let D = (V,A) be a directed graph and let s (source) and t

(sink) be two vertices in V . A function f : A→ R is called an s− t flow if

1. ∀a ∈ A, f(a) ≥ 0, and

2. ∀v ∈ V \ {s, t},
∑

x∈δin(v)

f(x) =
∑

y∈δout(v)

f(y), where x has head v and y has tail v.

Definition 16.2 (Value of a flow). The value of f, value(f) =def

∑
x∈δout(s)

f(x)−
∑

y∈δin(s)

f(y).

Equivalently, value(f) =
∑

x∈δin(t)

f(x)−
∑

y∈δout(t)

f(y).

(δin(U) =
⋃
u∈U

δin(u), δout(U) =
⋃
u∈U

δout(u), and δin(u) (resp. δout(u)) is the set of arcs in

A with head u (resp. tail u).)

Definition 16.3 (Capacity). In a network D = (V,A), a capacity function is a mapping

c : A→ R+. We say that a flow f is subject to c if f(a) ≤ c(a) for each a ∈ A.

4

Introduction to Combinatorics Lecture 16

Definition 16.4 (Cut). A cut in a network is a subset U of V which contains s but not

t, i.e., 〈U, V \ U〉.

Definition 16.5 (Capacity of a cut). The capacity of a cut U is defined as

c(U) =def c(δ
out(U) =

∑
a∈δout(U)

c(a)

where δout(U) denotes the set of arcs (x, y) with x ∈ U and y ∈ V \ (leaving U), and

δin(U) denotes the set of arcs (x, y) with x ∈ V \ U and y ∈ U (entering U).

Figure 16.3

Proposition 16.3. In a network D = (V,A), value(f) ≤ c(δout(U)) = c(U), where U is

a cut and f is a flow from s to t.

Proof.

value(f) = (
∑

a∈δout(s)

f(a)−
∑

a∈δin(s)

f(a)) +
∑
v∈U\s

(
∑

a∈δout(v)

f(a)−
∑

a∈δin(v)

f(a))

= (
∑

a∈δout(s)

f(a)−
∑

a∈δin(s)

f(a)) +
∑
v∈U\s

0

=
∑

a∈δout(U)

f(a)−
∑

a∈δin(U)

f(a)

≤
∑

a∈δout(U)

f(a) ≤
∑

a∈δout(U)

c(a) = c(δout(U)) = c(U).

5

Introduction to Combinatorics Lecture 16

Remark. The equality value(f) = c(U) holds if (1) ∀a ∈ δin(U), f(a) = 0 and (2)

∀a ∈ δout(U), f(a) = c(a).

Theorem 16.4 (max-flow min-cut theorem). For any network D = (V,A) with source

s and sink t, the maximum flow value f from s to t is equal to the minimum capacity

c : A→ N of an s− t cut.

(We consider integral capacity in this theorem. For the case when the capacity is either

rational or real can be obtained by more careful arguments.)

Proof. By the edge-version of Menger’s theorem, the maximum number of edge-disjoint

s− t paths is equal to the minimum size of an s− t edge-cut. Note that this theorem is

true for multi-digraph as well.

Now, we define a new digraph D′ by letting each arc a ∈ A be replaced by c(a) arcs (with

the same orientation). Thus, we have a directed multi-graph. By Menger’s theorem, in

D′, the maximum number of s−t edge-disjoint directed paths is equal to an s−t edge-cut

E ′ with minimum size.

Therefore, D′ − E ′ contains no dipaths from s to t. This implies that we have an s − t
edge-cut in D with capacity |E ′| and also a cut U in D satisfying

∑
a∈δout(U)

c(a) = |E ′|.

Clearly, this is the maximum number of s− t dipaths by Menger theorem.

Remark. U can be obtained by using the arc-induced subgraph of D′ by E ′.

Finding a maximum flow. (Flow augmenting algorithm)

Idea.

1. First, we start with an ”initial flow f” from s to t, say value(f) = 0.

2. Then, from s to t we have an s − t path (directed) P = 〈s = v0, v1, v2, ..., vk = t〉
where ai = (vi−1, vi), i = 1, 2, ..., k.

3. P is called a flow augmenting path if for each i = 1, 2, ..., k, either ai ∈ A, σi =

c(ai)− f(ai) > 0 or a−1i ∈ A, σi = f(a−1i) > 0.

(Note that for the initial flow, the second case won’t happen.)

6

Introduction to Combinatorics Lecture 16

4. If for each i = 1, 2, ..., k, σi > 0, then we can increase the current flow value by

σ = min{σ1, σ2, ..., σk}. Define a new flow f ′.

f ′(a) =

f(a) + σ if a = ai and σi = c(ai)− f(ai) > 0;

f(a)− σ if a = a−1i and σi = f(a−1i) > 0;

f(a) if a 6∈ P.

• If there are no flow augmenting paths left, then the flow value is maximum.

The above algorithm was obtained by Ford and Fulberson long time ago and it is known

as ”maximum flow algorithm” now. There are applications in network by using the above

theorem, especially on transportation and networking. Here, we present applications in

proving the other theorem in Combinatorics.

Example 1. (Hall’s marriage theorem)

Let G = (X, Y) be a bipartite graph. If for each subset A ⊆ X, |NG(A)| ≥ |A|, then G

has a matching saturates A.

Proof. Define a network as follows: Let D = (V,A) be the network where V = {s, t}∪X∪
Y, A = A1 ∪A2 ∪A3 = {(s, x) | x ∈ X} ∪ {(y, t) | u ∈ Y } ∪ {(x, y) | xy is an edge of G},
each arc of A1 ∪ A2 has capacity 1 and each arc of A3 has capacity M > |X|.
Now, we claim that the network contains a flow with value |X|. This implies the suffi-

ciency of Hall’s theorem. First, let U be a cut with minimum capacity, see Figure 16.4.

U = {s} ∪ X1 ∪ Y1. Then, the capacity of cut c(U) = |X| − |X1| + |Y1|. Since c(U) is

minimum, ND(X1) ⊆ U1. By assumption, |Y1| ≥ ND(X1) ≥ |X1|. Hence, c(U) ≥ |X|.
This concludes the proof.

Example 2.

For a bipartite graph G = (X, Y), define the deficiency

def(A) =def

|A| − |NG(A)| if |A| > |NG(A)|

0 otherwise.

7

Introduction to Combinatorics Lecture 16

Figure 16.4

Then, def(G) =def {def(A) | A ⊆ X}. The revised version of Hall’s marriage theorem

is to prove that G contains a matching of size |X| − def(G).

Proof. By using max-flow min-cut theorem, we are able to prove the revised version.

Mainly, using the same idea as Example 1 and we are able to find a maximum flow with

value |X| − def(G). (Hall’s condition shows that def(G) = 0.)

Example 3.

A (0, 1)-matrix is double stochastic if its row sums and column sums are constant.

e.g.
0 1 1

1 0 1

1 1 0

A double stochastic matrix with row sums and column sums 2.

Prove that a double stochastic matrix can be written as the sum of permutation matrices.

Proof. Let M =
[
mi,j

]
n×n

be the matrix we consider, furthermore, let its row sum (resp.

column sum) be k. Clearly, 1 ≤ k ≤ n and M can be corresponded to a bipartite graph

(A,B) where |A| = |B| = n. Similar to Example 1, we can define a network with source

s and sink t. Also, the capacities of arcs are defined by the same way.

Now, it is suffices to prove that the minimum cut must be of capacity n (?) and thus we

obtain a flow with value n. This shows that M can be the sum of a permutation matrix

8

Introduction to Combinatorics Lecture 16

and a double stochastic matrix M ′ with row sum and column sum k − 1. Hence, the

proof follows by induction on k.

Figure 16.5

Remark. (the (?) part) Let U = {s} ∪ A1 ∪ B1 be the minimum cut. Since M >

n, N(A1) ⊆ B1. By assumption, the degree sum of vertices in A1 (in (A,B)) is equal

to |A1| · k. This implies that the degree sum of vertices of B1 (in (A,B)) is at least

|A1| · k. But, each vertex of B1 is of degree k (in (A,B)), thus |B1| ≥ |A1|. Now,

c(U) = |A| − |A1|+ |B1| ≥ |A| = n.

Example 4.

A function f : A → R defined on a directed graph D = (V,A) is called a circulation if

for each vertex v ∈ V , we have

∑
a∈δin(v)

f(a) =
∑

b∈δout(v)

f(b).

Note that the flow conservation law holds at each vertex v.

The following theorem can be proved by using max-flow min-cut theorem, we omit the

details here.

Theorem 16.5 (Hoffman, 1960). Let D = (V,A) and d, c : A→ R satisfying d(a) ≤ c(a)

for each a ∈ A. Then, there exists a circulation f such that d(a) ≤ f(a) ≤ c(a) ∀a ∈ A
if and only if for each subset U ⊆ V,

∑
a∈δin(U)

d(a) ≤
∑

a∈δout(U)

c(a), i.e., d(δin(U)) ≤

c(δout(U)).

9

Introduction to Combinatorics Lecture 16

Final words.

Combinatorics or Combinatorial Theory play an important role in modern era especially

on discrete models. This one semester course can only provide some parts of the topic

due to the limit of time. In fact, I am not sure that we are able to cover everything even

we are given infinite amount of time. At the time about to finish, there are new topics

to occur. Always, new ideas to come and thus new topics to learn. So, we just have to

move toward as long as we learn ”Combinatorics”, the world of counting.

10

