Introduction to Combinatorics Lecture 15

Probabilistic Method (Graphs)

Definition 15.1 (Random graph with edge probability). G(n,p) or G(n, P = p), where
0 < p < 1. The probability of the existence of an edge (independently) is p and the graph

induced by using existent edges is G.

Definition 15.2 (Discrete Probabilistic Space, D.P.S.). A D.P.S. is an ordered paired
pair (S, f) where S is countable set and f : S — R satisfying (i) 0 < f(x) <1 and

() S fla) = 1.

zeS
Remark. A countable set is either finite set or an infinite set which has the same cardi-

nality as N.

Definition 15.3. Let (S, f) be a D.P.S.. Then the probability of an event A C S is

P(A) =) f(x).

TEA

Definition 15.4 (Independent event). If P(AN B) = P(A)P(B), then A and B are

independent events.

Definition 15.5 (Random variables). Let (S, f) be a D.P.S.. Then X : S — R is a

random variable where we use (X = k) := {z € S | X(z) = k} to denote an event.

eg Let S = [1,6)° and f(z,y) = % for cach (z,y) € [1,67 X((,9) = ¢ +y, k=T.
Then, (X = 7) = {(1,6), (2,5), (3.4), (4,3), (5,2), (6,1)}.

Definition 15.6 (Expectation). Let X be a random variable. Then the expectation of
X, EX) = Y k- P(X = k). (We define P(X = h) = 0 if & is not in the image of
k

X:5—=R)
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e.g. (Continued) X = 7.
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Lemma 15.1 (Pigeon-Hole Principle of Expectation). Let X be a random variable of a
D.P.S.. Then, there exists a y € S such that X(y) > E(X).

Lemma 15.2 (Linear Property of Expectation). Let X, Xi, ..., X, be random variables
such that X = " X;. Then, E(X) = Y "E(X;).
i=1

i=1

Definition 15.7 (Indicator Random Variable). An indicator random variable for the

event A C S, I[A], is a random variable X such that X : S — {0,1} (instead of R).

Remark. A random variable X can be written as a sum of |S| indicator random variables
for an event A C S,
1 ifve A and

T, =
0 otherwise.

Here are some examples of probabilistic method.

Theorem 15.3. If (Z) 91-(3) < 1, then R(k,k) > n. Thus,

k
2

R(k, k) > |22], ¥ k > 3.

Proof. Consider a random red-blue coloring of the edges of K,,. For a fixed set T" of k
1
vertices, let Ar be the event that (T') k, is nomochromatic. Hence, P(Ar) = (5)@) 2=

91-(3). Since there are <Z) possible sets for T', the probability that at least one of the
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events A occurs is <Z) 91-(3), By assumption, . 21*(5) < 1. This implies that no

n
k
event Ar occurs is of positive probability, i.e., there exists a red-blue coloring such that

no monochromatic Ky exists. Thus, we have R(k, k) > n.

k
2

Now, if we take n = L2( )J, then

Hence, R(k, k) > L2%J, for all £ > 3. This concludes the proof.

Theorem 15.4 (Szele, 1943). There ezists a tournament T,, such that T,, has at least
!

1 Hamiltonian paths.

Proof. There are n! possible Hamiltonian (undirected) paths and the probability of a

undirected Hamiltonian path is a directed Hamiltonian path is Therefore, E(X) =
1

2n71'

2n71'

n!- This concludes the proof.

1

Theorem 15.5. O«(;);E jz: Ii;:ﬂ;;—zaj.
G

veV(Q)

Proof. (Greedy Algorithm) In a set of dege(v) + 1 vertices we can select one vertex. This

concludes the proof by selecting an independent set one vertex at a time.

[]

Proof. (Random idea) Use 1,2,...,|G| to label the vertices of the set V(G) randomly,
call this bijection ¢. Let vy € S (an independent set) if ¢(vy) = min{p(x) | = €
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N (vp) (neighbor of vg)}. So, the probability is and the expectation value is

1+ dega(vo)

1
2 1+ degg(v)

veV(G)
nd n
Theorem 15.6. If |G| =n and ||G|| = 5 d>1, then a(G) > 2"

Proof. Let S C V(@) be a random subset defined by Plv € S] = p. Let X = |S|. For each
e ={v;,v;} € E(G), let Y, be the indicator random variable for the event {v;,v;} C S and

d
Y = ZY;. Now, E(Y,) = Plv;,v; € S] = p* and thus E(Y) = % -p?. Since E(X) = np,
eck
d d 1
E(X-Y)=np— %pz =np(1— Ep), p=- gives the maximum. Hence, E(X —-Y) = %
Thus, there exists a specific S for which |[S|—||{(S)¢|| > ;—d Now, select one vertex from

n
each edge of S and delete it to obtain a set S™ with at least 24 vertices. Since all edges
are gone, S is an independent set.

]

Definition 15.8. We use n-th space G" to denote the distribution of graphs of order n.
Let ¢, be the probability of the existence of ”Property Q.

Definition 15.9. If lim ¢, = 1, then we say ”Property Q" almost always holds or in

n—o0

this case, almost all graphs have ”Property Q.

Theorem 15.7 (Gilbert, 1959). Let 0 < p < 1 be a constant. Then, almost all graphs

are connected.

Proof. If G is not connected, then there exists a subset S C V(G) such that (S, V(G) \
S) = (). This implies that the probability g, of the existence of disconnected graphs of

order n satisfies
[5]
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where z is fixed. Hence,

< 1& where z = n(1 — p)2.

But lim z = lim n(1 —p)2

n—oo n—oo

= 0. This implies that lim ¢, = 0.
n—oo

Lemma 15.8 (Markov’s Inequality). Let p, = P(X = k), k > 0. Then, p(X > t) <

E(X
%. Moreover, if E(X) — 0, then P(X =0) — 1.

Proof.
EX)=> kpe> Y kpe>t-Y pp=1tP(X >1).

k>0 k>t k>t

Theorem 15.9. Let 0 < p < 1 be a constant. Then almost all graphs are of diameter 2.

Proof. Let X = Z X;; where X ; is the indicator random variables such that
i#j

. 1 if v; and v; do not have a common neighbor, and
iyj =

0 otherwise.

Note that the probability of "v; and v; do not have a common neighbor” is equal to

(L)' Hence P, = 1) = (13" Ths, B = 3 808) = () (152"
1#]

Since lim (Z) (1—p*)"2=0, E(X) — 0. This implies that P(X = 0) — 1, i.e., almost

n—o0
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every pair of distinct vertices v; and v; have a common neighbor. This concludes the

proof.

]

Theorem 15.10. For every constant p € (0,1) and every graph H, almost all graphs G

contains an induced copy of H.

Proof. Let H be given and |H| = k. Let U be a set of k (fixed) vertices of G. Then,
(U)e = H with a certain probability » > 0. (r depends on p, not n. (7)) Now, G contains
a collection of L%j disjoint sets U; of size k. So, the probability that none of (U;)¢ is
isomorphic to H is (1 — 7)), Hence, P[H £ G] < (1 —r)l¥) = 0 as n — oo.

[]

Theorem 15.11. Let P, ; be the property that for any disjoint vertex sets U and W with
|U| < i and |W| < j, there exists at least one vertex v ¢ UUW that is adjacent to all the
vertices of U but to none of the vertices of W. Then, for every constant p € (0,1) and
1,7 € N, almost all graphs G* has property P, ;.

Proof. Let i,7 € N be fixed and ¢ =1 —p. Let U and W be two disjoint vertex sets with
|U| < i and |[W| < j. The probability that v € V(G) \ (U U W) is adjacent to U but
not to W is p!Ylg™! > pi¢?. Hence, the probability that no suitable v exists for these U
and W is (1 — plYlgWhr=IVI=IWE < (1 — pig/)"="=J_ Since the number of (U, W) pairs is

at most n'™7 the probability that P, ; does not hold is n L (1—p'g)"" 7 — 0asn — oo.

----

.
.
.
.
.



Introduction to Combinatorics Lecture 15

Corollary 15.12. For every constant p € (0,1) and k € N, almost all graphs are k-

connected.

Proof. Let i =2 and j = k— 1. Since almost all graphs has property Poy_1, |G| > &k + 2.
Let W be an arbitrary set of at most k — 1 vertices. Then for all z,y € V(G) \ W, either
x is adjacent to y or x and y have a common neighbor. (U = {z,y}) Therefore, W is not

a vertex cut. This concludes the proof.

]



