
Introduction to Combinatorics Lecture 15

Probabilistic Method (Graphs)

Definition 15.1 (Random graph with edge probability). G(n, p) or G(n, P = p), where

0 ≤ p ≤ 1. The probability of the existence of an edge (independently) is p and the graph

induced by using existent edges is Gp.

Definition 15.2 (Discrete Probabilistic Space, D.P.S.). A D.P.S. is an ordered paired

pair (S, f) where S is countable set and f : S → R satisfying (i) 0 ≤ f(x) ≤ 1 and

(ii)
∑
x∈S

f(x) = 1.

Remark. A countable set is either finite set or an infinite set which has the same cardi-

nality as N.

Definition 15.3. Let (S, f) be a D.P.S.. Then the probability of an event A ⊆ S is

P (A) =
∑
x∈A

f(x).

Definition 15.4 (Independent event). If P (A ∩ B) = P (A)P (B), then A and B are

independent events.

Definition 15.5 (Random variables). Let (S, f) be a D.P.S.. Then X : S → R is a

random variable where we use (X = k) := {x ∈ S | X(x) = k} to denote an event.

e.g. Let S = [1, 6]2 and f(x, y) =
1

36
for each (x, y) ∈ [1, 6]2. X((x, y)) = x + y, k = 7.

Then, (X = 7) = {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}.

Definition 15.6 (Expectation). Let X be a random variable. Then the expectation of

X, E(X) =
∑
k

k · P (X = k). (We define P (X = h) = 0 if h is not in the image of

X : S → R.)
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e.g. (Continued) X = 7.

E(X) = 2 · 1

36
+ 3 · 1

18
+ 4 · 1

12
+ 5 · 1

9
+ 6 · 5

36
+ 7 · 1

6

+ 12 · 1

36
+ 11 · 1

18
+ 10 · 1

12
+ 9 · 1

9
+ 8 · 5

36

= 14 · ( 1

36
+

1

18
+

1

12
+

1

9
+

5

36
+

1

12
)

= 14 · 1 + 2 + 3 + 4 + 5 + 3

36
= 7.

Lemma 15.1 (Pigeon-Hole Principle of Expectation). Let X be a random variable of a

D.P.S.. Then, there exists a y ∈ S such that X(y) ≥ E(X).

Lemma 15.2 (Linear Property of Expectation). Let X, X1, ..., Xm be random variables

such that X =
m∑
i=1

Xi. Then, E(X) =
m∑
i=1

E(Xi).

Definition 15.7 (Indicator Random Variable). An indicator random variable for the

event A ⊆ S, I[A], is a random variable X such that X : S → {0, 1} (instead of R).

Remark. A random variable X can be written as a sum of |S| indicator random variables

for an event A ⊆ S,

xv =

1 if v ∈ A, and

0 otherwise.

Here are some examples of probabilistic method.

Theorem 15.3. If

(
n

k

)
· 21−(k

2) < 1, then R(k, k) > n. Thus,

R(k, k) > b2
k
2 c, ∀ k ≥ 3.

Proof. Consider a random red-blue coloring of the edges of Kn. For a fixed set T of k

vertices, let AT be the event that 〈T 〉Kn is nomochromatic. Hence, P (AT ) = (
1

2
)(

k
2) · 2 =

21−(k
2). Since there are

(
n

k

)
possible sets for T , the probability that at least one of the
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events AT occurs is

(
n

k

)
· 21−(k

2). By assumption,

(
n

k

)
· 21−(k

2) < 1. This implies that no

event AT occurs is of positive probability, i.e., there exists a red-blue coloring such that

no monochromatic Kk exists. Thus, we have R(k, k) > n.

Now, if we take n = b2(k
2)c, then

n
k

 · 21−

(
k

2

)
<
nk

k!
· 21+ k

2

2
k2

2

(1−
(
k

2

)
= 1− k2

2
+
k

2
)

≤ (2
k
2 )k

k!
· 21+ k

2

2
k2

2

≤ 21+ k
2

k!

< 1. (k ≥ 3)

Hence, R(k, k) > b2
k
2 c, for all k ≥ 3. This concludes the proof.

Theorem 15.4 (Szele, 1943). There exists a tournament Tn such that Tn has at least
n!

2n−1 Hamiltonian paths.

Proof. There are n! possible Hamiltonian (undirected) paths and the probability of a

undirected Hamiltonian path is a directed Hamiltonian path is
1

2n−1 . Therefore, E(X) =

n! · 1

2n−1 . This concludes the proof.

Theorem 15.5. α(G) ≥
∑

v∈V (G)

1

1 + degG(v)
.

Proof. (Greedy Algorithm) In a set of degG(v)+1 vertices we can select one vertex. This

concludes the proof by selecting an independent set one vertex at a time.

Proof. (Random idea) Use 1, 2, ..., |G| to label the vertices of the set V (G) randomly,

call this bijection ϕ. Let v0 ∈ S (an independent set) if ϕ(v0) = min{ϕ(x) | x ∈
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N(v0) (neighbor of v0)}. So, the probability is
1

1 + degG(v0)
and the expectation value is∑

v∈V (G)

1

1 + degG(v)
.

Theorem 15.6. If |G| = n and ||G|| = nd

2
, d ≥ 1, then α(G) ≥ n

2d
.

Proof. Let S ⊆ V (G) be a random subset defined by P [v ∈ S] = p. Let X = |S|. For each

e = {vi, vj} ∈ E(G), let Ye be the indicator random variable for the event {vi, vj} ⊆ S and

Y =
∑
e∈E

Ye. Now, E(Ye) = P [vi, vj ∈ S] = p2 and thus E(Y ) =
nd

2
· p2. Since E(X) = np,

E(X−Y ) = np− nd
2
p2 = np(1− d

2
p), p =

1

d
gives the maximum. Hence, E(X−Y ) =

n

2d
.

Thus, there exists a specific S for which |S| − ||〈S〉G|| ≥
n

2d
. Now, select one vertex from

each edge of S and delete it to obtain a set S∗ with at least
n

2d
vertices. Since all edges

are gone, S∗ is an independent set.

Definition 15.8. We use n-th space Gn to denote the distribution of graphs of order n.

Let qn be the probability of the existence of ”Property Q”.

Definition 15.9. If lim
n→∞

qn = 1, then we say ”Property Q” almost always holds or in

this case, almost all graphs have ”Property Q”.

Theorem 15.7 (Gilbert, 1959). Let 0 < p ≤ 1 be a constant. Then, almost all graphs

are connected.

Proof. If G is not connected, then there exists a subset S ⊆ V (G) such that 〈S, V (G) \
S〉 = ∅. This implies that the probability qn of the existence of disconnected graphs of

order n satisfies

0 ≤ qn ≤
bn
2
c∑

k=1

(
n

k

)
(1− p)k(n−k) · px
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where x is fixed. Hence,

0 ≤ qn ≤
bn
2
c∑

k=1

nk · (1− p)k(n−k)

≤
bn
2
c∑

k=1

(n(1− p)n−k)k

≤
bn
2
c∑

k=1

(n(1− p)
n
2 )k

<
x

1− x
where x = n(1− p)

n
2 .

But lim
n→∞

x = lim
n→∞

n(1− p)
n
2 = 0. This implies that lim

n→∞
qn = 0.

Lemma 15.8 (Markov’s Inequality). Let pk = P (X = k), k ≥ 0. Then, p(X ≥ t) ≤
E(X)

t
. Moreover, if E(X)→ 0, then P (X = 0)→ 1.

Proof.

E(X) =
∑
k≥0

kpk ≥
∑
k≥t

kpk ≥ t ·
∑
k≥t

pk = tP (X ≥ t).

Theorem 15.9. Let 0 < p ≤ 1 be a constant. Then almost all graphs are of diameter 2.

Proof. Let X =
∑
i 6=j

Xi,j where Xi,j is the indicator random variables such that

Xi,j =

1 if vi and vj do not have a common neighbor, and

0 otherwise.

Note that the probability of ”vi and vj do not have a common neighbor” is equal to

(1−p2)n−2, hence P (Xi,j = 1) = (1−p2)n−2. Thus, E(X) =
∑
i 6=j

E(Xi,j) =

(
n

2

)
(1−p2)n−2.

Since lim
n→∞

(
n

2

)
(1− p2)n−2 = 0, E(X)→ 0. This implies that P (X = 0)→ 1, i.e., almost
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every pair of distinct vertices vi and vj have a common neighbor. This concludes the

proof.

Theorem 15.10. For every constant p ∈ (0, 1) and every graph H, almost all graphs Gp

contains an induced copy of H.

Proof. Let H be given and |H| = k. Let U be a set of k (fixed) vertices of G. Then,

〈U〉G ∼= H with a certain probability r > 0. (r depends on p, not n. (?)) Now, G contains

a collection of bn
k
c disjoint sets Ui of size k. So, the probability that none of 〈Ui〉G is

isomorphic to H is (1− r)b
n
k
c. Hence, P [H 6≤ G] ≤ (1− r)b

n
k
c → 0 as n→∞.

Theorem 15.11. Let Pi,j be the property that for any disjoint vertex sets U and W with

|U | ≤ i and |W | ≤ j, there exists at least one vertex v 6∈ U ∪W that is adjacent to all the

vertices of U but to none of the vertices of W . Then, for every constant p ∈ (0, 1) and

i, j ∈ N, almost all graphs Gp has property Pi,j.

Proof. Let i, j ∈ N be fixed and q = 1− p. Let U and W be two disjoint vertex sets with

|U | ≤ i and |W | ≤ j. The probability that v ∈ V (G) \ (U ∪W ) is adjacent to U but

not to W is p|U |q|W | ≥ piqj. Hence, the probability that no suitable v exists for these U

and W is (1 − p|U |q|W |)n−|U |−|W | ≤ (1 − piqj)n−i−j. Since the number of 〈U,W 〉 pairs is

at most ni+j, the probability that Pi,j does not hold is ni+j ·(1−piqj)n−i−j → 0 as n→∞.
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Corollary 15.12. For every constant p ∈ (0, 1) and k ∈ N, almost all graphs are k-

connected.

Proof. Let i = 2 and j = k− 1. Since almost all graphs has property P2,k−1, |G| ≥ k+ 2.

Let W be an arbitrary set of at most k− 1 vertices. Then for all x, y ∈ V (G) \W , either

x is adjacent to y or x and y have a common neighbor. (U = {x, y}) Therefore, W is not

a vertex cut. This concludes the proof.
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