Introduction to Combinatorics Lecture 13

Generating Function

Definition 13.1 (Generating function).

o (142)"= zn: (Z)mk = kz:akxk.

k=0
[o.¢]
. E arx” is called a generating function of the sequence (ag, a1, as, ..., a, ...).
k=0
Remark.

. (Z) is known as n-choose-k where n, k € NN {0}.

r
e In fact, we can extend n to a real number. In that case, <k> = r2/k! where

1
E=r (r=1)-(r—=2)---(r—k+1). Forexample,letr:§. Then,

()- <—i> (D)D)

> /1L
Also, (1 + w)% = Z (z) 2*. (Extension of binomial formula)
k=0

Therefore, we have the geometric series:

I DI U (G DE
k=0 k=0
. -1 (=D(=2)- (=K)
k _(_1\k _
since (—1) (k )(—1) (—1) X =1
Facts
1. aZakxk + ﬁz bpat = Z(aak + Bbg)z".
k=0 k=0 k=0
o 0 k 00
2. (Convolution of two series) (Z akxk)(z bra®) = (Z aibp_;)xk = Z cra®,
k=0 k=0 k=0 =0 k=0

k
i.e., Cr = E aibk_i.
1=0
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3. If F(x) = Z apx”, then F'(x Z kapr®™ Z (k + Dagy 2",
k=0 k=0

Quite a few counting problems can be solved by using G.F., here we present several

examples.

Examples

1. How many different ways are there to make a thousand dollars by using Taiwanese

coins, 1 dollar, 5 dollars, 10 dollars and 50 dollars.

solution. Let the number of coins be ey, €5, e3 and ey respectively for 1, 5, 10 and
50 dollars. Then, e; + 5ey + 10e3 + 50e, = 1000, and the G.F. we can use is
I+z+2®+)1+2°+20+- )1 +20+ 22+ )1+ 20 + 2"+ )

1 1 1 1
l—2z 1—2° 1—210 1— 25

2. Let h, denote the number of ways of dividing a convex (n+ 1)-gon into triangles by
inserting diagonals which do not cross each other. Find h,. (Clearly, hy = 1, hy =
1,h3 = 2,hy =5 and so on.)

n—1

solution. Let G(z Z hiz®. Observe that h,, = Z hi - hp—.

k=1 k=1

@ ' @ hy = hihs + hohg + hahy

[G(x)]? = hiz® + (hihy + hohy)a® + (h1h3 + hohg + h3hy)z* + -+ = G(z) — hyz.
G@)? — Gla) +2 =0, Gla) = = =2
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= 1/2n—2 1/2n—2
Hence, G(g;):Zﬁ(:_l)JJn and thus hn2—<n )(TLZl)
n=1

n\n—1

1/2n—2
e The number —( " ) ) is known as the Catalan numbers for various n.
n\n—

e Many counting problems will have their solutions as this number.

3. Following from Example 2, if we would like to partition the (n41)-gon into triangles

and one quadrangle, we may use a similar idea to find the number of different ways.

()

Exponential Generating Functions

Definition 13.2 (Exponential generating function).

e We use the set {1,z,2% ...} of monomials to define a generating function such as
o0
Z Clkl'k.
k=0

e If we consider (ag, ay, ..., ay, ...) whose terms count permutations, then we shall use
2 n e

) T . .o Ak K
monomials {1, x, ETRRIE ...} to define a generating function: kz: R
=0

Examples

e (1 + x)" is an exponential generating function for (p(n,0),p(n,1),...,p(n,k),...)
where p(n, k) denotes the number of k-permutations of an n-element set, in fact

p(n, k) is equal to (Z) -kl

(I1+2)" = (Z)a:k: (Z) ARl
k=0 k=0

G.F. E.G.F.
Note that the E.G.F. of sequence (1,1,...,1,...) is e* = Zxk/k' (This is the
k=0

reason why we got ”exponential”.)

e For more examples, please refer to the book ”Introductory Combinatorics” by R.

A. Brualdi.
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Recurrence Relations

e One of the famous sequences is known as the Fibonacci sequence (fy, fi, ..., fu,-..)

where fo =0, fi=1and f, = f,_1 + fn_o forn > 2.

e In a sequence, if for each n, a, = f(ay,as,...,a,_1), then we have a recurrence
relation f. Clearly, if f is quite complicate, then finding a general form for a, is
also difficult. On the other hand, as mentioned above, in case that the relation is
comparatively simple, then there is a hope to settle the sequence and use a close

form to represent a,,.

Use G.F. to find f,

Let F(x) =Y frz*. Since fy = fuo1 + fra for k > 2,
k=0

F(x) = fo +f1$+2fk$k
k=2

=z + Z foo12® + Z frooa®
o o

=r+x- Z fk_lxk_l + 2% Z fk_2$k_2
k=2 k=2
=+ (F(z)— fo) +2° F(x).

T T

T 1-r-a2 (1 — 5501 — =55y

Fx)1—z—2°)=x, F(x)

B a n b
1—1+2‘/533 1—1_2‘/5x
a+b=0 1 1
B B
2 2
145 1-5

1
By geometric series, f, = —

Y8 f NG
Another idea

For the Fibonacci number f,,, we may assume that the solution is of the form ¢" for
some positive real number q. So, f, = fa1 + fao gives ¢" = ¢" ' + ¢" 72, ie.,

7" (¢ —q—1)=0.
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1++5 1—

d —
9 anda g

fn, so is their linear combination.

This yields ¢; = . Since both ¢ and ¢y provide solutions for

The answer is of form c¢;q7 + c2qy in case that ¢ # go.

Now, we can extend the above idea of a more general linear homogeneous recurrence

relation
k

h, = Z a;ih,_;, a; # 0 is a constant and n > k.

i=1

k-1 k-2

e If g is a root of 2% — a2 — @™ 2 —--- —ap =0 (%), then h, = ¢" is a solution

of the recurrence relation.

k

e If (%) has k distinct roots ¢i, ¢o, ..., ¢s, then Z c;q; is a general solution of h,, and
i=1
e;’s can be determined by using £ initial conditions, hg, hq, ..., hx_1.

Remark.

k
e (k) is known as the characteristic equation of the recurrence relation h,, = Z ail,_;.
=1

e If (%) has roots which are multiple, then the situation (solutions) will be different.

n

e If ¢ is a s-multiple set, then we can check that h, = ¢", h, =nq",...,h, = n° ¢

as solutions, so is the linear combination of them.

Examples

hn = —hn,1 -+ Bhn,Q + 5hn,3 + 2hn74, ho = 1, hl = 0, hg =1 and hg = 2.

Then, 2* + 2 — 32% — 52 —2 = 0 has roots —1, —1, —1 and 2. So, the general solution
for h,, is

B =ci(—=1)"4+cy-n-(=1)"4c3-n?- (=1)" +c4- 2™

By using initial conditions, we obtain
ho = L1 Zn(-1)" 4 22 (es = 0)
n=—=(—1)"—=n(— =2" (c3 =
9 3 ’

Note that both of the above two conclusions can be proved, again, see Brualdi’s book for

reference.



