
Introduction to Combinatorics Lecture 13

Generating Function

Definition 13.1 (Generating function).

• (1 + x)n =
n∑

k=0

(
n

k

)
xk =

n∑
k=0

akx
k.

•
∞∑
k=0

akx
k is called a generating function of the sequence 〈a0, a1, a2, ..., ak, ...〉.

Remark.

•
(
n

k

)
is known as n-choose-k where n, k ∈ N ∩ {0}.

• In fact, we can extend n to a real number. In that case,

(
r

k

)
= rk/k! where

rk = r · (r − 1) · (r − 2) · · · · · (r − k + 1). For example, let r =
1

2
. Then,(

1
2

5

)
=

1
2
· (−1

2
) · (−3

2
) · (−5

2
) · (−7

2
)

5!
.

Also, (1 + x)
1
2 =

∞∑
k=0

(
1
2

k

)
xk. (Extension of binomial formula)

Therefore, we have the geometric series:

(1− x)−1 =
∞∑
k=0

(
−1

k

)
(−1)kxk =

∞∑
k=0

xk,

since (−1)k
(
−1

k

)
(−1) = (−1)k

(−1)(−2) · (−k)

k!
= 1.

Facts

1. α
∞∑
k=0

akx
k + β

∞∑
k=0

bkx
k =

∞∑
k=0

(αak + βbk)xk.

2. (Convolution of two series) (
∞∑
k=0

akx
k)(

∞∑
k=0

bkx
k) =

∑
k=0

(
k∑

i=0

aibk−i)x
k =

∞∑
k=0

ckx
k,

i.e., ck =
k∑

i=0

aibk−i.
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3. If F (x) =
∞∑
k=0

akx
k, then F ′(x) =

∞∑
k=1

kakx
k−1 =

∞∑
k=0

(k + 1)ak+1x
k.

Quite a few counting problems can be solved by using G.F., here we present several

examples.

Examples

1. How many different ways are there to make a thousand dollars by using Taiwanese

coins, 1 dollar, 5 dollars, 10 dollars and 50 dollars.

solution. Let the number of coins be e1, e2, e3 and e4 respectively for 1, 5, 10 and

50 dollars. Then, e1 + 5e2 + 10e3 + 50e4 = 1000, and the G.F. we can use is

(1 + x+ x2 + · · · )(1 + x5 + x10 + · · · )(1 + x10 + x20 + · · · )(1 + x50 + x100 + · · · )

=
1

1− x
· 1

1− x5
· 1

1− x10
· 1

1− x50
.

2. Let hn denote the number of ways of dividing a convex (n+1)-gon into triangles by

inserting diagonals which do not cross each other. Find hn. (Clearly, h1 = 1, h2 =

1, h3 = 2, h4 = 5 and so on.)

solution. Let G(x) =
∞∑
k=1

hkx
k. Observe that hn =

n−1∑
k=1

hk · hn−k.

h4 = h1h3 + h2h2 + h3h1

[G(x)]2 = h21x
2 + (h1h2 + h2h1)x

3 + (h1h3 + h2h2 + h3h1)x
4 + · · · = G(x)− h1x.

[G(x)]2 −G(x) + x = 0, G(x) =
1±
√

1− 4x

2
.

Since G(0) = 0, G(x) =
1−
√

1− 4x

2
=

1

2
− 1

2
(1− 4x)

1
2 .

By using Newton’s binomial theorem,

(1− 4x)
1
2 = 1− 2

∞∑
n=1

1

n

(
2n− 2

n− 1

)
xn, (|x| < 1

4
).
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Hence, G(x) =
∞∑
n=1

1

n

(
2n− 2

n− 1

)
xn and thus hn =

1

n

(
2n− 2

n− 1

)
(n ≥ 1).

• The number
1

n

(
2n− 2

n− 1

)
is known as the Catalan numbers for various n.

• Many counting problems will have their solutions as this number.

3. Following from Example 2, if we would like to partition the (n+1)-gon into triangles

and one quadrangle, we may use a similar idea to find the number of different ways.

(?)

Exponential Generating Functions

Definition 13.2 (Exponential generating function).

• We use the set {1, x, x2, ...} of monomials to define a generating function such as
∞∑
k=0

akx
k.

• If we consider 〈a0, a1, ..., an, ...〉 whose terms count permutations, then we shall use

monomials {1, x, x
2

2!
, ...,

xn

n!
, ...} to define a generating function:

∞∑
k=0

ak
k!
xk.

Examples

• (1 + x)n is an exponential generating function for 〈p(n, 0), p(n, 1), ..., p(n, k), ...〉
where p(n, k) denotes the number of k-permutations of an n-element set, in fact

p(n, k) is equal to

(
n

k

)
· k!:

(1 + x)n =
n∑

k=0

(
n

k

)
xk =

n∑
k=0

(
n

k

)
· k! · xk/k!.

G.F. E.G.F.

Note that the E.G.F. of sequence 〈1, 1, ..., 1, ...〉 is ex =
∞∑
k=0

xk/k!. (This is the

reason why we got ”exponential”.)

• For more examples, please refer to the book ”Introductory Combinatorics” by R.

A. Brualdi.
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Recurrence Relations

• One of the famous sequences is known as the Fibonacci sequence 〈f0, f1, ..., fn, ...〉
where f0 = 0, f1 = 1 and fn = fn−1 + fn−2 for n ≥ 2.

• In a sequence, if for each n, an = f(a1, a2, ..., an−1), then we have a recurrence

relation f . Clearly, if f is quite complicate, then finding a general form for an is

also difficult. On the other hand, as mentioned above, in case that the relation is

comparatively simple, then there is a hope to settle the sequence and use a close

form to represent an.

Use G.F. to find fn

Let F (x) =
∞∑
k=0

fkx
k. Since fk = fk−1 + fk−2 for k ≥ 2,

F (x) = f0 + f1x+
∞∑
k=2

fkx
k

= x+
∞∑
k=2

fk−1x
k +

∞∑
k=2

fk−2x
k

= x+ x ·
∞∑
k=2

fk−1x
k−1 + x2 ·

∞∑
k=2

fk−2x
k−2

= x+ x · (F (x)− f0) + x2 · F (x).

F (x)(1− x− x2) = x, F (x) =
x

1− x− x2
=

x

(1− 1+
√
5

2
x)(1− 1−

√
5

2
x)

=
a

1− 1+
√
5

2
x

+
b

1− 1−
√
5

2
x
.

Hence,


a+ b = 0

−1 +
√

5

2
b− 1−

√
5

2
a = 1

, a =
1√
5
, b = − 1√

5
.

By geometric series, fn =
1√
5

(
1 +
√

5

2
)n − 1√

5
(
1−
√

5

2
)n.

Another idea

For the Fibonacci number fn, we may assume that the solution is of the form qn for

some positive real number q. So, fn = fn−1 + fn−2 gives gn = gn−1 + qn−2, .i.e.,

qn−2(q2 − q − 1) = 0.
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This yields q1 =
1 +
√

5

2
and q2 =

1−
√

5

2
. Since both q1 and q2 provide solutions for

fn, so is their linear combination.

The answer is of form c1q
n
1 + c2q

n
2 in case that q1 6= q2.

Now, we can extend the above idea of a more general linear homogeneous recurrence

relation

hn =
k∑

i=1

aihn−i, ai 6= 0 is a constant and n ≥ k.

• If q is a root of xk − a1xk−1− a2xk−2− · · · − ak = 0 (∗), then hn = qn is a solution

of the recurrence relation.

• If (∗) has k distinct roots q1, q2, ..., qn, then
k∑

i=1

ciq
n
i is a general solution of hn and

ei’s can be determined by using k initial conditions, h0, h1, ..., hk−1.

Remark.

• (∗) is known as the characteristic equation of the recurrence relation hn =
k∑

i=1

aihn−i.

• If (∗) has roots which are multiple, then the situation (solutions) will be different.

• If q is a s-multiple set, then we can check that hn = qn, hn = nqn, ..., hn = ns−1qn

as solutions, so is the linear combination of them.

Examples

hn = −hn−1 + 3hn−2 + 5hn−3 + 2hn−4, h0 = 1, h1 = 0, h2 = 1 and h3 = 2.

Then, x4 +x3−3x2−5x−2 = 0 has roots −1,−1,−1 and 2. So, the general solution

for hn is

hn = c1(−1)n + c2 · n · (−1)n + c3 · n2 · (−1)n + c4 · 2n.

By using initial conditions, we obtain

hn =
7

9
(−1)n − 1

3
n(−1)n +

2

9
2n. (c3 = 0)

Note that both of the above two conclusions can be proved, again, see Brualdi’s book for

reference.
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