
Introduction to Combinatorics Lecture 12

Principle of Counting

• We consider the sets A which are countable, i.e., A is either a finite set or A has

the same cardinality as the set of positive integers N.

• For convenience, we use |A| to denote the cardinality of A.

Facts

1. If there exists a function f from A into B, then |A| ≤ |B|, |A| ≥ |B| provided f is

onto.

2. (Fundamental idea of counting) If f : A→ B is a bijection, then |A| = |B|.

3. The number of k-subsets (distinct) of an n-set is equal to n·(n−1)·· · ··(n−k+1)/k! =
n!

(n− k)!k!
, denoted by

(n
k

)
(n-chooses-k).

4. There are n! permutations on n elements. (It is known as the order of a symmetric

group of order n.)

5. If we select k elements from an n-set and the order is en-counted, then there are

n!/k! ways to get the job done.

Definition 12.1 (Principle of Inclusion and Exclusion, PIE).

Let A1, A2, ..., An be n countable sets. Then

|
n⋃

i=1

Ai| =
n∑

i=1

|Ai| −
∑

1≤i<j≤n

|Ai ∩ Aj|+ · · ·+ (−1)n−1|
n⋂

i=1

Ai|.

e.g. For A,B and C, |A∪B∪C| = |A|+|B|+|C|−|A∩B|−|A∩C|−|B∩C|+|A∩B∩C|.

Definition 12.2 (Euler totient function on relative primes).

n ∈ N, φ(n) = |{k|1 ≤ k ≤ n, gcd(n, k) = 1}|.

e.g. φ(1) = 1, φ(2) = 1, φ(3) = 2, φ(4) = 2, φ(5) = 4, φ(6) = 2.
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Proposition 12.1. By PIE, if n = pa11 p
a2
2 · · · parr , then

φ(n) = n−
r∑

i=1

n

pi
+

∑
1≤i<j≤r

n

pipj
− · · ·+ (−1)r

n

p1p2 · · · pr

= n−

[
r∑

i=1

n

pi
−

∑
1≤i<j≤r

n

pipj
+ · · ·+ (−1)r−1

n

p1p2 · · · pr

]

Proof. Let Ai be the set of integers in [1, n] which are multiple of pi. Then

φ(n) = n− |
r⋃

i=1

Ai| = |A1 ∩ A2 ∩ A3 ∩ · · · ∩ Ar|.

Proposition 12.2. Another famous example of PIE is the derangement. Let Dn denote

the set of permutations σ of [1, n] such that σ(i) 6= i for each i ∈ [1, n]. Then,

|Dn| = Dn = n!(1− 1

1!
+

1

2!
− 1

3!
+ · · ·+ (−1)n

1

n!
).

Proposition 12.3. ∑
d|n

φ(d) = n.

Proof. Consider the partition on [1, n] into subsets

Ad = {m|m ∈ [1, n] and gcd(m,n) = d}. Since gcd(m,n) = d, gcd(
m

d
,
n

d
) = 1. Hence,

there are φ(
m

d
) such

m

d
’s. This implies that |Ad| = φ(

n

d
). Thus,

n =
∑
d|n

|Ad| =
∑
d|n

φ(
n

d
) =

∑
d|n

φ(d).

Note that ∀m̄ ∈ Zn, 〈m̄〉 generates a subgroup of Z of order n/gcd(m,n) and there are

φ(n/gcd(m,n)) m’s. This implies the conclusion as above.

Definition 12.3 (Möbius function). If m = pa11 p
a2
2 · · · parr , then

µ(m) =

(−1)r if a1 = a2 = · · · = ar = 1 ; and

0 otherwise.
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Proposition 12.4. For each n > 1,

∑
d|n

µ(d) = 0.

Proof. Let n = pa11 p
a2
2 · · · parr . Hence,

∑
d|n

µ(d) =
∑
d

µ(d) where d is a product of distinct

primes. Thus

∑
d|n

µ(d) =
r∑

i=0

(
r

i

)
(−1)i =

(
r

0

)
−
(
r

1

)
+

(
r

2

)
−
(
r

3

)
+· · ·+(−1)r

(
r

r

)
= (1+(−1))r = 0.

Proposition 12.5.
φ(n)

n
=
∑
d|n

µ(d)

d
.

Proof. Let n = pa11 p
a2
2 · · · parr . By Proposition 12.1,

φ(n) = n−
r∑

i=1

n

pi
+

∑
1≤i<j≤r

n

pipj
− · · ·+ (−1)r

n

p1p2 · · · pr
.

Hence,
φ(n)

n
= 1−

r∑
i=1

1

pi
+

∑
1≤i<j≤r

1

pipj
− · · ·+ (−1)r

1

p1p2 · · · pr
.

On the other hand,
∑
d|n

µ(d)

d
=
∑
d

µ(d)

d
where d is a product of distinct primes in

{p1, p2, ..., pr}. This implies that

∑
d|n

µ(d)

d
= 1− 1−

r∑
i=1

1

pi
+

∑
1≤i<j≤r

1

pipj
− · · ·+ (−1)r

1

p1p2 · · · pr
.

Thus, the proof follows.

The following formula is known as ”Möbius Inversion Formula”.

Proposition 12.6 (Mödius Inversion Formula). If f(n) =
∑
d|n

g(d), then

g(n) =
∑
d|n

µ(d)f(
n

d
).
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Proof.

∑
d|n

µ(d)f(
n

d
) =

∑
d′|n

f(d′)µ(
n

d′
) where d′ =

n

d

=
∑
d|n

f(d)µ(
n

d
)

=
∑
d|n

µ(d) ·
∑
d′′|d

g(d′′)

=
∑
d′′|n

g(d′′) ·
∑
m| n

d′′

µ(m)

= g(n) (when d′′ = n) +

∑
d′′|n

g(d′′) ·
∑
m| n

d′′

µ(m) with d′′ < n


= g(n), since

∑
m| n

d′′

µ(m) = 0 provided
n

d′′
> 1.

Remark. We can use Proposition 12.3 and Proposition 12.6 to prove Proposition

12.5. Since n =
∑
d|n

φ(d), φ(n) =
∑
d|n

µ(d)
n

d
. Hence, we have

φ(n)

n
=
∑
d|n

µ(d)

d
.

Möbius Inversion Formula plays an important role in enumeration. We present a good

example in what follows.

Review that in order to construct a finite field with pn elements where p is a prime and

n ≥ 1, we need to find an irreducible polynomial f(x) over Zp and the finite field is

obtained as Zp[x]/〈f(x)〉. Therefore, the existence of such polynomials must be verified.

In fact, we can enumerate the number of such polynomials which are monic, i.e., the

coefficient of xn is 1.

1. xp
n − x is a product of all monic irreducible polynomials over GF(p) (or Zp) whose

degree d|n. (Extension field: from pd elements to pn elements, d|n is obtained from

dimension fact.)

2. Now, let Nd denote the number of monic irreducible polynomial of degree d over

Zp in the factorization xp
n − x. Then, pn =

∑
d|n

d ·Nd (over Zp).
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3. Let f(n) = pn, g(d) = d ·Nd. By Möbius Inversion Formula, n ·Nn =
∑
d|n

µ(d) ·pn/d.

Thus,

Nn =
1

n

∑
d|n

µ(d) · pn/d

≥ 1

n
(pn − pn/2) > 0
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