
Introduction to Combinatorics Lecture 11

BIBD with k = 3

Facts.

1. A 2− (v, 2, λ) design exists for all v ≥ 2.

This is a direct consequence of using λ ·Kv.

2. A 2− (v, 3, 1) design exists if and only if v ≡ 1 or 3 (mod 6).

This theorem was first proved by T. P. Kirkman in 1847. Later, there are many

different proofs for this seeming easy but quite complicate ’fact’. (More details will

be given later.)

Kirkman’s 15 school girls problem.

Arrange 15 girls to line up in five rows with each row has three girls to walk to school.

Can we complete that any two of girls stay in a row for some day in seven days?

We need at least 7 days since each day we use up 15 pairs and in total there are(
15

2

)
= 105 pairs. So, the extra requirement is that every day, the arrangement is

in fact a parallel class. Such designs are also known as Kirkman triple systems. Such

systems of order v exists if and only if v ≡ 3 (mod 6). Note that AG(2, 3) is a Kirkman

triple system of order 9. Here is an answer of 15 girls problem.

0 1 2 0 3 4 0 5 6 0 7 8 0 9 10 0 11 12 0 13 14

3 7 11 1 7 9 1 8 10 1 11 14 1 12 13 1 3 5 1 4 6

4 9 13 2 12 14 2 11 13 2 4 5 2 3 6 2 8 9 2 7 10

5 10 12 5 8 13 3 9 14 3 10 13 4 8 11 4 10 14 3 8 12

6 8 14 6 10 11 4 7 12 6 9 12 5 7 14 6 7 13 5 9 11

Figure 11.1
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Theorem 11.1. A 2− (v, 3, 1) design, known as a Steiner triple system of order v, exists

if and only if v ≡ 1 or 3 (mod 6).

Proof.

(⇒) As mentioned earlier, if a 2 − (v, 3, 1) design exists, then r =
v − 1

3− 1
=
v − 1

2
and

b =
v(v − 1)

6
are both integers. This implies that v ≡ 1 or 3 (mod 6).

(⇐) We prove this sufficient condition by constructing a 2−(v, 3, 1) design for each v ≡ 1

or 3 (mod 6).

First, we need to construct Steiner triple systems of small orders: v = 7, 9, 13 and 15

(defined on Zv).

v = 7, B = {013, 124, 235, 346, 561, 602} (PG(2))

v = 9, B = {012, 345, 678, 036, 147, 258, 048, 156, 237, 057, 138, 246} (AG(3))

v = 13, B = {(0, 3, 4) + i, (0, 2, 7) + i (mod 13) | i ∈ Z13} (PG(3))

v = 15, B = {(0, 3, 4) + i, (0, 2, 8) + i, (0, 5, 10) + i (mod 15) | i ∈ Z15}

Now, we shall use the following two constructions to construct all the other Steiner triple

system of order v, STS(v) in short.

Case 1. v ≡ 1 (mod 6), v ≥ 19.

Let v = 6k + 1, k ≥ 3. Let L(i) be the commutative Latin square of order 2k defined on

{(i, j) | i ∈ Z3 and j ∈ Z2k} with holes of size 2, see Figure 11.2.

Figure 11.2: Commutative Latin square with 2× 2 holes. (a) m = 3. (b) m = 4.

(If m is odd, then L can be constructed by using direct product. But, for

even m, it takes some effort!)
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Figure 11.3

Let (X,B) be a design with X = {∞} ∪ (Z3 × Z2k), and B defined as follows:

(a) B ∈ B if B is a block in an STS(7) defined on {∞, (i, 2h), (i, 2h + 1) | i ∈ Z3} for

each 0 ≤ h ≤ k − 1; and

(b) {(i, x), (i, y), (i + 1, L(i)(x, y))} ∈ B for all i ∈ Z3 and x, y ∈ Z2k such that (i, x)

and (i, y) are met in a 2× 2 hole. (The first component is taking modulo 3 and the

second component is taking modulo 2k.)

It’s left to check that (X,B) is an STS(v). First, we count |B|. Since each entry outside

the hole and in the upper part of L(i) gives a triple (block), we have 3· (2k)2 − 2(2k)

2
+7k =

12k2 − 12k + 14k

2
= 6k2+k =

1

6
(6k+1)6k =

v(v − 1)

6
. Hence, if each pair of two elements

in X occurs, then the pair occurs at most once. So, we have to verify each pair of the

elements of X does occur in a block of B defined above in (a) and (b). Clearly, if one of

the elements is ∞, then {∞, x} occurs in the blocks defined in (a). On the other hand,

consider (i1, x) and (i2, y) where i1, i2 ∈ Z3 and x, y ∈ Z2k. First, if they are in the holes

of either L(i1) or L(i2) (= L(i)), then they occur together in the block of (a). Ob the other

hand, if they are not in the holes of L(i), then we have two cases to consider:

(1) i1 = i2 = i.

Clearly, they occur together in {(i, x), (i, y), (i+ 1, L(i)(x, y))} in (b).

(2) i1 6= i2.

Without loss of generality, let i2 ≡ i1+1 (mod 3) and i1 = i. Since there exists a z ∈
Z2k such that L(i)(x, z) = y, (i1, x) and (i2, y) will occur in {(i1, x), (i1, z), (i2, y)}
in (b).
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This concludes the proof. All STS(v) of order v ≡ 1 (mod 6) have been constructed.

Case 2. v ≡ 3 (mod 6), v ≥ 21.

The construction can be obtained similarly. Let X = {∞1,∞2,∞3} ∪ (Z3 × Z2k), and B

defined as follows:

(a) Use STS(9) instead of STS(7) when {∞} is replaced by {∞1,∞2,∞3}. Moreover,

fix {∞1,∞2,∞3} as a block for each STS(9).

(b) Use the same construction.

Hence, |B| = 1+11k+
3((2k)2 − 4k)

2
= 6k2+5k+1 = (2k+1)(3k+1) =

(6k + 3)(6k + 2)

6
=

v(v − 1)

6
. And the existence of every pair of distinct elements in X can be checked simi-

larly.

Remark. The above construction was obtained not long time ago. There are quite a few

methods in construction of Steiner triple systems. One of the most ’popular’ one is called

’cyclic construction’ method, or, in general, difference method.

Definition 11.1 (Difference). Let X = Zn. Then the difference of two distinct element

x and y in X is ±(x − y) := ±|x − y| such that 1 ≤ |x − y| ≤ bn
2
c. The difference

obtained in a set S is the set of all difference of two distinct elements in S, denoted by

D(S) = {x− y (mod n) | x, y ∈ S}.

Example.

1. n = 7, S = {0, 1, 3}, D(S) = {±1,±2,±3} (mod 7) = {1, 2, 3, 4, 5, 6}.

2. n = 7, S = {1, 2, 4}, D(S) = {1, 2, 3, 4, 5, 6}.

3. n = 13, S = {1, 2, 4, 9}, D(S) = {1, 2, 3, ..., 12}.

Remark.

• If a, b ∈ S ⊆ Zn, then a− b (mod n) ∈ Z×n provided a 6= 6.

• If |S| = s, then |D(S)| ≤ 2

(
s

2

)
(provided s ≤ n).
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Definition 11.2 (Equi-difference set). A set S is called an equi-difference set if the

elements of S form an arithmetic progression, i.e., S = {a, a+ d, ..., a+ (k − 1)d} where

a+ (t− 1)d ≤ n and d > 0.

Remark. An equi-difference set could produce the minimum number of distinct differences

among all the sets of the same cardinality.

Definition 11.3 (Circular difference). If the difference of a and b is defined as min{|a−
b|, n− |a− n|}, then it is known as the circular difference of a and b or half difference in

short, denoted as D2(S).

Remark.

• {1, 2, 4} in Z7 provides three half-difference: 1, 2 and 3. Clearly, in Zn, the set of

half-difference will be {1, 2, ..., bn
2
c}.

• |D2(S)| ≤
(
|S|
2

)
.

• Again, an equi-difference set S is the set whose D2(S) is of ’smaller’ cardinality.

For example, D({1, 2, 3, 4}) = {1, 2, 3} and D({0, 2, 4, 6}) = {2, 4} in Z8.

Definition 11.4 (Difference set). A set of k elements D = {a1, a2, ..., ak} in Zv is called

a (v, k, λ)-difference set if ∀d ∈ Z×v , there are exactly λ ordered pairs (ai, aj), ai, aj ∈ D
such that ai − aj ≡ d (mod v).

Definition 11.5 (Base blocks). A collection of subsets of X = Zv is called a set of base

blocks C of a 2− (v, k, λ) design if the following conditions satisfied:

1. Each set of C is of size k; and

2. ∪S∈C D(S) contains each difference in ±{1, 2, ..., bn
2
c} exactly λ times.
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Constructing design cyclically.

Theorem 11.2. If C is a set of base blocks of a 2 − (v, k, λ) design (X,B) = (Zv,B),

then B = {i + S | S ∈ C and i ∈ Zv}. (Note that if S = {x1, x2, ..., xk}, then i + S =

{x1 + i, x2 + i, ..., xk + i} (mod v).)

Example.

1. X = Z7, C = {{0, 1, 3}} is a set of base block of an STS(7).

2. X = Z15, C = {{0, 3, 4}, {0, 2, 8}, {0, 5, 10}} is a set of base block of an STS(15).

Note that {0, 3, 4} and {0, 2, 8} generate 15 blocks respectively, and {0, 5, 10} gen-

erates 5 blocks.

3. For complete proof, refer to Handbook of Combinatorial Designs.
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