Introduction to Combinatorics Lecture 10

Critical Sets

It is interesting to know whether a PLS(n) can be completed to a Latin square.

Facts.

1. A PLS(n) with at most n — 1 filled cells can be completed to a Latin square of
order n. (Evan’s conjecture)
In fact, the proof of this fact is not very difficult, and was proved by B. Smetaniuk
in 1981. You may refer to A course in combinatorics’ by J.H van Lint and R.M.

Wilson, page 189-193.

2. It takes about 50 pages to characterize a PLS(n) with at most n + 1 filled cells
which is in completable. (L.D. Anderson and A.J.W. Hilton, 1983, LMS.)

Figure 10.1: n filled cells may be too much!

Definition 10.1 (Critical set). A partial Latin square C'is called a critical set of a Latin

square L if

1. the empty cells of C' can be filled to obtain L, and

2. any proper sub-partial square of C' can be completed to at least two distinct Latin

squares (one of them is L).
Remark.

e A critical set of order n contains at least n — 1 distinct elements and covers at least

n — 1 rows and n — 1 columns.

e Sudoku is a special critical set of order 9.
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Figure 10.2: A critical set.

Facts.

3. We can construct a (strong) critical set C' of order n with |C| = L%J

Problem. If C is a critical set of order n, then find min |C| and max |C/.
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Construction of Latin squares with many subsquares.

First, we consider the operation of two Latin squares.

Definition 10.2 (Direct product). Let A and B be two Latin squares based on Z,, and
Z,, respectively. Then, the direct product of A and B, denoted by A® B is a Latin square
of order nm based on Z,, x Z, such that the entry A;; = x is replaced by (z, B) where
(z, B) is a Latin square of order n where the (¢, j') entry is filed by (z, By j/).

Ezample.
112 211
01
A B: 1 B’ 1
110
1 0 0
0,0){(0,1){(0,2)](1,0)|(1,1)|(1,2) 0,0){(0,1)](1,0)|(1,D]2,0)|(2,1)
0,2)](0,0){(0,1)(1,2)|(1,0)| (1,1) ©,D[(0,0](1,D|(1,0]2,D|2,0)
0,1)](0,2){(0,0)](1,1)|(1,2)| (1,0) (2,0){(2,1)(0,0)| (0,1)|(1,0) | (1,1)
AQ®B: B®A:
(1,0)|(1,1)[(1,2)}(0,0) | (0,1) [ (0,2) 2,1)1(2,0)}(0,1) [ (0,0) | (1,1) [(1,0)
(1,2)|(1,0)[(1,1)}(0,2)|(0,0) [ (0,1) (1,0) |(1,1)}(2,0)[(2,1)}(0,0) [ (0,1)
(1,1)((1,2)(1,0)|(0,1)((0,2)|(0,0) 1,D)[(1,0)}2,1){(2,0)](0,1)(0,0)
©,0)|(0,1)
.
(0,1)[(0,0) ™~
, (1,0)|(1,1)
B®A: iolool = Latin squares defined on three disjoint sets.
20|21
2.D(20
Figure 10.4
Remark.

o B’ ® A is referred to as a Latin square with 2 x 2 holes.

e Let n=~hy+he+---+hs. If Lis a Latin square of order n with ¢ subsquares of order
hi, ha, ..., hy (as above), then L is a Latin square with holes of type hy X hg X - - - X hy.
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Problem. Construct a Latin square L of order 12 such that L is commutative and also

with holes of type 2°.

Remark. If m is odd, then L can be constructed by using direct product. But for even

m, it takes some effort!

Ezample. m = 4.

112|8(5[4|7]|6]|3
2111678345
81614131712 |8]1
51713(411(8|2]6
4 18(7(116|5]3|2
71312815614
6|14 |5(2(3[1]|8]7
3|15|11(6(2(4]7]|8 o2
Figure 10.5
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Orthogonal Latin Squares

Definition 10.3 (Orthogonal Latin squares). Two Latin squares of order n based on
Z,, (We use Z, throughout of this lecture), L = [[;;] and M = [m, ], are orthogonal if
{(lijymi;) | 1<4,5 <n} =72, denoted as L L M.

Ezxample.
01 12
12 1 1
2 1 0
L M
Figure 10.6

Proposition 10.1. Let a(L) denote the Latin square which is obtained from L by per-
muting the entries of L with o (permutation of Z,). If L 1L M, then a(L) L B(M) for

any two permutation o and B for Z,.

01 2 01 2

Ezample. Let a = , b= . Then we have a(L) L B(M).
1 20 0 21
0 0
1
2 2
a(l) B(M)
Figure 10.7

Proposition 10.2 (Two Finger’s rule). L L M if and only if y # z in M whenever their

corresponding entries in L are the same entry, i.e., l;; = ly y = my; # M jr.
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L M

Figure 10.8: Corresponding entries.

Proposition 10.3. If Ly L Ly (of order m) and My L My (of ordern), then (L@ M) L
(L2 & MQ) (Of order mn) (Ll 1 LQ, M, L M, and N1 1L Ny — (L1 X Ml) ® N; L
(Ly ® Ms) ® Ny and more.)

Proposition 10.4. If n is a prime power, then there exist n — 1 Latin squares of order
n, L1, L, ..., L,_1, which are mutually orthogonal, i.e., L; L L; for any two 1 <1 # j <

n—1.

Proof. Since n is a prime power, we have a finite field GF(n), (F,+,). Let F* = F'\ {0}.
For convenience, let ' = {0 = «ag,aq,...,a,_1}. Now, for 0 < i,j < n — 1, we define
Lg;-) = o; + ap, - j where h € F*. Since ¢ # i’ implies that LEZ) # Lz(,hg and j # j'
implies that LZ(Z-) #+ Lf};), where L™ is a Latin square. As to the orthogonality of two
Latin squares, we can also use two fingers rule.

. . () _ +(h) .
Assume that for (i,5) # (¢'j'), L;; = L; ;. Consider 1 <k # h <n — 1. Suppose that
LE? + Lg,k ;,. Then we have

a; +ap -0 = oy + oy, - ajr, and

ai+ak-aj:ai/+ak-aj/.

(o, — )y = (o, — ap)ay = o = ay = «a; = ay. A contradiction. Hence,

LM | Lk, O



Introduction to Combinatorics Lecture 10

Facts on finite fields.

a.
b.

C.

A finite field of order n exists if and only if n is a prime power.
(Zy,+,-) is a finite field if and only if n is a prime.

Let n = p™ where p is a prime and m > 1. Then, a finite field of order n can

be constructed by using an irreducible polynomial g(z) (over Z,) of degree m, i.e.,
GF(n) = Zpx]/(g(x)).

All finite fields of the same order are isomorphic.

If (F,+,-) is a finite field, then (F* o) is a cyclic group, i.e., (F* o) = (a), F* is
generated by an element o € F* (= F'\ {0}).

2% + 2 + 1 is irreducible over Zy. Zy|x]/(x* + x + 1) is a finite field of order 8.

Definition 10.4 (A complete family if MOLS(n)). For order n, n — 1 mutually orthog-
onal Latin squares (MOLS) form a complete family of MOLS(N).

Facts.

4.

If n is a prime power, then we have a complete family of MOLS(n).

Remark.
e So far, only for prime power n that we can find a complete family of MOLS(n).

e It is known that there does not exist a complete family of MOLS(n) for n = 6
and 10.

Ezxample. Figure 10.9 is a complete family of MOLS(4). (Can we find the 3rd one
by using the first two MOLS(4)?) Note that two mutually orthogonal Latin squares

of order 4 solve the 16 cards problem!

For each n, there are at most n — 1 mutually orthogonal Latin squares.

Proof. By Proposition 10.2, we can assume all mutually orthogonal Latin squares
do have the same first row (0,1,2,...,n — 1). Then, consider the (2, 1) cell, no two
of the squares have the same entry. (?) Hence, we have at most n — 1 distinct Latin

squares which are mutually orthogonal. O]



Introduction to Combinatorics Lecture 10

N |—= WO
W[ O |IN |-
S|lW |
— N |O | W

N |W| O |~
—_— O W N
S |—= N | W

—_— WO

SIN|W |-
W= 1O
N | O | =W
WIN|=]O

Figure 10.9: A complete family of MOLS(4).

Proposition 10.5. If there exist n — 2 MOLS(n), then we can find n —1 MOLS(n).

Idea of proof.

Must have different entries and we have ‘one’ left!

Figure 10.10

Why Euler made the following conjecture?

Conjecture 10.2 (Euler’s conjecture on MOLS). For each n =2 (mod 4), there do not
exist two mutually orthogonal Latin squares of order n. (If n > 1 and n # 2 (mod 4),

then either n is a prime or n has a prime factor larger than 2.)

Facts.

6. Euler’s conjecture is true for n = 2 and 6 (only!). Also, n =1 is trivial.
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7. If n # 2 (mod 4), then we can find at least two MOLS(n).

Proof.
Case 1. n =0 (mod 4).

In this case, n = ' - m where ¢t > 2 and m is an odd integer. If m = 1, then n is a
prime power, the proof follows. On the other hand, if m > 1, then m = p{'p3* - - - pi*
where p;’s are distinct odd primes. Now, by using Proposition 10.3, we can construct
two MOLS(n) by using direct product of two mutually orthogonal Latin squares of

order 2, p{t, p3?, ..., ¥ respectively.
Case 2. n=1or 3 (mod 4).

The proof of this case has been include in Case 1. n

Problem. Prove that there do not exist two mutually orthogonal Latin squares of order
6. (Reference: D. R. Stinson, A short proof of the non-existence of a pair of orthogonal

Latin squares of order six, J. Combin. Th. A36, 373-376.)

Euler’s conjecture was disproved by Parker, Bose and Shrikhande in the year 1959. Fig-
ure 10.11 are two MOLS(10) proposed by E. T. Parker. As forn =2 mod 4, n > 10, we
need to apply ideas from pairwise balanced design to prove that two MOLS(n) do exist.

(See lecture notes on Combinatorial Designs, Hung-Lin Fu.)

410(9|8(3[2]|7|5|6]1 51410127189 (3]6
2137 (5|4(0[9|8|1]|6 31116 ([4|8[5|19(2(0]7
811169045327 019(8|7|3|6[1[4|5|2
918|114 |5]|6(3|2]7|0 2(5|14(3|6|1[7]|8[9]|60
0(9|8|6|1[3[2]|7(4]5 9187|6104 |5(2]3
7121311654098 1({6|13[5(9]12[0|7|4|8
504|10(3|12|7|6]|1(8|9 8171219045361
615(4(2|7|1(8]9]|0]3 4101912 (7|8|3|6|1|5
1(6|5]7|18[9(0]|4[3]|2 712|15(0(4]|3|6[|1|8]9
3(712(0|19|8|1]|6[5]|4 613185920714

Figure 10.11: Two MOLS(10).
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Definition 10.5 (r-orthogonal). Two Latin squares of order n defined on the same set
S are r-orthogonal if when they are superimposed, exactly r different order pairs of S?

occur among the n? ordered pairs of entries.

Ezample. The two Latin squares is a pair of 34-orthogonal Latin squares of order 6. (3,4)

and (1,5) are the only two repeated ordered pairs.

0(1(2(3]|4]5 0(1(2(3(|4]|5
1(2(3(5]|0|4 510(412(3]|1
2(5|10[4|1]3 314(1|5(2]60
314(1(2]|5](0 4(3|5[1]10]2
4105132 2(5(3(0(1]|4
51314(0]2]1 1(2|0(4]|5]3

Figure 10.12: A pair of 34-orthogonal Latin squares.

Definition 10.6 (Orthogonal array). An orthogonal array of order n with depth k,
OA(k,n), is a k x n* array A = [a,;;] such that for any two rows, the ordered pairs

obtained from the two rows are exactly all ordered pairs of Z?2 (a;; € Z,).

Ezample. OA(4,3).

00 01 11 2 2 2
01 2 01 2 01 2
01 2 2 01 1 2 0
_021210102_
I
0(0(0 1 112 21
1 1
21212 1 0 0

Figure 10.13: OA(4,3).
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Facts.

8. The existence of an OA(k,n) is equivalence to the existence of k —2 MOLS(n).

(This fact comes from that the number of ordered pairs is at most n*.)

9. An OA(k,n) has at most n* columns and n + 1 rows. (This fact is a consequence

of the result that there are at most n — 1 MOLS(n).)

In applications, regularly a partial orthogonal array uses orthogonal array of order m de-
fined of Z,, with depth k. In such an array, the ordered pairs are required to be distinct,
not necessarily be all pairs in Z2. Here, m < n” (as the case in an OA(k,n)), but k may

be larger than n + 1.

Ezxample. n =3, m =3, k=05.

N NN = = O

0
2
2
1
0

[
0
0
0

1

Three columns represent three orthogonal partial Latin squares.

Remark. If m = n?, then k < n + 1.
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