Introduction to Combinatorics Lecture 7

Edge-coloring

Definition 7.1 (k-edge-coloring). A k-edge-coloring is a mapping $\pi : E(G) \to \{1, 2, ..., k\}$ such that incident edges receive distinct images (colors).

Definition 7.2 (Chromatic index). Chromatic index of $G \chi'(G) = \min\{k \mid G \text{ has a }$ k-edge-coloring }. If $\chi'(G) = k$, then G is h-edge-colorable for each $h \geq k$.

Theorem 7.1 (Vizing, 1964). If G is a simple graph, then $\Delta(G) \leq \chi'(G) \leq \Delta(G) + 1$.

Proof. The left hand inequality is easy to see. We prove the right hand inequality by induction on ||G||. We shall prove that G has a $(\Delta(G) + 1)$ -edge-coloring (coloring in short) for G and the assertion is true for smaller sizes, i.e., for each $e \in E(G)$, $G - e$ has a coloring π .

First, we observe that since each vertex v is of degree at most $\Delta(G)$, a color is missing around v. Second, if α and β are two colors used in the coloring, then α and β induce a subgraph with components either paths or even cycles. Finally, if 'G has no coloring using $\Delta(G) + 1$ colors', then for each edge xy and any coloring of $G - xy$, there exists an $\alpha - \beta$ path from y ends in x provided α is missing at x and β is missing at y. See Figure 7.1 for missing colors.

Figure 7.1

Note that if $\alpha - \beta$ path does not connect x and y, then we may recolor one of the path (α, β) to obtain a coloring of G using $\Delta(G) + 1$ colors. Also, if x and y are missing the same color, then we can use that color to color xy and obtain a $\Delta(G) + 1$ coloring of G. Hence, it suffices to claim that there is a way to recolor some edges in $G - xy$ such that x and y miss the same color.

Proof of claim. (Outline.)

Let $M(y)$ denote the colors missing at y, and $c_1 \in M(y)$. Now, consider $M(x)$. If $c_1 \in M(x)$, then color xy by c_1 results in a $\Delta(G) + 1$ coloring of G. (The claim holds.) Hence, assume $c_1 \notin M(x)$. Let $c_0 \in M(x)$ and $\pi(xy_1) = c_1$, see Figure 7.2. Then, consider $M(y_1)$ and let $c_2 \in M(y_1)$. If $c_2 \in M(x)$, then we let $\pi(xy_1) = c_2$. Thus, c_1 becomes a missing color in $M(x)$, the coloring c_1 is available for xy , $\pi(xy) = c_1$. Hence, assume $c_2 \notin M(x)$. This fact will continue: $c_2 \notin M(x) \Rightarrow \exists y_2$ such that $\pi(xy_2) = c_2$; and then $c_3 \in M(y_2)$, $\pi(xy_3) = c_3; ...; c_{i+1} \in M(y_i)$, $\pi(xy_{i+1}) = c_{i+1}$. Since we only have $\Delta(G)+1$ colors, there exists an l such that $\pi(xy_{l+1})=c_{l+1}\in\{c_1,c_2,...,c_l\}$. W.L.O.G., let $c_{l+1} = c_k, k \in \{1, 2, ..., l\}$. Now, we have several cases to consider depending on whether $c_0 \in M(y_l)$ or $c_0 \notin M(y_l)$.

Figure 7.2

Case 1. $c_0 \notin M(y_l)$. Since $c_{l+1} = c_k$, $c_k \in M(y_l)$. Now, consider $c_k - c_0$ path starting from y_l .

(i) It is a $y_l - y_k$ path. Since $\pi(xy_k) = c_k$, we may recolor them to a $c_0 - c_k$ path starting from y_k . (Note that c_0 occurs in an edge incident to y_l here. By the fact that the last color is c_k , both c_0 and c_k occur an even number of times.) Now, since $\pi(xy_k) = c_0$, the recoloring of $xy_1, xy_2, ..., xy_{k-1}$ gives $c_1 \in M(x)$, we have the proof. (iii) It is a $y_l - y_i$ path, $i \notin \{k-1, k\}$. Then either c_l or c_0 will be available for xy_i and the proof follows by recoloring process.

Case 2. $c_0 \in M(y_l)$ can be done similarly.

Base on the same proof technique, we also have a stronger result of Vizing's theorem.

Theorem 7.2 (Vizing, 1964). If G is a multigraph with multiplicity η , then $\chi'(G) \leq$ $\Delta(G) + \eta.$

Example. The following graph has $\Delta(G) = 4$ and $\eta = 2$.

Definition 7.3 (Class 1 and Class 2). A graph (simple) is of Class 1 if $\chi'(G) = \Delta(G)$ and of Class 2 if $\chi'(G) = \Delta(G) + 1$.

Theorem 7.3 (König, 1916). A bipartite graph is of Class 1.

Proof 1. By induction on ||G||. Let $xy \in E(G)$ and $G - xy$ can be edge-colored with $\Delta(G)$ colors. Now, since $deg_{G-xy}(x) < \Delta(G)$ and $deg_{G-xy}(y) < \Delta(G)$, a color is missing at x and also a color is missing at y. Let them be α and β respectively. Clearly, $\alpha \neq \beta$, and β occurs around x and α occurs around y. Now, we adapt the idea in proving Vizing's theorem. Let P be a longest $\alpha - \beta$ path from x:

First, if P is an $x-y$ path and the last edge has color α , then P is a path of even length. Hence, $P \cup \{xy\}$ is an odd cycle. A contradiction to the fact that G is bipartite. Hence,

 \Box

x and y are in different components induced by the set of edges colored α and β . Now, we recolor all the edges of P by interchanging α and β . This gives a coloring in which β is missing at x and also at y. By coloring xy with β , we obtain a $\Delta(G)$ -edge coloring of G. \Box

Proof 2. Let G be a bipartite graph. Then there exists a $\Delta(G)$ -regular bipartite graph $\tilde{G} \geq G$. (Exercise) Since \tilde{G} is a $\Delta(G)$ -regular bipartite graph, \tilde{G} can be decomposed into $\Delta(G)$ perfect matchings by König's theorem. This implies that $\chi'(\tilde{G}) = \Delta(G)$. Since $G \leq \tilde{G}$, $\chi'(G) \leq \chi'(\tilde{G}) = \Delta(G)$. Hence, we conclude the proof. \Box

Theorem 7.4. Petersen graph is of Class 2.

Proof. If G is the Petersen graph and $\chi'(G) = 3$, then G can be decomposed into three 1-factors: F_1, F_2 and F_3 (three color classes). Now, consider the set of five link-edges e_1, e_2, e_3, e_4 and e_5 , see Figure 7.3.

Figure 7.3: Petersen graph.

At least one of F_1, F_2 and F_3 will contain at least two link-edges by Pigeon-hole principle, let it be F_1 . Clearly, F_1 cannot contain all the five link-edges. For otherwise, two C_5 's is the union of F_2 and F_3 which is impossible. So, there are three cases to consider. Case 1. $|F_1 \cap \{e_1, e_2, ..., e_5\}| = 4.$

Let e_1 be the edge not in F_1 . But, now all the edges of $G - e_1$ not in $\{e_2, e_3, e_4, e_5\}$ are incident to an edge of $\{e_2, e_3, e_4, e_5\}$. So, no other edge can be chosen for F_1 . Case 2. $|F_1 \cap \{e_1, e_2, ..., e_5\}| = 3.$

Let e_1 and e_2 be the edges not in F_1 . Then, other than link-edges, we choose at most

one more edge f_1 . The case e_1 and e_3 are not in F_1 has similar conclusion (only f_2 is available).

Case 3. $|F_1 \cap \{e_1, e_2, ..., e_5\}| = 2$.

This case comes out that we can find two more edges which are not link-edges. \Box

Corollary 7.5. Petersen graph contains no Hamilton cycles.

Proof. If G contains a Hamilton cycle C, then $\chi'(G) = 3$ by coloring the cycle with two colors and $G - C$ (1-factor) with another color. \Box

Theorem 7.6. A 3-regular planar graph G is of Class 1.

Proof. Let G be embedded in S_0 . Then, by 4-color Theorem, G is 4-face-colorable (or 4map-colorable). Let the 4 colors used be obtained from the group ($\mathbb{Z}_2\times\mathbb{Z}_2$, \oplus). Since each edge is in the boundary of two adjacent faces, let the edge be colored by $(a_1, b_1) \oplus (a_2, b_2)$ where (a_1, b_1) and (a_2, b_2) are the colors of these two adjacent faces. As a conclusion, we obtain a 3-edge-coloring of G , since $(0,0)$ will not be used. The coloring is proper since three adjacent faces will receive three different colors, see Figure 7.4. \Box

Figure 7.4

Remark. Without using 4CT, the proof is very difficult.

Conjecture 7.1. If G is planar and $\Delta(G)$ is large enough, then G is of Class 1.

Theorem 7.7 (Equitable edge-coloring). If G has a k-edge-coloring f, then G has an equitable edge coloring, i.e., for any two $i, j \in \{1, 2, ..., k\}, ||f^{-1}(i)| - |f^{-1}(j)|| \leq 1$.

Proof. If there exist i and j such that $||f^{-1}(i)| - |f^{-1}(j)|| \ge 2$, then we consider the graph H induced by the set of edges colored i and j. Then, H is a subgraph of G such that each component of H is either a path or an even cycle. Since i occurs more times than j, there exists an $i - j$ path whose end edges are colored i:

$$
\bullet \stackrel{i}{\bullet} \stackrel{j}{\bullet} \stackrel{i}{\bullet} \stackrel{j}{\bullet} \stackrel{m}{\bullet} \cdots \stackrel{i}{\bullet} \stackrel{m}{\bullet}
$$

Now, by switching the colors on this path, we obtain a new edge coloring of G such that i occurs one less time and j occurs one more. It turns out that we can obtain an k -edgecoloring such that $||f^{-1}(i)|| - |f^{-1}(j)|| \le 1$. As a consequence, we are able to adjust all of them and obtain an equitable k-edge-coloring. \Box

Remark. This theorem is not difficult to prove, but very useful.

Definition 7.4 (Overfull). A graph G is said to be overfull if $||G|| > |$ $|G|$ 2 $\vert \cdot \Delta(G).$

Remark.

- If G is overfull, then G is of Class 2.
- If G is overfull, then $|G|$ is odd.

Theorem 7.8. The complete graph K_n is of Class 2 if and only if K_n is overfull or equivalently n is odd.

Proof. First, we claim that for each $m \geq 1$, K_{2m} is of Class 1. It is suffices to give a $(2m-1)$ -edge-coloring of K_{2m} . For convenience, let $V(K_{2m}) = \mathbb{Z}_{2m} = \{0, 1, 2, ..., 2m-1\}.$ For each color $i \in \{1, 2, ..., 2m-1\}$, let the set of edges colored i be $F_i = \{(0, i), (i + 1, i - 1), (i + 2, i - 2), ..., (i + m - 1, i - m + 1)\}$ (mod 2m - 1). See Figure 7.5 for an example of $m = 5$ and $i = 3$.

Since $\Delta(K_{2m}) = 2m - 1$, $\chi'(K_{2m}) = 2m - 1$.

Figure 7.5: $\chi'(K_{10}) = 9$.

Now, by deleting 0 in K_{2m} , we obtain a $(2m-1)$ -edge-coloring of K_{2m-1} . On the other hand, it is not difficult to check that K_{2m-1} is overfull for $m \geq 2$, this concludes that $\chi'(K_{2m-1}) > \Delta(K_{2m-1}) = 2m-2.$ \Box

Remark.

- This theorem is not difficult to prove, but it is very useful in the construction of 'Combinatorial Designs'.
- Equivalently, K_{2m} can be decomposed into $2m-1$ 1-factors, which is also known as a 1-factorization of K_{2m} .
- If G is an r-regular graph and $\chi'(G) = r$, then G has a 1-factorization.

Conjecture 7.2. If G is r-regular and $r \geq$ $|G|$ 2 , then G has a 1-factorization or equivalently $\chi'(G) = r$.

Theorem 7.9 (D. Hoffman et al.). A complete multipartite graph G is of Class 2 if and only if G is overfull.

Definition 7.5 (Total coloring). A k-total coloring of a graph G is a mapping φ : $V(G) \cup E(G) \rightarrow \{1, 2, ..., k\}$ such that

- 1. adjacent vertices receive distinct images,
- 2. incident edges receive distinct images, and
- 3. each vertex has a distinct image with the images of its incident edges.

Figure 7.6: A 4-total coloring of C_5 .

Definition 7.6 (Total chromatic number). Total chromatic number of G $\chi''(G)$ = $\min\{k \mid G \text{ has a } k\text{-total coloring }\}.$

Theorem 7.10. $\chi''(K_{2n+1}) = \chi''(K_{2n}) = 2n + 1$.

Proof. $\chi''(K_{2n+1})$ can be obtained by using $\chi'(K_{2n+1}) = 2n+1$. As to the total coloring of K_{2n} , we claim that $2n$ colors are not enough. (Note that $\chi''(G) \geq \Delta(G) + 1$.) Observe that each color class has at most one vertex and $n - 1$ edges. So, 2n color classes will contain at most 2n vertices and $2n(n-1)$ edges. Hence, there are $2n^2$ elements (vertices $2n(2n - 1)$ $= 2n^2 + n$ elements to color,. Clearly, and edges) in total. But, K_{2n} has $2n +$ 2 2n color is not enough. Since K_{2n+1} is $(2n+1)$ -total colorable, K_{2n} is also $(2n+1)$ -total colorable. The proof follows. \Box

Example. $\chi''(K_4) = 5.$ (?)

Figure 7.7: K_4

Conjecture 7.3 (TCC Conjecture). $\chi''(G) \leq \Delta(G) + 2$.