
Introduction to Combinatorics Lecture 7

Edge-coloring

Definition 7.1 (k-edge-coloring). A k-edge-coloring is a mapping π : E(G)→ {1, 2, ..., k}
such that incident edges receive distinct images (colors).

Definition 7.2 (Chromatic index). Chromatic index of G χ′(G) = min{k | G has a

k-edge-coloring }. If χ′(G) = k, then G is h-edge-colorable for each h ≥ k.

Theorem 7.1 (Vizing, 1964). If G is a simple graph, then ∆(G) ≤ χ′(G) ≤ ∆(G) + 1.

Proof. The left hand inequality is easy to see. We prove the right hand inequality by

induction on ||G||. We shall prove that G has a (∆(G) + 1)-edge-coloring (coloring in

short) for G and the assertion is true for smaller sizes, i.e., for each e ∈ E(G), G− e has

a coloring π.

First, we observe that since each vertex v is of degree at most ∆(G), a color is missing

around v. Second, if α and β are two colors used in the coloring, then α and β induce

a subgraph with components either paths or even cycles. Finally, if ’G has no coloring

using ∆(G) + 1 colors’, then for each edge xy and any coloring of G− xy, there exists an

α− β path from y ends in x provided α is missing at x and β is missing at y. See Figure

7.1 for missing colors.

Figure 7.1

Note that if α − β path does not connect x and y, then we may recolor one of the path

(α, β) to obtain a coloring of G using ∆(G) + 1 colors. Also, if x and y are missing the
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same color, then we can use that color to color xy and obtain a ∆(G) + 1 coloring of G.

Hence, it suffices to claim that there is a way to recolor some edges in G− xy such that

x and y miss the same color.

Proof of claim. (Outline.)

Let M(y) denote the colors missing at y, and c1 ∈ M(y). Now, consider M(x). If

c1 ∈ M(x), then color xy by c1 results in a ∆(G) + 1 coloring of G. (The claim holds.)

Hence, assume c1 6∈ M(x). Let c0 ∈ M(x) and π(xy1) = c1, see Figure 7.2. Then,

consider M(y1) and let c2 ∈ M(y1). If c2 ∈ M(x), then we let π(xy1) = c2. Thus, c1

becomes a missing color in M(x), the coloring c1 is available for xy, π(xy) = c1. Hence,

assume c2 6∈M(x). This fact will continue: c2 6∈M(x)⇒ ∃y2 such that π(xy2) = c2; and

then c3 ∈ M(y2), π(xy3) = c3; ...; ci+1 ∈ M(yi), π(xyi+1) = ci+1. Since we only have

∆(G)+1 colors, there exists an l such that π(xyl+1) = cl+1 ∈ {c1, c2, ..., cl}. W.L.O.G., let

cl+1 = ck, k ∈ {1, 2, ..., l}. Now, we have several cases to consider depending on whether

c0 ∈M(yl) or c0 6∈M(yl).

Figure 7.2

Case 1. c0 6∈M(yl).

Since cl+1 = ck, ck ∈M(yl). Now, consider ck − c0 path starting from yl.

(i) It is a yl − yk path. Since π(xyk) = ck, we may recolor them to a c0 − ck path

starting from yk. (Note that c0 occurs in an edge incident to yl here. By the fact

that the last color is ck, both c0 and ck occur an even number of times.) Now, since

π(xyk) = c0, the recoloring of xy1, xy2, ..., xyk−1 gives c1 ∈M(x), we have the proof.
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(ii) It is a yl − yk−1 path. Since ck ∈ M(yk−1), this path is ended with color c0. That

is to say c0 is also available for xyk−1 (not only ck−1). Hence, we color xyk−1 with

c0 instead of ck−1, the proof follows by a similar recoloring process as above.

(iii) It is a yl − yi path, i 6∈ {k− 1, k}. Then either cl or c0 will be available for xyi and

the proof follows by recoloring process.

Case 2. c0 ∈M(yl) can be done similarly.

Base on the same proof technique, we also have a stronger result of Vizing’s theorem.

Theorem 7.2 (Vizing, 1964). If G is a multigraph with multiplicity η, then χ′(G) ≤
∆(G) + η.

Example. The following graph has ∆(G) = 4 and η = 2.

Definition 7.3 (Class 1 and Class 2). A graph (simple) is of Class 1 if χ′(G) = ∆(G)

and of Class 2 if χ′(G) = ∆(G) + 1.

Theorem 7.3 (König, 1916). A bipartite graph is of Class 1.

Proof 1. By induction on ||G||. Let xy ∈ E(G) and G − xy can be edge-colored with

∆(G) colors. Now, since degG−xy(x) < ∆(G) and degG−xy(y) < ∆(G), a color is missing

at x and also a color is missing at y. Let them be α and β respectively. Clearly, α 6= β,

and β occurs around x and α occurs around y. Now, we adapt the idea in proving Vizing’s

theorem. Let P be a longest α− β path from x:

First, if P is an x− y path and the last edge has color α, then P is a path of even length.

Hence, P ∪ {xy} is an odd cycle. A contradiction to the fact that G is bipartite. Hence,
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x and y are in different components induced by the set of edges colored α and β. Now,

we recolor all the edges of P by interchanging α and β. This gives a coloring in which β

is missing at x and also at y. By coloring xy with β, we obtain a ∆(G)-edge coloring of

G.

Proof 2. Let G be a bipartite graph. Then there exists a ∆(G)-regular bipartite graph

G̃ ≥ G. (Exercise) Since G̃ is a ∆(G)-regular bipartite graph, G̃ can be decomposed into

∆(G) perfect matchings by König’s theorem. This implies that χ′(G̃) = ∆(G). Since

G ≤ G̃, χ′(G) ≤ χ′(G̃) = ∆(G). Hence, we conclude the proof.

Theorem 7.4. Petersen graph is of Class 2.

Proof. If G is the Petersen graph and χ′(G) = 3, then G can be decomposed into three

1-factors: F1, F2 and F3 (three color classes). Now, consider the set of five link-edges

e1, e2, e3, e4 and e5, see Figure 7.3.

Figure 7.3: Petersen graph.

At least one of F1, F2 and F3 will contain at least two link-edges by Pigeon-hole principle,

let it be F1. Clearly, F1 cannot contain all the five link-edges. For otherwise, two C5’s is

the union of F2 and F3 which is impossible. So, there are three cases to consider.

Case 1. |F1 ∩ {e1, e2, ..., e5}| = 4.

Let e1 be the edge not in F1. But, now all the edges of G − e1 not in {e2, e3, e4, e5} are

incident to an edge of {e2, e3, e4, e5}. So, no other edge can be chosen for F1.

Case 2. |F1 ∩ {e1, e2, ..., e5}| = 3.

Let e1 and e2 be the edges not in F1. Then, other than link-edges, we choose at most
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one more edge f1. The case e1 and e3 are not in F1 has similar conclusion (only f2 is

available).

Case 3. |F1 ∩ {e1, e2, ..., e5}| = 2.

This case comes out that we can find two more edges which are not link-edges.

Corollary 7.5. Petersen graph contains no Hamilton cycles.

Proof. If G contains a Hamilton cycle C, then χ′(G) = 3 by coloring the cycle with two

colors and G− C (1-factor) with another color.

Theorem 7.6. A 3-regular planar graph G is of Class 1.

Proof. Let G be embedded in S0. Then, by 4-color Theorem, G is 4-face-colorable (or 4-

map-colorable). Let the 4 colors used be obtained from the group (Z2×Z2,⊕). Since each

edge is in the boundary of two adjacent faces, let the edge be colored by (a1, b1)⊕ (a2, b2)

where (a1, b1) and (a2, b2) are the colors of these two adjacent faces. As a conclusion, we

obtain a 3-edge-coloring of G, since (0, 0) will not be used. The coloring is proper since

three adjacent faces will receive three different colors, see Figure 7.4.

Figure 7.4

Remark. Without using 4CT, the proof is very difficult.

Conjecture 7.1. If G is planar and ∆(G) is large enough, then G is of Class 1.
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Theorem 7.7 (Equitable edge-coloring). If G has a k-edge-coloring f , then G has an

equitable edge coloring, i.e., for any two i, j ∈ {1, 2, ..., k}, ||f−1(i)| − |f−1(j)|| ≤ 1.

Proof. If there exist i and j such that ||f−1(i)| − |f−1(j)|| ≥ 2, then we consider the

graph H induced by the set of edges colored i and j. Then, H is a subgraph of G such

that each component of H is either a path or an even cycle. Since i occurs more times

than j, there exists an i− j path whose end edges are colored i:

Now, by switching the colors on this path, we obtain a new edge coloring of G such that

i occurs one less time and j occurs one more. It turns out that we can obtain an k-edge-

coloring such that ||f−1(i)| − |f−1(j)|| ≤ 1. As a consequence, we are able to adjust all

of them and obtain an equitable k-edge-coloring.

Remark. This theorem is not difficult to prove, but very useful.

Definition 7.4 (Overfull). A graph G is said to be overfull if ||G|| > b|G|
2
c ·∆(G).

Remark.

• If G is overfull, then G is of Class 2.

• If G is overfull, then |G| is odd.

Theorem 7.8. The complete graph Kn is of Class 2 if and only if Kn is overfull or

equivalently n is odd.

Proof. First, we claim that for each m ≥ 1, K2m is of Class 1. It is suffices to give a

(2m−1)-edge-coloring of K2m. For convenience, let V (K2m) = Z2m = {0, 1, 2, ..., 2m−1}.
For each color i ∈ {1, 2, ..., 2m− 1}, let the set of edges colored i be

Fi = {(0, i), (i+ 1, i−1), (i+ 2, i−2), ..., (i+m−1, i−m+ 1)} (mod 2m−1). See Figure

7.5 for an example of m = 5 and i = 3.

Since ∆(K2m) = 2m− 1, χ′(K2m) = 2m− 1.
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Figure 7.5: χ′(K10) = 9.

Now, by deleting 0 in K2m, we obtain a (2m− 1)-edge-coloring of K2m−1. On the other

hand, it is not difficult to check that K2m−1 is overfull for m ≥ 2, this concludes that

χ′(K2m−1) > ∆(K2m−1) = 2m− 2.

Remark.

• This theorem is not difficult to prove, but it is very useful in the construction of

’Combinatorial Designs’.

• Equivalently, K2m can be decomposed into 2m − 1 1-factors, which is also known

as a 1-factorization of K2m.

• If G is an r-regular graph and χ′(G) = r, then G has a 1-factorization.

Conjecture 7.2. If G is r-regular and r ≥ |G|
2

, then G has a 1-factorization or equiva-

lently χ′(G) = r.

Theorem 7.9 (D. Hoffman et al.). A complete multipartite graph G is of Class 2 if and

only if G is overfull.

Definition 7.5 (Total coloring). A k-total coloring of a graph G is a mapping ϕ :

V (G) ∪ E(G)→ {1, 2, ..., k} such that

1. adjacent vertices receive distinct images,

2. incident edges receive distinct images, and

3. each vertex has a distinct image with the images of its incident edges.
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Figure 7.6: A 4-total coloring of C5.

Definition 7.6 (Total chromatic number). Total chromatic number of G χ′′(G) =

min{k | G has a k-total coloring }.

Theorem 7.10. χ′′(K2n+1) = χ′′(K2n) = 2n+ 1.

Proof. χ′′(K2n+1) can be obtained by using χ′(K2n+1) = 2n+ 1. As to the total coloring

of K2n, we claim that 2n colors are not enough. (Note that χ′′(G) ≥ ∆(G) + 1.) Observe

that each color class has at most one vertex and n − 1 edges. So, 2n color classes will

contain at most 2n vertices and 2n(n− 1) edges. Hence, there are 2n2 elements (vertices

and edges) in total. But, K2n has 2n+
2n(2n− 1)

2
= 2n2 +n elements to color,. Clearly,

2n color is not enough. Since K2n+1 is (2n+ 1)-total colorable, K2n is also (2n+ 1)-total

colorable. The proof follows.

Example. χ′′(K4) = 5. (?)

Figure 7.7: K4

Conjecture 7.3 (TCC Conjecture). χ′′(G) ≤ ∆(G) + 2.
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