Introduction to Combinatorics Lecture 7

Edge-coloring

Definition 7.1 (k-edge-coloring). A k-edge-coloring is a mapping 7 : E(G) — {1,2, ..., k}

such that incident edges receive distinct images (colors).

Definition 7.2 (Chromatic index). Chromatic index of G x'(G) = min{k | G has a
k-edge-coloring }. If x'(G) = k, then G is h-edge-colorable for each h > k.

Theorem 7.1 (Vizing, 1964). If G is a simple graph, then A(G) < X'(G) < A(G) + 1.

Proof. The left hand inequality is easy to see. We prove the right hand inequality by
induction on ||G||. We shall prove that G has a (A(G) + 1)-edge-coloring (coloring in
short) for G and the assertion is true for smaller sizes, i.e., for each e € E(G), G — e has
a coloring 7.

First, we observe that since each vertex v is of degree at most A(G), a color is missing
around v. Second, if a and 3 are two colors used in the coloring, then o and ( induce
a subgraph with components either paths or even cycles. Finally, if ’G has no coloring
using A(G) + 1 colors’, then for each edge xy and any coloring of G — xy, there exists an
a — [ path from y ends in x provided « is missing at x and 3 is missing at y. See Figure

7.1 for missing colors.

missing a missing 8
missing f§ missing a

Figure 7.1

Note that if a — 8 path does not connect z and y, then we may recolor one of the path

(cr, B) to obtain a coloring of G using A(G) + 1 colors. Also, if x and y are missing the
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same color, then we can use that color to color zy and obtain a A(G) + 1 coloring of G.
Hence, it suffices to claim that there is a way to recolor some edges in G — xy such that
x and y miss the same color.

Proof of claim. (Outline.)

Let M(y) denote the colors missing at y, and ¢; € M(y). Now, consider M(z). If
¢1 € M(z), then color xy by ¢ results in a A(G) + 1 coloring of G. (The claim holds.)
Hence, assume ¢; ¢ M(z). Let ¢g € M(z) and 7(zy;) = c1, see Figure 7.2. Then,
consider M(y;) and let co € M(y1). If co € M(z), then we let m(zy;) = co. Thus, ¢
becomes a missing color in M (x), the coloring ¢ is available for zy, m(xy) = ¢;. Hence,
assume co ¢ M (x). This fact will continue: c¢o ¢ M (x) = Jys such that w(zys) = co; and
then ¢35 € M(y), m(zys) = c35...; i1 € M(y;), m(xyi41) = ¢iy1. Since we only have
A(G)+1 colors, there exists an [ such that 7(zy;41) = 41 € {c1,¢2, ..., ). W.L.O.G., let
a1 = ¢, k€{1,2,...,1}. Now, we have several cases to consider depending on whether

co € M(y;) or co & M(y).

c; € M(y1)
c3 € M(y;)

C4 € M(y3)

Civ1 € M(y;)

Ci+1

Figure 7.2

Case 1. ¢ & M(y).

Since ¢;11 = ¢k, ¢ € M(y;). Now, consider ¢ — ¢g path starting from y;.

(i) It is a y; — yx path. Since m(zyx) = cx, we may recolor them to a ¢y — ¢; path
starting from y,. (Note that ¢y occurs in an edge incident to y; here. By the fact
that the last color is ¢, both ¢y and ¢, occur an even number of times.) Now, since

m(xyy) = co, the recoloring of xyy, zys, ..., xyr_1 gives ¢; € M(x), we have the proof.
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(ii) It is a y; — yr—1 path. Since ¢, € M(yr_1), this path is ended with color ¢y. That
is to say ¢ is also available for zy;_; (not only ¢;_1). Hence, we color zy,_; with

¢o instead of ¢;_1, the proof follows by a similar recoloring process as above.

(iii) It is a y; — y; path, i € {k — 1, k}. Then either ¢; or ¢y will be available for xy; and

the proof follows by recoloring process.

Case 2. ¢g € M(y;) can be done similarly. O

Base on the same proof technique, we also have a stronger result of Vizing’s theorem.
Theorem 7.2 (Vizing, 1964). If G is a multigraph with multiplicity n, then X' (G) <
A(G) + 1.

Ezample. The following graph has A(G) =4 and n = 2.

Definition 7.3 (Class 1 and Class 2). A graph (simple) is of Class 1 if x'(G) = A(G)
and of Class 2 if X'(G) = A(G) + 1.

Theorem 7.3 (Konig, 1916). A bipartite graph is of Class 1.

Proof 1. By induction on ||G||. Let zy € E(G) and G — zy can be edge-colored with
A(G) colors. Now, since degg_sy(7) < A(G) and degg—ay(y) < A(G), a color is missing
at x and also a color is missing at y. Let them be a and f respectively. Clearly, o # 3,
and [ occurs around x and « occurs around y. Now, we adapt the idea in proving Vizing’s

theorem. Let P be a longest a — § path from x:

Bga B

First, if P is an z —y path and the last edge has color a, then P is a path of even length.
Hence, P U {zy} is an odd cycle. A contradiction to the fact that G is bipartite. Hence,

3
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x and y are in different components induced by the set of edges colored o and 3. Now,
we recolor all the edges of P by interchanging a and . This gives a coloring in which
is missing at = and also at y. By coloring xy with 5, we obtain a A(G)-edge coloring of

G. O

Proof 2. Let G be a bipartite graph. Then there exists a A(G)-regular bipartite graph
G > G. (Exercise) Since G is a A(G)-regular bipartite graph, G can be decomposed into

A(G) perfect matchings by Konig’s theorem. This implies that x'(G) = A(G). Since
G <G, ¥ (G) <X(G) = A(G). Hence, we conclude the proof. O

Theorem 7.4. Petersen graph is of Class 2.

Proof. If G is the Petersen graph and x'(G) = 3, then G can be decomposed into three
1-factors: Fiy, Fy and Fj (three color classes). Now, consider the set of five link-edges

e1, €9, e3,¢e4 and es, see Figure 7.3.

Figure 7.3: Petersen graph.

At least one of Fi, F; and F3 will contain at least two link-edges by Pigeon-hole principle,
let it be F}. Clearly, F} cannot contain all the five link-edges. For otherwise, two C5’s is
the union of F, and F3 which is impossible. So, there are three cases to consider.
Case 1. |Fy N{ey,eq,...,e5}| = 4.

Let e; be the edge not in Fj. But, now all the edges of G — e; not in {es, e3, €4, €5} are
incident to an edge of {es, e3, €4, e5}. So, no other edge can be chosen for Fj.

Case 2. |FiN{ey, e, ...,e5} = 3.

Let e; and e; be the edges not in F}. Then, other than link-edges, we choose at most
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one more edge f;. The case e; and ez are not in F} has similar conclusion (only f; is

available).
Case 3. |F1 N {61, €9, ...,65}| = 2.
This case comes out that we can find two more edges which are not link-edges. O

Corollary 7.5. Petersen graph contains no Hamilton cycles.

Proof. If G contains a Hamilton cycle C, then x'(G) = 3 by coloring the cycle with two
colors and G — C' (1-factor) with another color. O

Theorem 7.6. A 3-regular planar graph G is of Class 1.

Proof. Let G be embedded in Sy. Then, by 4-color Theorem, G is 4-face-colorable (or 4-
map-colorable). Let the 4 colors used be obtained from the group (Zs X Zs, @). Since each
edge is in the boundary of two adjacent faces, let the edge be colored by (ay,by) ® (az, bs)
where (ay,b1) and (ag, by) are the colors of these two adjacent faces. As a conclusion, we
obtain a 3-edge-coloring of G, since (0,0) will not be used. The coloring is proper since

three adjacent faces will receive three different colors, see Figure 7.4. O

Figure 7.4

Remark. Without using 4CT, the proof is very difficult.

Conjecture 7.1. If G is planar and A(G) is large enough, then G is of Class 1.
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Theorem 7.7 (Equitable edge-coloring). If G has a k-edge-coloring f, then G has an
equitable edge coloring, i.c., for any two i, € {1,2,...k}, ||/ ()| —|f ()] < 1.

Proof. If there exist ¢ and j such that |[f~*(i)| — |f'(4)|| > 2, then we consider the
graph H induced by the set of edges colored ¢ and j. Then, H is a subgraph of G such
that each component of H is either a path or an even cycle. Since ¢ occurs more times

than j, there exists an ¢+ — j path whose end edges are colored i:

Now, by switching the colors on this path, we obtain a new edge coloring of G such that
1 occurs one less time and j occurs one more. It turns out that we can obtain an k-edge-
coloring such that ||f~*(i)| — |f~'(4)|| < 1. As a consequence, we are able to adjust all

of them and obtain an equitable k-edge-coloring. O

Remark. This theorem is not difficult to prove, but very useful.

Definition 7.4 (Overfull). A graph G is said to be overfull if ||G|| > L%J -A(G).

Remark.
o If GG is overfull, then G is of Class 2.

e If GG is overfull, then |G| is odd.

Theorem 7.8. The complete graph K, is of Class 2 if and only if K, is overfull or

equivalently n is odd.

Proof. First, we claim that for each m > 1, K, is of Class 1. It is suffices to give a
(2m —1)-edge-coloring of Kj,,,. For convenience, let V(Ks,,) = Zoym = {0,1,2,...,2m—1}.
For each color ¢ € {1,2,...,2m — 1}, let the set of edges colored i be

F,={(0,i),(i+1,i—1),(i+2,i—2),...,(¢+m—1,i—m~+1)} (mod 2m —1). See Figure

7.5 for an example of m =5 and ¢ = 3.

Since A(Kyy) =2m — 1, X' (Kam) = 2m — 1.
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Figure 7.5: x'(K19) = 9.

Now, by deleting 0 in Kj5,,, we obtain a (2m — 1)-edge-coloring of Kj,, 1. On the other
hand, it is not difficult to check that K, 1 is overfull for m > 2, this concludes that
X/<K2m,1) > A(Kgmfl) =2m — 2. ]

Remark.

e This theorem is not difficult to prove, but it is very useful in the construction of

"Combinatorial Designs’.

e Equivalently, K5, can be decomposed into 2m — 1 1-factors, which is also known

as a 1-factorization of Ks,,.
e If G is an r-regular graph and \'(G) = r, then G has a 1-factorization.

G|

Conjecture 7.2. If G is r-regular and r > ’7, then G has a 1-factorization or equiva-

lently X' (G) = r.

Theorem 7.9 (D. Hoffman et al.). A complete multipartite graph G is of Class 2 if and
only if G is overfull.

Definition 7.5 (Total coloring). A k-total coloring of a graph G is a mapping ¢ :
V(G)UE(G) — {1,2,...,k} such that

1. adjacent vertices receive distinct images,

2. incident edges receive distinct images, and

3. each vertex has a distinct image with the images of its incident edges.
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Figure 7.6: A 4-total coloring of Cs.

Definition 7.6 (Total chromatic number). Total chromatic number of G x"(G) =
min{k | G has a k-total coloring }.

Theorem 7.10. " (Ka,11) = X" (K2n) = 2n + 1.

Proof. X"(K,11) can be obtained by using x'(K2n41) = 2n + 1. As to the total coloring
of Ky,, we claim that 2n colors are not enough. (Note that x"(G) > A(G) +1.) Observe
that each color class has at most one vertex and n — 1 edges. So, 2n color classes will
contain at most 2n vertices and 2n(n — 1) edges. Hence, there are 2n* elements (vertices

2n(2n — 1)

and edges) in total. But, K5, has 2n + = 2n? +n elements to color,. Clearly,

2n color is not enough. Since Ko, 1 is (2n + 1)-total colorable, Ky, is also (2n + 1)-total
colorable. The proof follows. m

Ezample. X" (K4) =5. (7)

Figure 7.7: K4

Conjecture 7.3 (TCC Conjecture). X" (G) < A(G) + 2.



