Introduction to Combinatorics

Lecture 6

Ramsey Theory

This topic plays an important role in learning the structure of graphs. Moreover, it does have important applications. (?)

Definition 6.1. The Ramsey number R(s,t) is the smallest value "n" for which either a graph G of order n contains K_s or $K_t \leq \overline{G}$ (the complement of G).

Definition 6.2 (Edge-coloring version of Ramsey number). The Ramsey number R(s,t) is the smallest value "n" for which any 2-edge-colored K_n (red and blue), either there exists a red K_s or a blue K_t . (A red K_s is a complete graph of order s such that all its edges are colored red.)

Remark. R(3,3) = 6 (Do you know this fact?)

Theorem 6.1. The following statements are true:

- 1. R(s, 2) = s and R(2, t) = t,
- 2. R(s,t) = R(t,s),
- 3. For s > 2 and t > 2, $R(s,t) \le R(s,t-1) + R(s-1,t)$, and 4. $R(s,t) \le {\binom{s+t-2}{s-1}} = {\binom{s+t-2}{t-1}}$.

Proof.

1. and 2. are easy to see.

Claim of 3.

Let n = R(s, t - 1) + R(s - 1, t). Then, in K_n , each vertex is of degree R(s, t - 1) + R(s - 1, t) - 1. Therefore, if K_n is 2-edge-colored by red and blue, then the edges incident to a fixed vertex $x \in V(K_n)$ are either red edges or blue edges. By Pigeon-hole principle, either there are R(s, t - 1) blue edges or R(s - 1, t) red edges. If the first case holds, then in $\langle N_{K_n}(x) \rangle_{K_n}$ (a complete graph of order R(s, t - 1)), either there exists a red K_s or a blue K_{t-1} . Hence, we have a red K_s or a blue K_t in K_n . The other case can be obtain by a similar argument.

Claim of 4.

By inductive argument. (Or induction.)

$$R(s,t) \leq R(s,t-1) + R(s-1,t)$$

$$\leq \binom{s+t-1-2}{s-1} + \binom{s-1+t-2}{t-1}$$

$$\leq \binom{s+t-3}{s-1} + \binom{s+t-3}{s-2}$$

$$\leq \binom{s+t-3+1}{s-1}$$

$$\leq \binom{s+t-2}{s-1}$$

1				
1				
	_	_	_	

Theorem 6.2 (Erdös and Szekeres, 1935). For each $s \ge 2$,

$$R(s) \le \frac{2^{2s-2}}{s^{1/2}}.$$

$$(R(s) =_{def} R(s, s).)$$
Proof. $R(s, s) \leq \binom{2s-2}{s-1}$. We claim that $\binom{2s-2}{s-1} \leq \frac{2^{2s-2}}{s^{1/2}}$ by induction on s .

First, if $s = 2, 2 \le \frac{4}{\sqrt{2}}$, the assertion is true. Assume that the assertion is true for s = k, thus $\binom{2k-2}{k-1} \le \frac{2^{2k-2}}{k^{1/2}}$. Now, we calculate $\binom{2k}{k} = \frac{(2k)!}{k!!}$

$$\binom{k}{k} = \frac{k!k!}{k!k!}$$

$$= \frac{2k \cdot (2k-1) \cdot (2k-2)!}{k^2 \cdot (k-1)! \cdot (k-1)!}$$

$$= \frac{2k(2k-1)}{k^2} \binom{2k-2}{k-1}$$

$$\leq \frac{4k-2}{k} \cdot \frac{2^{2k-2}}{k^{1/2}}$$

$$= \frac{4k-2}{4k} \cdot \frac{2^{2k}}{k^{1/2}}.$$

$$= \frac{4k-2}{4k} \cdot \frac{2^{2k}}{k^{1/2}}.$$

Since $(k+1)^{1/2} \le \frac{4k \cdot k^{1/2}}{4k-2}$, we conclude that $\binom{2k}{k} \le \frac{2^{2k}}{(k+1)^{1/2}}$.

Remark.

• The result has been there for almost 50 years before the improvement due to Thomason in 1988: $R(s) \leq \frac{2^{2s}}{s}$.

• The original proof by Ramsey shows that $R(s) \le 2^{2s-3} = \frac{2^{2s-2}}{2}$. (1930)

Theorem 6.3. For $k \geq 3$,

$$R(k) \ge \lceil 2^{k/2} \rceil.$$

Proof. (Probabilistic method)

Consider a random red-blue coloring of the edges of K_n . For a fixed set T of k vertices, let A_T be the event that $\langle T \rangle_{K_n}$ is monochromatic. Hence, $P(A_T) = \left(\frac{1}{2}\right)^{\binom{k}{2}} \cdot 2$ (red or blue) $= 2^{1-\binom{k}{2}}$. Since there are $\binom{n}{k}$ possible sets for T, the probability that at least one of A_T occurs is $\binom{n}{k} \cdot 2^{1-\binom{k}{2}}$. Now, if $\binom{n}{k} \cdot 2^{1-\binom{k}{2}} < 1$, then no event A_T occurs is of positive probability, i.e., there exists a coloring of edges such that no monochromatic K_k occurs. Therefore, for such n, R(k) > n.

Let $n = \lfloor 2^{k/2} \rfloor$. It suffices to show that $\binom{n}{k} \cdot 2^{1 - \binom{k}{2}} < 1$. $\binom{n}{k} \cdot 2^{1 - \binom{k}{2}} < \frac{n^k}{k!} \cdot \frac{2^{1 + \frac{k}{2}}}{2^{\frac{k^2}{2}}} \qquad (1 - \binom{k}{2}) = 1 - \frac{k^2}{2} + \frac{k}{2})$ $\leq \frac{(2^{\frac{k}{2}})^k}{k!} \cdot \frac{2^{1 + \frac{k}{2}}}{2^{\frac{k^2}{2}}}$ $\leq \frac{2^{1 + \frac{k}{2}}}{k!}$ < 1. $(k \ge 3)$

Hence, $R(k) \ge \lceil 2^{k/2} \rceil$.

Remark. Combining Theorems above we obtain: $2^{s/2} \le R(s) \le 2^{2s-3}$ for $s \ge 2$.

Open Problem. $R(s) = 2^{(c+o(1))s}$ (c may be equal to 1).

t s	3	4	5	6	7	8	9
3	6	9	14	18	23	28	36
4		18	25	36-41	49-61	59-84	73-115
5			43-48	58-87	80-143	101-216	133-316
6				102-165	115-298	134-495	183-780
7					205-540	217-1031	252-1713
8						282-1870	329-3583
9							565-6588

Theorem 6.	.4.	Known	results	of $R($	(s,t).	(R(t,s))) = R(s,t)
------------	-----	-------	---------	---------	--------	----------	------------

Table 0.1

• The result of lower bounds are obtained by "a special edge-coloring" with two colors. Corresponding to the coloring we have G and \overline{G} of order (prescribed).

Research Problem.

- Find as many vertices (n) as possible such that a graph G of order n satisfying $K_5 \not\leq G$ and $K_5 \not\leq \overline{G}$. (Try 43!)
- Find a better upper bound for R(s). (Do your best!)

We can extend the notion R(s,t) to $R(p_1, p_2, ..., p_t)$ by using the coloring version. For R(s,t), we consider 2-coloring the edges of K_n for some n. Now, we color the edges of K_n by using t colors. Hence, we are looking for the existence of monochromatic K_{p_i} using color i (the *i*-th color).

Definition 6.3. $R(p_1, p_2, ..., p_t) = \min\{n | \text{ for each } t\text{-coloring of } E(K_n), \text{ there exists a } i\text{-monochromatic } K_{p_i} \text{ for some } 1 \le i \le t\}.$

Notice that the order of p_i 's is important since they may not be the same. In case that $p_1 = p_2 = \cdots = p_t = s$, we denote it by $R_t(s)$. For example, we will prove that $R_k(3) = \lfloor e \cdot k! \rfloor + 1$. (?) The proof relies on using the generalized Pigeon-hole principle.

Definition 6.4 (Pigeon-hole principle).

- If there are n holes (cages) to hold $n \cdot k n + 1$ pigeons, then at least one of them will have k pigeons.
- If the *n* holes are of size $a_1, a_2, ..., a_n$, then $n \cdot k$ can be replaced by $\sum_{i=1}^n a_i$ and the *i*-th hole will have a_i pigeons for some $1 \le i \le n$.

Theorem 6.5.

$$R(p_1, p_2, ..., p_t) \le R(p_1 - 1, p_2, ..., p_t) + R(p_1, p_2 - 1, ..., p_t) + R(p_1, p_2, ..., p_t - 1) - t + 2.$$

Proof. By a similar argument as the proof $R(s,t) \leq R(s,t-1) + R(s-1,t)$.

Remark.

- $R(3,3,3) \le 6 + 6 + 6 3 + 2 = 17$ (Theorem 6.6)
- There exists a 3-edge-coloring of K_{16} such that no monochromatic triangles occur.

$$R(3,3,...,3) =_{def} R_k(3) \le \lfloor e \cdot k! \rfloor + 1.$$

(k-tuples)

Proof. Since R(3,3) = 6, R(3,3,3) = 17, the assertion is true for k = 2 and 3. Assume that it holds for k - 1 when k > 3. Hence, $R_{k-1}(3) \leq \lfloor e \cdot (k-1)! \rfloor + 1$. By Theorem 6.5,

$$R_k(3) \le k(\lfloor e \cdot (k-1)! \rfloor + 1) - k + 2$$
$$= k \lfloor e \cdot (k-1)! \rfloor + 2.$$

Now,

$$k \lfloor e \cdot (k-1)! \rfloor = k \lfloor (k-1)! \cdot (1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{(k-1)!} + \frac{1}{k!} + \dots) \rfloor$$

= $k \lfloor M + \frac{1}{k} + \frac{1}{k(k+1)} + \frac{1}{k(k+1)(k+2)} + \dots \rfloor$
:
= $\lfloor e \cdot k! \rfloor - 1.$ (?)

Remark. Instead of R(s,t), we use $R(H_1, H_2)$ to denote the smallest integer n such that any 2-edge-coloring (red, blue) of K_n , either there exists a red H_1 or a blue H_2 .