Introduction to Combinatorics Lecture 6

Ramsey Theory

This topic plays an important role in learning the structure of graphs. Moreover, it does have important applications. $(?)$

Definition 6.1. The Ramsey number $R(s,t)$ is the smallest value "n" for which either a graph G of order n contains K_s or $K_t \leq \overline{G}$ (the complement of G).

Definition 6.2 (Edge-coloring version of Ramsey number). The Ramsey number $R(s,t)$ is the smallest value "n" for which any 2-edge-colored K_n (red and blue), either there exists a red K_s or a blue K_t . (A red K_s is a complete graph of order s such that all its edges are colored red.)

Remark. $R(3,3) = 6$ (Do you know this fact?)

Theorem 6.1. The following statements are true:

1. $R(s, 2) = s$ and $R(2, t) = t$,

 $s-1$

- 2. $R(s,t) = R(t,s)$,
- 3. For $s > 2$ and $t > 2$, $R(s,t) \leq R(s,t-1) + R(s-1,t)$, and 4. $R(s,t) \leq$ $\int s + t - 2$ \setminus = $\int s + t - 2$ \setminus .

 $t-1$

Proof.

1. and 2. are easy to see.

Claim of 3.

Let $n = R(s, t-1) + R(s-1, t)$. Then, in K_n , each vertex is of degree $R(s, t-1)$ + $R(s-1, t)-1$. Therefore, if K_n is 2-edge-colored by red and blue, then the edges incident to a fixed vertex $x \in V(K_n)$ are either red edges or blue edges. By Pigeon-hole principle, either there are $R(s, t-1)$ blue edges or $R(s-1, t)$ red edges. If the first case holds, then in $\langle N_{K_n}(x)\rangle_{K_n}$ (a complete graph of order $R(s, t-1)$), either there exists a red K_s or a blue K_{t-1} . Hence, we have a red K_s or a blue K_t in K_n . The other case can be obtain by a similar argument.

Claim of 4.

By inductive argument. (Or induction.)

$$
R(s,t) \leq R(s,t-1) + R(s-1,t)
$$

\n
$$
\leq {s+t-1-2 \choose s-1} + {s-1+t-2 \choose t-1}
$$

\n
$$
\leq {s+t-3 \choose s-1} + {s+t-3 \choose s-2}
$$

\n
$$
\leq {s+t-3+1 \choose s-1}
$$

\n
$$
\leq {s+t-2 \choose s-1}
$$

 \Box

Theorem 6.2 (Erdös and Szekeres, 1935). For each $s \geq 2$,

$$
R(s) \le \frac{2^{2s-2}}{s^{1/2}}.
$$

$$
(R(s) =_{def} R(s, s).
$$

Proof. $R(s, s) \le {2s - 2 \choose s - 1}$. We claim that ${2s - 2 \choose s - 1} \le \frac{2^{2s - 2}}{s^{1/2}}$ by induction on s.

First, if $s = 2, 2 \leq \frac{4}{7}$ 2 , the assertion is true. Assume that the assertion is true for $s = k$, thus $\left(\begin{array}{c} 2k-2\\1 \end{array}\right)$ $k-1$ \setminus $\leq \frac{2^{2k-2}}{11/2}$ $\frac{1}{k^{1/2}}$. Now, we calculate $\sqrt{2k}$ k \setminus = $(2k)!$ $k!k!$ = $2k \cdot (2k-1) \cdot (2k-2)!$ $k^2 \cdot (k-1)! \cdot (k-1)!$ = $2k(2k-1)$ $k²$ $\int 2k - 2$ $k-1$ \setminus $\leq \frac{4k-2}{k}$ k $\cdot \frac{2^{2k-2}}{11/2}$ $k^{1/2}$ = $4k - 2$ $4k$ $\cdot \frac{2^{2k}}{11}$ $\frac{2}{k^{1/2}}$.

Since $(k+1)^{1/2} \leq \frac{4k \cdot k^{1/2}}{4k}$ $4k - 2$, we conclude that $\begin{pmatrix} 2k \\ 1 \end{pmatrix}$ k \setminus $\leq \frac{2^{2k}}{\sqrt{1+1}}$ $\frac{2}{(k+1)^{1/2}}$.

 \Box

 \Box

Remark.

• The result has been there for almost 50 years before the improvement due to Thomason in 1988: $R(s) \leq \frac{2^{2s}}{s}$ s .

• The original proof by Ramsey shows that $R(s) \leq 2^{2s-3} = \frac{2^{2s-2}}{2s}$ 2 . (1930)

Theorem 6.3. For $k \geq 3$,

$$
R(k) \ge \lceil 2^{k/2} \rceil.
$$

Proof. (Probabilistic method)

Consider a random red-blue coloring of the edges of K_n . For a fixed set T of k vertices, let A_T be the event that $\langle T \rangle_{K_n}$ is monochromatic. Hence, $P(A_T) = \left(\frac{1}{2}\right)^n$) \sqrt{k} 2 \setminus · 2 (red or blue) = $2^{1-\binom{k}{2}}$ 2 \setminus . Since there are $\binom{n}{k}$ k possible sets for T , the probability that at least one of A_T occurs is $\binom{n}{k}$ k) $\cdot 2^{1-\binom{k}{2}}$ 2 \setminus . Now, if $\binom{n}{k}$ k $\cdot \left(\frac{k}{2} \right)$. 2^{1−} $\left(\frac{k}{2} \right)$ 2 \setminus < 1 , then no event A_T occurs is of positive probability, i.e., there exists a coloring of edges such that no monochromatic K_k occurs. Therefore, for such $n, R(k) > n$.

Let $n = \lfloor 2^{k/2} \rfloor$. It suffices to show that $\binom{n}{k}$ k $\cdot \left(\frac{k}{2} \right)$. 2^{1−} $\left(\frac{k}{2} \right)$ 2 \setminus < 1 . \sqrt{n} k \setminus $\cdot \, 2^{1-\binom{k}{2}}$ 2 \setminus \lt n^k $k!$ $\cdot \frac{2^{1+\frac{k}{2}}}{h^2}$ $2^{\frac{k^2}{2}}$ $(1 - \binom{k}{2})$ 2 $= 1 - \frac{k^2}{2}$ 2 $+$ k 2) $\leq \frac{(2^{\frac{k}{2}})^k}{4!}$ $k!$ $\cdot \frac{2^{1+\frac{k}{2}}}{h^2}$ $2^{\frac{k^2}{2}}$ $\leq \frac{2^{1+\frac{k}{2}}}{1}$ $k!$ $< 1.$ ($k \ge 3$)

Hence, $R(k) \geq \lceil 2^{k/2} \rceil$.

Remark. Combining Theorems above we obtain: $2^{s/2} \le R(s) \le 2^{2s-3}$ for $s \ge 2$.

Open Problem. $R(s) = 2^{(c+o(1))s}$ (c may be equal to 1).

• The result of lower bounds are obtained by "a special edge-coloring" with two colors. Corresponding to the coloring we have G and \overline{G} of order (prescribed).

 \Box

Research Problem.

- Find as many vertices (n) as possible such that a graph G of order n satisfying $K_5 \nleq G$ and $K_5 \nleq \overline{G}$. (Try 43!)
- Find a better upper bound for $R(s)$. (Do your best!)

We can extend the notion $R(s, t)$ to $R(p_1, p_2, ..., p_t)$ by using the coloring version. For $R(s, t)$, we consider 2-coloring the edges of K_n for some n. Now, we color the edges of K_n by using t colors. Hence, we are looking for the existence of monochromatic K_{p_i} using color i (the i -th color).

Definition 6.3. $R(p_1, p_2, ..., p_t) = \min\{n |$ for each t-coloring of $E(K_n)$, there exists a *i*-monochromatic K_{p_i} for some $1 \leq i \leq t$.

Notice that the order of p_i 's is important since they may not be the same. In case that $p_1 = p_2 = \cdots = p_t = s$, we denote it by $R_t(s)$. For example, we will prove that $R_k(3) = [e \cdot k!] + 1.$ (?) The proof relies on using the generalized Pigeon-hole principle.

Definition 6.4 (Pigeon-hole principle).

- If there are n holes (cages) to hold $n \cdot k n + 1$ pigeons, then at least one of them will have k pigeons.
- If the *n* holes are of size $a_1, a_2, ..., a_n$, then $n \cdot k$ can be replaced by $\sum_{n=1}^{n}$ $i=1$ a_i and the *i*-th hole will have a_i pigeons for some $1 \leq i \leq n$.

Theorem 6.5.

$$
R(p_1, p_2, ..., p_t) \le R(p_1 - 1, p_2, ..., p_t) + R(p_1, p_2 - 1, ..., p_t) + R(p_1, p_2, ..., p_t - 1) - t + 2.
$$

Proof. By a similar argument as the proof $R(s, t) \leq R(s, t - 1) + R(s - 1, t)$.

Remark.

- $R(3, 3, 3) \le 6 + 6 + 6 3 + 2 = 17$ (Theorem 6.6)
- There exists a 3-edge-coloring of K_{16} such that no monochromatic triangles occur.

$$
R(3,3,...,3) =_{def} R_k(3) \leq \lfloor e \cdot k! \rfloor + 1.
$$

(k-tuples)

Proof. Since $R(3,3) = 6$, $R(3,3,3) = 17$, the assertion is true for $k = 2$ and 3. Assume that it holds for $k-1$ when $k > 3$. Hence, $R_{k-1}(3) \leq [e \cdot (k-1)!] + 1$. By Theorem 6.5,

$$
R_k(3) \le k([e \cdot (k-1)!] + 1) - k + 2
$$

= $k[e \cdot (k-1)!] + 2$.

Now,

$$
k[e \cdot (k-1)!] = k[(k-1)! \cdot (1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{(k-1)!} + \frac{1}{k!} + \dots)]
$$

= $k[M + \frac{1}{k} + \frac{1}{k(k+1)} + \frac{1}{k(k+1)(k+2)} + \dots]$
:
= $[e \cdot k!] - 1.$ (?)

 \Box

Remark. Instead of $R(s, t)$, we use $R(H_1, H_2)$ to denote the smallest integer n such that any 2-edge-coloring (red, blue) of K_n , either there exists a red H_1 or a blue H_2 .