
Introduction to Combinatorics Lecture 6

Ramsey Theory

This topic plays an important role in learning the structure of graphs. Moreover, it does

have important applications. (?)

Definition 6.1. The Ramsey number R(s, t) is the smallest value ”n” for which either

a graph G of order n contains Ks or Kt ≤ Ḡ (the complement of G).

Definition 6.2 (Edge-coloring version of Ramsey number). The Ramsey number R(s, t)

is the smallest value ”n” for which any 2-edge-colored Kn (red and blue), either there

exists a red Ks or a blue Kt. (A red Ks is a complete graph of order s such that all its

edges are colored red.)

Remark. R(3, 3) = 6 (Do you know this fact?)

Theorem 6.1. The following statements are true:

1. R(s, 2) = s and R(2, t) = t,

2. R(s, t) = R(t, s),

3. For s > 2 and t > 2, R(s, t) ≤ R(s, t− 1) + R(s− 1, t), and

4. R(s, t) ≤

(
s + t− 2

s− 1

)
=

(
s + t− 2

t− 1

)
.

Proof.

1. and 2. are easy to see.

Claim of 3.

Let n = R(s, t− 1) + R(s− 1, t). Then, in Kn, each vertex is of degree R(s, t− 1)+

R(s−1, t)−1. Therefore, if Kn is 2-edge-colored by red and blue, then the edges incident

to a fixed vertex x ∈ V (Kn) are either red edges or blue edges. By Pigeon-hole principle,

either there are R(s, t−1) blue edges or R(s−1, t) red edges. If the first case holds, then

in 〈NKn(x)〉Kn (a complete graph of order R(s, t − 1)), either there exists a red Ks or a

blue Kt−1. Hence, we have a red Ks or a blue Kt in Kn. The other case can be obtain

by a similar argument.
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Claim of 4.

By inductive argument. (Or induction.)

R(s, t) ≤ R(s, t− 1) + R(s− 1, t)

≤

(
s + t− 1− 2

s− 1

)
+

(
s− 1 + t− 2

t− 1

)

≤

(
s + t− 3

s− 1

)
+

(
s + t− 3

s− 2

)

≤

(
s + t− 3 + 1

s− 1

)

≤

(
s + t− 2

s− 1

)

Theorem 6.2 (Erdös and Szekeres, 1935). For each s ≥ 2,

R(s) ≤ 22s−2

s1/2
.

(R(s) =def R(s, s).)

Proof. R(s, s) ≤

(
2s− 2

s− 1

)
. We claim that

(
2s− 2

s− 1

)
≤ 22s−2

s1/2
by induction on s.

First, if s = 2, 2 ≤ 4√
2

, the assertion is true. Assume that the assertion is true for s = k,

thus

(
2k − 2

k − 1

)
≤ 22k−2

k1/2
. Now, we calculate(

2k

k

)
=

(2k)!

k!k!

=
2k · (2k − 1) · (2k − 2)!

k2 · (k − 1)! · (k − 1)!

=
2k(2k − 1)

k2

(
2k − 2

k − 1

)

≤ 4k − 2

k
· 22k−2

k1/2

=
4k − 2

4k
· 22k

k1/2
.

Since (k + 1)1/2 ≤ 4k · k1/2

4k − 2
, we conclude that

(
2k

k

)
≤ 22k

(k + 1)1/2
.
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Remark.

• The result has been there for almost 50 years before the improvement due to

Thomason in 1988: R(s) ≤ 22s

s
.

• The original proof by Ramsey shows that R(s) ≤ 22s−3 =
22s−2

2
. (1930)

Theorem 6.3. For k ≥ 3,

R(k) ≥ d2k/2e.

Proof. (Probabilistic method)

Consider a random red-blue coloring of the edges of Kn. For a fixed set T of k vertices,

let AT be the event that 〈T 〉Kn is monochromatic. Hence, P (AT ) = (
1

2
)

(
k
2

)
· 2 (red or

blue) = 2
1−
(
k
2

)
. Since there are

(
n
k

)
possible sets for T , the probability that at least one

of AT occurs is
(
n
k

)
· 2

1−
(
k
2

)
. Now, if

(
n
k

)
· 2

1−
(
k
2

)
< 1, then no event AT occurs is of

positive probability, i.e., there exists a coloring of edges such that no monochromatic Kk

occurs. Therefore, for such n, R(k) > n.

Let n = b2k/2c. It suffices to show that
(
n
k

)
· 2

1−
(
k
2

)
< 1.(

n

k

)
· 2

1−
(
k
2

)
<

nk

k!
· 21+ k

2

2
k2

2

(1−
(
k
2

)
= 1− k2

2
+

k

2
)

≤ (2
k
2 )k

k!
· 21+ k

2

2
k2

2

≤ 21+ k
2

k!

< 1. (k ≥ 3)

Hence, R(k) ≥ d2k/2e.

Remark. Combining Theorems above we obtain: 2s/2 ≤ R(s) ≤ 22s−3 for s ≥ 2.

Open Problem. R(s) = 2(c+o(1))s (c may be equal to 1).
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Theorem 6.4. Known results of R(s, t). (R(t,s) = R(s,t))

Table 6.1

• The result of lower bounds are obtained by ”a special edge-coloring” with two colors.

Corresponding to the coloring we have G and Ḡ of order (prescribed).
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Research Problem.

• Find as many vertices (n) as possible such that a graph G of order n satisfying

K5 � G and K5 � Ḡ. (Try 43!)

• Find a better upper bound for R(s). (Do your best!)

We can extend the notion R(s, t) to R(p1, p2, ..., pt) by using the coloring version. For

R(s, t), we consider 2-coloring the edges of Kn for some n. Now, we color the edges of Kn

by using t colors. Hence, we are looking for the existence of monochromatic Kpi using

color i (the i-th color).

Definition 6.3. R(p1, p2, ..., pt) = min{n| for each t-coloring of E(Kn), there exists a

i-monochromatic Kpi for some 1 ≤ i ≤ t}.

Notice that the order of pi’s is important since they may not be the same. In case that

p1 = p2 = · · · = pt = s, we denote it by Rt(s). For example, we will prove that

Rk(3) = be · k!c+ 1. (?) The proof relies on using the generalized Pigeon-hole principle.

Definition 6.4 (Pigeon-hole principle).

• If there are n holes (cages) to hold n · k − n + 1 pigeons, then at least one of them

will have k pigeons.

• If the n holes are of size a1, a2, ..., an, then n · k can be replaced by
n∑

i=1

ai and the

i-th hole will have ai pigeons for some 1 ≤ i ≤ n.

Theorem 6.5.

R(p1, p2, ..., pt) ≤ R(p1 − 1, p2, ..., pt) + R(p1, p2 − 1, ..., pt) + R(p1, p2, ..., pt − 1)− t + 2.

Proof. By a similar argument as the proof R(s, t) ≤ R(s, t− 1) + R(s− 1, t).

Remark.

• R(3, 3, 3) ≤ 6 + 6 + 6− 3 + 2 = 17 (Theorem 6.6)

• There exists a 3-edge-coloring of K16 such that no monochromatic triangles occur.
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Theorem 6.6.

R(3, 3, ..., 3) =def Rk(3) ≤ be · k!c+ 1.

(k-tuples)

Proof. Since R(3, 3) = 6, R(3, 3, 3) = 17, the assertion is true for k = 2 and 3. Assume

that it holds for k− 1 when k > 3. Hence, Rk−1(3) ≤ be · (k− 1)!c+ 1. By Theorem 6.5,

Rk(3) ≤ k(be · (k − 1)!c+ 1)− k + 2

= kbe · (k − 1)!c+ 2.

Now,

kbe · (k − 1)!c = kb(k − 1)! · (1 +
1

1!
+

1

2!
+ · · ·+ 1

(k − 1)!
+

1

k!
+ · · · )c

= kbM +
1

k
+

1

k(k + 1)
+

1

k(k + 1)(k + 2)
+ · · · c

...

= be · k!c − 1. (?)

Remark. Instead of R(s, t), we use R(H1, H2) to denote the smallest integer n such that

any 2-edge-coloring (red, blue) of Kn, either there exists a red H1 or a blue H2.
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