
Introduction to Combinatorics Lecture 5

Vertex Coloring

Motivated by the well-known 4-color theorem, this topic attracts many researchers to

work on. Nowadays, the study of colorings either on vertices, edges or regions was known

as the chromatic theory. Besides of its original problem on map colorings, there are quite

a few different versions of colorings. We start here with the original coloring which is on

vertices of a graph. How many colors do we need to color the vertices of the following

graph?

Figure 5.1: Wheel

Definition 5.1.

• k-coloring (proper): ϕ : V (G)→ {1, 2, 3, ..., k} s.t. uv ∈ E(G) ⇒ ϕ(u) 6= ϕ(v).

• χ(K) = min{k|G has a k coloring} (Chromatic number of G)

• G is n-critical (chromatically) if χ(G− v) < χ(G) for each v ∈ V (G).

Remark.

• Every graph G has an n-critical induced subgraph H.

• Let w(G) denote the order of a maximum clique, i.e., the order of complete sub-

graphs is maximum. So, χ(G) ≥ ω(G). When does the equality holds?

Definition 5.2. A graph G is called perfect if χ(H) = ω(H) for each induced subgraph

H of G. Clearly, not every graph is perfect. χ(H)− ω(H) can be very large!

Theorem 5.1 (Mycielski). For every integer n, there exists a triangle-free graph G such

that χ(G) = n. (χ(G)− ω(G) = n− 2.)
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Proof. By induction on n and K1, K2, C5 do have the property respectively for

n = 1, 2, and 3. Now, assume that H is a triangle-free k-chromatic graph, i.e., H = k.

We construct a graph G based on H such that G is a triangle-free (k+1)-chromatic graph.

Let V (H) = {v1, v2, ..., vp} and V (G) = V (H) ∪ {u1, u2, ..., up, u0}. Let E(G) = E(H) ∪
{u0ui|i = 1, 2, ..., p} ∪ {uivj|vj ∈ NH(vi)}. See Figure 5.2 for an example when k = 3.

Figure 5.2: Grötzsch graph

Since 〈{u1, u2, ..., up}〉G contains no edges, u0 is not in any triangle. Bt assumption,

H � K3. So, the only possibility will be a triangle consists of ui, vj and vk where uivj

and uivk are edges of G. If they form a triangle, then 〈{vi, vj, vk}〉H is a triangle in H.

Hence, G is triangle-free.

Now, we claim χ(G) = k+ 1. Let ϕ be a k-coloring of H. Let ϕ̃ : V (G)→ {1, 2, ..., k+ 1}
by letting ϕ̃(ui) = ϕ(vi) and ϕ̃(u0) = k + 1. Hence, we have a (k + 1)-coloring of G,

thus χ(G) ≤ k + 1. On the other hand, we show that χ(G) ≥ k + 1. Suppose not. Let

ϕ′ be a k-coloring of G and the colors used are 1, 2, ..., k. First, we assign u0 the color

k, i.e., ϕ′(u0) = k. So, the colors used for u1, u2, ..., up must be in {1, 2, ..., k − 1}. Since

χ(H) = k, k occurs somewhere in H, say vi. (May have more vertices.) Now, we recolor

vi by using ϕ′(ui). Since ui is adjacent to every vertex of NH(vi), ϕ
′(ui) 6= ϕ′(v) for each

v ∈ NH(vi) and thus we have a proper coloring of H using at most k − 1 colors. (?)

A contradiction.

Remark. This result was generalized later to the graph G with given girth g and χ(G)

can be any larger n ∈ N by P. Erdös.
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Now, we consider the original problem of map coloring. So, we would like to show that

if G is planar, then χ(G) ≤ 4. Clearly, so far, all proofs include the aid of computer

checking. But, the weaker version of showing χ(G) ≤ 5 was obtained around 1890.

Theorem 5.2. If G is a connected planar graph, then χ(G) ≤ 5.

Proof. By induction on |G|. For δ(G) = 1, 2, 3 and 4, the proof can be obtained easily.

(?) Hence, it suffices to consider a planar graph H whose minimum degree is 5.

Let v ∈ V (H) such that degH(v) = 5. By induction, χ(H − v) ≤ 5. Let ϕ be a 5-coloring

of H and we consider the colors assigned on NH(v). Let them be ϕ(v1), ϕ(v2), ..., ϕ(v5).

Clearly, if any two of them are of the same color, them there is a color for v such that we

have a proper 5-coloring of H. So assume that ϕ(vi), i = 1, 2, 3, 4, 5, the vertices are in

clockwise order, and join consecutive vertices if they are missing. See Figure 5.3.

Figure 5.3

Now, consider the induced subgraph H1,3 = 〈ϕ−1(1) ∪ ϕ−1(3)〉H . If v1 and v3 are in

distinct components, then by changing the colors 1 and 3 in the ϕ(v1) = 3 and ϕ(v3) = 3.

Hence, 3 is available for v.

On the other hand, there exists a path P connecting v1 and v3. Hence, v−v1−P −v3−v
is a cycle such that v2 and v4 are in different regions. By a similar argument, we may

change the color of v2 to 4. Then 2 is available for v.
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Theorem 5.3 (4CT). Every planar graph is 4-colorable.

• The most recent proof was obtained by N. Robertson, D.P. Sanders, P.D. Seymour

and R. Thomas (1996): A new proof of the 4CT, Electron. Res. Announc. A.M.S.

2,17-25.

• This first proof was obtained in 1976-1977, by K. Appel and W. Haken.

Open Problem. Characterize the planar graphs which are 3-colorable.
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