
Introduction to Combinatorics Lecture 4

Topological Graph Theory

Definition 4.1 (Proper drawing). A proper drawing on a surface of a graph G with p

vertices and q edges follows the rules:

1. There are p points on the surface which corresponds to the set of vertices in G.

2. There are q curves joining points defined above which correspond to the set of edges

and they are pairwise disjoint except possibly for the endpoints.

Definition 4.2 (2-manifold). A connected topological space in which every point has a

neighborhood homomorphic to the open unit disk defined on R2.

Definition 4.3 (Bound subspace). A subspace M of R3 is bounded if ∃K ∈ R+ such

that M ⊆ {(x, y, z) | x2 + y2 + z2 ≤ K}.

Definition 4.4 (Closed). M is closed if its boundary ∂M coincides with M .

Definition 4.5 (Orientable). M is orientable if for every simple closed curve C on M , a

clockwise sense of rotation is preserved once around C. Otherwise, M is non-orientable.

Figure 4.1: Orientable
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Definition 4.6 (Orientable surface). A surface Sk is a compact ’orientable’ 2-manifold

that may be thought of as a sphere on which has been placed (inserted) a number k of

’handles’ (holes).

Definition 4.7 (Non-orientable surface). A surface obtained by adding k cross-caps to

a sphere (S0) is a non-orientable surface Nk. (Adding a cross-cap: attach the boundary

of a Möbius band to a cycle on S0.)

Figure 4.2: (a) A handle. (b) A Möbius band.

Figure 4.3: (a) The cross-cap. (b) The Roman surface. (c) The Boy’s surface.
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Definition 4.8 (Embeddable). A (p, q)-graph G is said to be embeddable on a surface

if it is possible to draw G properly (drawing without crossings) on the surface.

Definition 4.9 (Planar graph). A graph is planar if it can be embedded in the plane,

equivalently, embedded on the sphere.

Definition 4.10 (2-cell embedding). A region is called a 2-cell if any simple closed curve

in that region can be continuously deformed or contracted in that region to a single point,

equivalently, a 2-cell is topologically homeomorphic to R2. An embedding of G on a sur-

face is a 2-cell embedding of G if all the regions determined are 2-cells.

Remark.

• S0: Sphere

• Sk: a surface obtained by attaching k handles to S0.

• N0 ' S0 (Homeomorphic)

• Nh: attach h cross-caps to N0(S0).

Figure 4.4: Embeddings of K3,3 on surfaces S1 and S2 respectively.
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Definition 4.11 (Genus). The number of handles (resp. cross-caps) (on a surface) is

referred to as genus of the orientable surface (resp. non-orientable surface). We use γ(G)

(resp. r̃(G)) to denote the smallest genus of all orientable surfaces (resp. non-orientable

surfaces) on which G can be embedded.

Remark.

• If G is a planar graph, then γ(G) (so is r̃(G)) is equal to zero. But, G can also be

embedded on a surface with genus larger than ’0’.

• Given a graph G, determining γ(G) is a difficult problem.

Theorem 4.1 (Euler’s formula). Let G be a connected planar graph with p vertices, q

edges and f faces (regions). Then, p− q + f = 2.

Proof. By induction on q. Since G is connected, G has at least p− 1 edges. (?) If G has

p− 1 edges and G is connected, then G is a tree which contains no cycles. This implies

that f = 1 and thus p − (p − 1) + 1 = 2. The assertion is true for ’minimal’ graphs.

Assume the hypothesis is true for k = ||G|| ≥ p− 1. Now, consider G with k + 1 edges.

Clearly, G contains a cycle. Let e be a cycle edge. Since G is connected planar graph

(with q faces), G− e is also a connected planar graph. Moreover, G− e has k edges and

q−1 faces. By induction, p−k+ (q−1) = 2 and thus p− (k+ 1) + q = 2. This concludes

the proof.

Theorem 4.2. If G is a planar graph with largest size, then ||G|| = 3|G| − 6.

Proof. By observation, if G has maximum size, then each region of G is a triangle. Since

each edge of G is in the boundary of exact two regions, 3f = 2q where f is the number

of regions and q is the size of G, i.e., q = ||G||. Now, by Euler’s formula, p− q + f = 2,

equivalently, |G| − ||G|| + 2

3
||G|| = 2 and thus 3|G| − 6 = ||G||. (G is a maximal planar

graph!)

Corollary 4.3. If G is a planar graph, then ||G|| ≤ 3|G| − 6.
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Corollary 4.4. In any planar graph, there exists at least one vertex of degree smaller

than 6. (This corollary is very useful.)

Corollary 4.5. The degree sum of a planar graph is at most 6|G| − 12.

We can give a more accurate estimation of the above corollary:

Theorem 4.6. Let G be a maximal planar graph (triangulated) of order p, and let pi

denote the number of vertices of degree i in G for i = 3, 4, ...,∆(G) = d. Then,

3p3 + 2p4 + p5 = p7 + 2p8 + · · ·+ (d− 6)pd + 12.

Proof. Since p =
d∑

i=3

pi and 2q =
d∑

i=3

i · pi, we have
d∑

i=3

i · pi = 2(3p− 6) = 6 ·
d∑

i=3

pi− 12.

This implies the conclusion.

Theorem 4.7. There are exactly five regular polyhedra.

Proof. Notice that a regular polyhedron is a polyhedron whose faces (regions) are bounded

by congruent (全等) regular polygons and whose polyhedral angles are congruent.

First, we convert a polyhedron into a regular planar graph. (See Figure 4.5 for examples.)

Let the number of vertices, edges and faces be p, q and f respectively. By Euler’s formula,

p− q + f = 2. Hence,

−8 = 4q − 4p− 4f

= 2q + 2q − 4p− 4f

=
∑
i≥3

i · fi +
∑
i≥3

i · pi − 4
∑
i≥3

pi − 4
∑
i≥3

fi(fi : # of i-face)

=
∑
i≥3

(i− 4)fi +
∑
i≥3

(i− 4)pi.

Since the polyhedron is regular, all degrees and face sizes are the same, let them be k

and h respectively. Therefore,

−8 = (h− 4)fh + (k − 4)pk.
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By the fact that every planar graph contains a vertex of degree less than six, we only

have nine cases to consider: 3 ≤ h ≤ 5 and 3 ≤ k ≤ 5. From direct checking, only 5 cases

are possible, namely,

(1) f3 = p3 = 4 (Tetrahedron, 四面體)

(2) f3 = 8 and p4 = 6 (Octahedron, 八面體)

(3) f3 = 20 and p5 = 12 (Icosahedron, 二十面體)

(4) f4 = 6 and p3 = 8 (Cube, 六面體)

(5) f5 = 12 and p3 = 8 (Dodecahedron, 十二面體)

See Figure 4.5 for regular polyhedra.

Figure 4.5: (a) Tetrahedron. (b) Cube. (c) Octahedron.

(d) Dodecahedron. (e) Icosahedron.

Theorem 4.8 (Fáry (1948), Wagner (1936)). A planar graph G can be embedded in the

plane so that each edge is a straight line segment.
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Proof. The proof is by induction on the order of G. It suffices to prove that case when

G is a connected maximal planar graph. Clearly, it is true for small orders. Assume the

hypothesis is true for order k and let G be a connected maximal planar graph of order

k + 1. Since G is maximal 3 ≤ δ(G) ≤ 5.

Case 1. δ(G) = 3.

Let v0 ∈ V (G) such that degG(v0) = 3 and v is adjacent to v1, v2 and v3. Since G is

maximal, 〈{v1, v2, v3}〉G ∼= K3. This implies that G− v0 is also a maximal planar graph.

By induction G − v0 has a straight line segment embedding. Now, put v0 back to the

graph G− v0 such that v0 is inside the region bounded by 〈{v1, v2, v3}〉G and connect v0

to the three vertices by straight line segment. This concludes the proof this case.

Case 2. δ(G) = 4.

The proof follows by a similar process as above by letting N(v0) = {v1, v2, v3, v4}. Now,

G−v0+v1v3 is a maximal planar graph and this it has a straight line segment embedding.

The proof follows by placing v0 back to G − v0 + v1v3 − v1v3. By consider the drawing

of the embedding (Figure 4.6 (a)), we are able to put v0 back and connected v0 to its

neighbors in G by straight line segment.

Case 3. δ(G) = 5.

Again, we use the same technique and the drawing can be seen in Figure 4.6 (b).

Figure 4.6: Location of v0.
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The following theorem considers pseudographs, i.e., loops and multiedges are allowed.

Theorem 4.9. Let G be a (p, q)-pseudograph which has a 2-cell embedding on Sn. Then,

p− q + f = 2− 2n where f is the number of faces in the embedding.

Proof. By induction on n and it is true when n = 0 (by Euler’s planar graph formula).

Assume that the assertion is true when n = k ≥ 0 and G is a (p, q)-pseudograph which

has a 2-cell embedding on Sk+1. Since k+ 1 ≥ 1, there exists a handle in the embedding,

see Figure 4.7 (a). It suffices to consider the embedding such that there exists at least

one edge which passes through the handle (on the surface). Note that if we can pull back

an edge without passing through the handle, then pull it back, see Figure 4.7 (b). Now,

we apply the idea of ’cut and past’ to obtain a 2-cell embedding of G̃ on Sk.

By using a circle around the handle, we can cut the handle through the circle and obtain

G̃, see Figure 4.7 (c). As a consequence, the graph G̃ is embedded in Sk. If there are t

edges passing through the handle, then |G̃| = p + 2t, ||G̃|| = q + 3t and the embedding

in Sk has f + t+ 2 faces. Hence, (p+ 2t)− (q + 3t) + (f + t+ 2) = 2− 2k. This implies

that p− q + f = 2− 2(k + 1).

Figure 4.7
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