
Introduction to Combinatorics Lecture 3

Connectivity

Definition 3.1 (Connectivity). The connectivity of a graph G, κ(G), is the minimum

number of vertices whose removal from G results in a disconnected graphs or a trivial

graph (a graph with one vertex).

Definition 3.2 (Edge connectivity). The edge connectivity of a graph G, κ1(G), is the

minimum number of edges whose removal from G results in a disconnected graph.

←− κ(G) = 2, κ1(G) = 3.

Theorem 3.1. For any graph G,

κ(G) ≤ κ1(G) ≤ δ(G).

Proof. Let v ∈ V (G) and deg(v) = δ(G). Then, the deletion of all edges incident to v

results in a disconnected graph. Hence, κ1(G) ≤ δ(G).

Now, consider the other inequality. First, if κ1(G) = 0, then the G is already discon-

nected, hence κ(G) = 0. Assume that κ1(G) > 0 and let E ′ be a set of κ1(G) edges such

that G − E ′ is disconnected. Let S be a set of vertices chosen from the set of vertices

incident to edges in E ′ such that each edge is incident to S exactly once. Therefore,

|S| ≤ |E ′|. Also, G − S is disconnected or a trivial graph since G − E ′ is disconnected.

This implies that κ(G) ≤ |S| ≤ |E ′| = κ1(G).

Remark.

• G is super-connected if κ(G) = δ(G).

• Let a ≤ b ≤ c be positive integers. Then, there exists a graph G such that κ(G) =

a, κ1(G) = b, and δ(G) = c.
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Definition 3.3 (n-connected and n-edge-connected). A graph G is said to be n-connected

(resp. n-edge-connected) if κ(G) ≥ n (resp. κ1(G) ≥ n).

Remark. A graph is n-edge-connected if it is n-connected.

Definition 3.4 (Separating set). A set S of vertices in G is said to be a separating set

of two vertices u and v ((u, v)-separating set) of G of G − S is a disconnected graph in

which u and v lie in different components. We also say S separates u and v.

Theorem 3.2 (Manger, 1927). Let u and v be non-adjacent vertices in G. Then, the

minimum number of vertices that separates u and v is equal to the maximum number of

internally disjoint u− v paths in G.

Proof. Many different versions. We include one here for your reference.

Let the number of vertices separating u and v to be k. Then, it is easy to see that there

are at most k independent (vertex-disjoint) paths connecting u and v. Also, if k = 1,

then we have a path joining u and v. Now, suppose the assertion is not true, i.e., we

can find less than k independent u − v paths for certain k. Now, take the minimal k in

which we have a counterexample. Then, among all such examples, let G be the one with

minimum size (number of edge).

First, we notice that u and v have at most k − 1 independent paths and no common

neighbors. For otherwise, let ux and xv be edges of G. Then G− x will be a counterex-

ample for ’k − 1’ (smaller than k).

Let W be a separating set of u and v and |W | = k. Suppose, neither NG(u) = W nor

NG(v) = W . (Figure 3.1)

Figure 3.1
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Figure 3.2

Let Gu be obtained by deleting all the vertices to the left of G in Figure 3.1 and adding a

replacing u′ with edges joining W , see Figure 3.2. Now, Gu has fewer edges than G and

thus there are k independent u′ − v paths. Hence, we have k W − v independent paths.

With the same technique, we derive k u−W independent paths (by changing u to v).

So, as a conclusion, either u or v must have their neighbors W . Let NG(u) = W and

P =< u, x1, x2, ..., xl, v > be a shortest u − v path. (Figure 3.3) Then l ≥ 2. Consider

G− x1x2.

Figure 3.3

In G− x1x2, there exists a u− v separating set W0 of size k − 1. Then, both W1 = W0

∪{x1} and W2 = W0∪{x2} are u−v separating sets of G. By the fact that P is a shortest

u−v path, u is not adjacent to x2 and v is not adjacent to x1. This implies that NG(u) =

W1 since v is not adjacent to a vertex of the separating set W1. Similarly, NG(v) = W2.

Hence, NG(u) ∩NG(v) = W0 (u and v have common neighbors), a contradiction.

( |W0| = k − 1 ≥ 1.)

Definition 3.5. In G, given a vertex x and a set U of vertices, an < x,U >-fan of size

k is a set of k internally disjoint (independent) paths from x to U in G.

Theorem 3.3 (Fan Lemma, Dirac, 1960). A graph is k-connected if and only if it has at

least k+ 1 vertices and, for every choice of x, U with |U | ≥ k, it has an < x,U >-fan of

size k.
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Proof.

(⇒) If G is k-connected and U ⊆ V (G) with |U | ≥ k, then the graph

G′ = G + {yu | u ∈ U} where y /∈ V (G) is also k-connected. (?) By Menger’s Theorem,

there are k internally disjoint paths between x and y in G′. Now, clearly, in G we have

an < x,U >-fan of size k.

(⇐) It suffices to show that for any two vertices w and z, there are at least k internally

disjoint paths. Since an < x,U >-fan of size k exists, degG(x) ≥ k, i.e., δ(G) ≥ k. Now,

let U = NG(z). By using < w,U >-fan, we obtain the desired paths.

Theorem 3.4. If G is n-connected (n ≥ 2) and S is a set of n vertices, then there exists

a cycle in G which contains S.

Proof. By induction on n and clearly the case n = 2 is true. Assume that the assertion

holds for n− 1 and G is an n-connected graph. Now, let |S| = n and x ∈ S. Since G is

also (n − 1)-connected, S \ {x} lies on a cycle C (by induction). Furthermore, we have

an < x, V (C) >-fan of size n− 1.

Case 1. |C| = n− 1.

The proof follows by finding C̃ which contains all vertices of S, see Figure 3.4.

Figure 3.4

Case 2. |C| > n− 1.

Since G is n-connected, an < x, V (C) >-fan of size n exists. By the fact that S \ {x} ⊆
V (C), C is partitioned into n−1 paths < V1, V2, ..., Vn−1 >. Therefore, the < x, V (C) >-

fan of size n will contain (at least) two vertices in one Vi by Pigeon-hole principle. Now,

we are able to find a cycle which contains S. (?) This concludes the proof.
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