Introduction to Combinatorics Lecture 3

Connectivity

Definition 3.1 (Connectivity). The connectivity of a graph G, x(G), is the minimum
number of vertices whose removal from G results in a disconnected graphs or a trivial

graph (a graph with one vertex).

Definition 3.2 (Edge connectivity). The edge connectivity of a graph G, x1(G), is the

minimum number of edges whose removal from G results in a disconnected graph.

G: «— k(G) =2, kK (G) =3.

Theorem 3.1. For any graph G,

K(G) < k1(G) <4(G).

Proof. Let v € V(G) and deg(v) = 6(G). Then, the deletion of all edges incident to v
results in a disconnected graph. Hence, k1(G) < §(G).

Now, consider the other inequality. First, if x1(G) = 0, then the G is already discon-
nected, hence x(G) = 0. Assume that x;(G) > 0 and let E’ be a set of x1(G) edges such
that G — E’ is disconnected. Let S be a set of vertices chosen from the set of vertices
incident to edges in E’ such that each edge is incident to S exactly once. Therefore,
|S| < |E'|. Also, G — S is disconnected or a trivial graph since G — E’ is disconnected.
This implies that x(G) < |S| < |E'| = k1(G). O

Remark.
e (4 is super-connected if kK(G) = §(G).

e Let a < b < ¢ be positive integers. Then, there exists a graph G such that x(G) =
a, K1(G) =b, and §(G) = c.
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Definition 3.3 (n-connected and n-edge-connected). A graph G is said to be n-connected

(resp. m-edge-connected) if K(G) > n (resp. k1(G) > n).

Remark. A graph is n-edge-connected if it is n-connected.

Definition 3.4 (Separating set). A set S of vertices in G is said to be a separating set
of two vertices v and v ((u,v)-separating set) of G of G — S is a disconnected graph in

which v and v lie in different components. We also say S separates u and v.

Theorem 3.2 (Manger, 1927). Let u and v be non-adjacent vertices in G. Then, the
manimum number of vertices that separates u and v is equal to the mazximum number of

internally disjoint u — v paths in G.

Proof. Many different versions. We include one here for your reference.

Let the number of vertices separating u and v to be k. Then, it is easy to see that there
are at most k independent (vertex-disjoint) paths connecting v and v. Also, if & = 1,
then we have a path joining v and v. Now, suppose the assertion is not true, i.e., we
can find less than k£ independent u — v paths for certain k. Now, take the minimal £ in
which we have a counterexample. Then, among all such examples, let G be the one with

minimum size (number of edge).

First, we notice that v and v have at most k£ — 1 independent paths and no common
neighbors. For otherwise, let uz and xv be edges of G. Then G — z will be a counterex-

ample for 'k — 1’ (smaller than k).

Let W be a separating set of u and v and |W| = k. Suppose, neither Ng(u) = W nor
N¢(v) = W. (Figure 3.1)

Figure 3.1
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Figure 3.2

Let GG,, be obtained by deleting all the vertices to the left of G in Figure 3.1 and adding a
replacing «’ with edges joining W, see Figure 3.2. Now, G, has fewer edges than G and
thus there are k independent v’ — v paths. Hence, we have k W — v independent paths.
With the same technique, we derive k u — W independent paths (by changing u to v).
So, as a conclusion, either u or v must have their neighbors W. Let Ng(u) = W and
P =< u,xy,%9,...,x;,v > be a shortest u — v path. (Figure 3.3) Then [ > 2. Consider
G — x129.

Figure 3.3

In G — x1x4, there exists a u — v separating set W, of size k — 1. Then, both W; = W,
U{z1} and Wy = WyU{zy} are u—v separating sets of G. By the fact that P is a shortest
u—wv path, u is not adjacent to z5 and v is not adjacent to x1. This implies that Ng(u) =
W, since v is not adjacent to a vertex of the separating set Wj. Similarly, Ng(v) = Ws.
Hence, Ng(u) N Ng(v) = Wy (u and v have common neighbors), a contradiction.
([Wol=k—-1>1.) O

Definition 3.5. In G, given a vertex x and a set U of vertices, an < x, U >-fan of size

k is a set of k internally disjoint (independent) paths from x to U in G.

Theorem 3.3 (Fan Lemma, Dirac, 1960). A graph is k-connected if and only if it has at
least k + 1 vertices and, for every choice of x, U with |U| > k, it has an < x,U >-fan of
size k.
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Proof.

(=) If G is k-connected and U C V(G) with |U| > k, then the graph

G' =G+ {yu|ue U} where y ¢ V(G) is also k-connected. (?) By Menger’s Theorem,
there are k internally disjoint paths between z and y in G'. Now, clearly, in G we have

an < x, U >-fan of size k.

(<) It suffices to show that for any two vertices w and z, there are at least k internally
disjoint paths. Since an < x,U >-fan of size k exists, dege(z) > k, i.e., 6(G) > k. Now,
let U = Ng(z). By using < w, U >-fan, we obtain the desired paths. O]

Theorem 3.4. If G is n-connected (n > 2) and S is a set of n vertices, then there exists

a cycle in G which contains S.

Proof. By induction on n and clearly the case n = 2 is true. Assume that the assertion
holds for n — 1 and G is an n-connected graph. Now, let |S| =n and z € S. Since G is
also (n — 1)-connected, S\ {x} lies on a cycle C' (by induction). Furthermore, we have
an < z,V(C) >-fan of size n — 1.

Case 1. |C|=n—1.
The proof follows by finding C' which contains all vertices of 9, see Figure 3.4.
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Case 2. |C| >n — 1.

Since G is n-connected, an < x, V(C) >-fan of size n exists. By the fact that S\ {z} C
V(C), C is partitioned into n — 1 paths < V3, Vs, ..., V,,_1 >. Therefore, the < z, V(C') >-
fan of size n will contain (at least) two vertices in one V; by Pigeon-hole principle. Now,

we are able to find a cycle which contains S. (7) This concludes the proof. [



