
Introduction to Combinatorics Lecture 2

Eulerian Circuits and Hamilton Cycles

Before we get to the proof of Euler’s result on Eulerian circuits, we need more background.

Definition 2.1. A graph G is connected if and only if for any two vertices u and v in

V (G), there exists a path connecting u and v.

Remark. If G is connected, then |G| ≤ ‖G‖+ 1.

Definition 2.2. Gi is a component of G if Gi is a maximal connected subgraph of G.

The number of components of G is denoted by ω(G).

Definition 2.3. G is a forest if G contains no cycles (G is acyclic), and G is a tree if G

is connected and acyclic.

Theorem 2.1. The following statements are equivalent.

• G is a tree.

• G is acyclic and ‖G‖ = |G| − 1.

• G is connected and ‖G‖ = |G| − 1.

• Any two vertices of G are connected with a unique path.

Proof. We prove (1) ⇒ (2) and leave the others for the readers to verify.

(1) ⇒ (2) By definition, G is a tree implies that G is connected and acyclic. The

proof is by induction on |G| and it is true for |G| = 1 and 2.

Since G is connected, there exist two vertices u and v which are of maximum distance

(diameter). Then, v must be of degree 1. For otherwise, v is either adjacent to some

vertex on the path from u to v or v is adjacent to a new vertex. Both of them are not

possible.

Hence, degG(v) = 1. Now, consider G− v. G− v is connected and acyclic. By induction

hypothesis,

‖G− v‖ = |G− v| − 1 =⇒ ‖G‖ − 1 = |G| − 1− 1 =⇒ ‖G‖ = |G| − 1.
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Definition 2.4. An Eulerian circuit of a graph G is a circuit passing all the edges of G.

Theorem 2.2. G has an Eulerian circuit if and only if G is connected and each vertex

of G is even.

Proof.

(⇒) Since G has a walk passes all vertices, G is connected. If a circuit passes a vertex

x h times, then degG(x) = 2h.

(⇐) By induction on ‖G‖. Since ‖G‖ ≥ 1, δ(G) ≥ 2 (G is not a tree!) and thus G

contains a cycle. Let Z be a circuit in G with the maximum number of edges. If Z is an

Eulerian circuit, then we are done. Suppose not.

Let H be a nontrivial component of G−E(Z). Since G is connected, V (H)∩ V (Z) 6= ∅.
Let x ∈ V (H) ∩ V (Z). (Figure 2.1) Now, H is nontrivial connected graph (even graph).

Hence, H contains an Eulerian circuit Y . By using x, we can attach Z and Y together

to obtain a larger circuit. This contradicts to the maximality of |E(Z)|. Hence, Z must

be an Eulerian circuit in G.

Figure 2.1

Open Problem. Find the number of distinct Eulerian circuits of an Eulerian graph G.

Remark.

• The Euler’s theorem on circuits is also true for multi-graph, in which we have

2-cycle .

• In a digraph D = (V,A), we use N+
D (v) (resp. N−

D (v)) to denote the out neighbor

(resp. in-neighbor) where N+
D (v) = {u ∈ V |(v, u) ∈ A} (resp. N−

D (v) = {u ∈
V |(u, v) ∈ A). |N+

D (v)| = deg+D(v) and |N−
D (v)| = deg−D(v).

Definition 2.5. A digraph D = (V,A) is connected if for each ordered pair (a, b), a, b ∈
V , there exists a directed path from a to b, i.e., there exists a sequence < a = a1, a2, ...,

at = b > where (ai, ai+1) ∈ A for i = 1, 2, ..., t− 1.
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Theorem 2.3. A connected digraph D = (V,A) has a directed Eulerian circuit if and

only if for each v inV, deg+D(v) = deg−D(v).

Proof. By a similar argument as that of Theorem 2.2.

Surprisingly, if D has a directed Eulerian circuit, then we can find all distinct directed

Eulerian circuits. This is different from the case on un-directed graphs.

Figure 2.2: A directed eulerian circuit.

Theorem 2.4 (BEST). Let ti(D) be the number of spanning trees oriented toward vi in

D of order n. Then the number of distinct Eulerian circuits s(D) is equal to

ti(D) ·
n∏

j=1

(deg+D(vj)− 1)!.

• Note that in a directed eulerian graph ti(D) = tj(D) for any two vertices vi and vj.

• This theorem was proved by two independent groups: deBruijn and van Aardenne-

Ehrenfest, and Smith and Tutte.

Figure 2.3: A spanning tree oriented toward u.

Definition 2.6. A cycle which contains all vertices of G is called a Hamilton cycle. G is

called hamiltonian if G contains a Hamilton cycle.

As mentioned earlier, determining whether a graph is hamiltonian or not is a very difficult

problem. In fact, determining whether G contains a cycle of length k is also difficult.

So, the researchers are interested in finding good sufficient conditions for the existence of

Hamilton cycles. The following theorem is a classical one.

3



Introduction to Combinatorics Lecture 2

Theorem 2.5 (Ore, 1960). If G is a graph of order n ≥ 3 such that for all distinct

non-adjacent vertices u and v, deg(u) + deg(v) ≥ n, then G contains a Hamilton cycle.

Proof. (By maximality argument)

Assume the assertion is false. Then, there exists a nonhamiltonian graph G̃ of order n ≥ 3

which satisfies the hypothesis of the theorem. Therefore, for any two distinct vertices v1

and v2, G̃ + v1v2 contains a Hamilton cycle. Furthermore, every Hamilton cycle, if any,

of G̃+ v1v2 contains the edge v1v2.

Now, let u and v be two non-adjacent vertices of G. Since G + uv contains a Hamilton

cycle, G contains a Hamilton path < u = v1, v2, ..., vn = v >. (Figure 2.4)

Figure 2.4

By observation, if v1vi ∈ E(G), 2 ≤ i ≤ n, then vi−1vn /∈ E(G). (?) For otherwise, we

have a Hamilton cycle (v1, vi, vi+1, ..., vn, vi−1vi−2, ..., v1).

This implies that if deg(vi) = t, deg(vn) ≤ (n − 1) − t. Hence, deg(u) + deg(v) ≤
t + (n − 1) − t = n − 1, a contradiction. We conclude that G contains a Hamilton

cycle.

Remark. There are sufficient conditions (Quite a few!) for the existence of Hamilton

cycles in a graph, but so far, none of them is also necessary. For example, the condition

in above theorem is not necessary:

deg(u) + deg(v) = 4 < 6.

Weighted Graphs

Definition 2.7 (Weighted graphs). A graph G is weighted if each edge is assigned a

weight by using a weighted function w : E(G)→ R.
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Traveling Salesman Problem (TSP)

In a weighted complete graph G, find a minimum Hamilton cycle, i.e., the sum of all

weights in the cycle is minimum comparing the sums of all the weighted of the other

Hamilton cycles.

Figure 2.5: A minimum Hamilton cycle.

Remark.

• If each weight is a finite number, then a greedy algorithm can provide an answer.

(May not be minimum.)

• If we are looking for minimum spanning trees, then it is an easier problem.
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