Introduction to Combinatorics

Lecture 1

Subgraphs in Simple Graphs

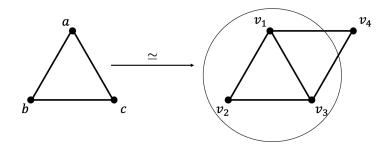
Definition 1.1. A graph G is an ordered pair (V, E) where V = V(G) is the vertex set of G and E = E(G) is the edge set of G.

Definition 1.2. Two vertices u and v in G(V(G)) are adjacent, denoted by $u \sim_G v$, if $\{u, v\} = uv$ is an edge of G(E(G)) or we say u and v are incident in G. We also say u (and v respectively) is incident to uv.

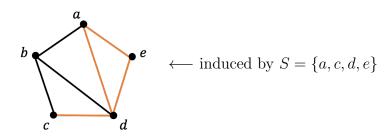
Definition 1.3. Two graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ are isomorphic if there exists a bijection φ from V_1 to V_2 such that $u \sim_{G_1} v$ if and only if $\varphi(u) \sim_{G_2} \varphi(v)$, denoted by $G_1 \simeq G_2$.

Definition 1.4. A graph G' = (V', E') is a subgraph of G = (V, E) if $V' \subseteq V$ and $E' \subseteq E$. (Denoted by $G' \leq G$.)

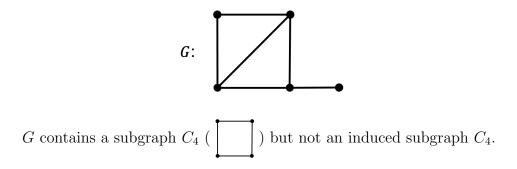
General sense: \widetilde{G} is a subgraph of G if \widetilde{G} is isomorphic to a subgraph of G.



Definition 1.5. (Induced subgraph) Let $S \subseteq V(G)$. Then, the subgraph obtained from S and all edges in G which are incident to two vertices of S is called the induced subgraph of G by S, denoted by $\langle S \rangle_G$. (Denoted by $\langle S \rangle_G \preceq G$.)



Remark. A graph may contain a subgraph H but not an induced subgraph H.



Definition 1.6. The set of vertices in G which are incident to a vertex v is called the neighborhood of v, denoted by $N_G(v)$; and $|N_G(v)|$ is known as the degree of v, denoted by $deg_G(v)$.

Theorem 1.1. For any graph G, $\sum_{v \in V(G)} deg_G(v)$ is even and the number of vertices with odd degree is also even.

Proof. Each edge contributes two edges.

Remark. $\sum_{v \in V(G)} deg_G(v)$ is "known" as the volume of G, which measures how big the graph is.

Definition 1.7. If all degrees of the vertices in G are the same (say k), then G is a regular graph (k-regular). Especially, if k is 3, then we have a cubic graph, and if k is 2, then we have a "2-factor".

Remark.

- The maximum degree (resp. minimum degree) of G is denoted by $\Delta(G)$ (resp. $\delta(G)$). A vertex with the maximum degree is called a major vertex.
- The average degree of G is denoted by d(G).
- |G| is the order of G.
- ||G|| = |E(G)| is the size of G.

Definition 1.8.

- Walk : a sequence of vertices in V(G), $< v_1, v_2, ..., v_m >$, such that for $i = 1, 2, ..., m 1, v_i v_{i+1} \in E(G)$.
- Path : a walk with all distinct vertices. $(P_m; \text{ length } m-1)$

- Cycle : a walk with distinct vertices except $v_1 = v_m$. $(C_m; \text{ length } m)$
- Trail : a walk with distinct edges.
- Circuit: a walk with distinct edges and $v_1 = v_m$.

The above definitions are also applied to digraph. $((v_i, v_{i+1}) \in A(D), (v_i, v_{i+1})$ is an arc of a digraph D.)

Theorem 1.2. Every graph G contains a path of length $\delta(G)$ and a cycle of length at least $\delta(G) + 1$ provided $\delta(G) \ge 2$.

Proof. Let $\langle x_0, x_1, ..., x_k \rangle$ be a longest path we can find in G. Then, $N_G(x_k) \subseteq \{x_0, x_1, ..., x_{k-1}\}$. For otherwise, we have a longer path. Now, $deg_G(x_k) \geq \delta(G)$, but $deg_G(x_k) \leq k$. Hence, $k \geq \delta(G)$ and we have the proof of the first part.

Since $deg_G(x_k) \geq 2$, x_k is incident to some vertex in $\{x_0, x_1, ..., x_{k-2}\}$. Let *i* be the minimum index in $\{0, 1, 2, ..., k-2\}$ such that $x_k x_i \in E(G)$. Then, $(x_i, x_{i+1}, ..., x_k)$ is a cycle in *G*. By the fact $deg_G(x_k) \geq \delta(G)$, $i \leq k - \delta(G)$. This implies that the cycle has at least $\delta(G) + 1$ vertices.

Theorem 1.3 (Mantel, 1907). If |G| = n and $||G|| > \lfloor \frac{n^2}{4} \rfloor$, then G contains a C_3 (or K_3).

Proof. Let $x \in V(G)$ be a major vertex, i.e., $deg_G(x) = \Delta(G)$. Assume that $C_3 \nleq G$. This implies that $\langle N_G(x) \rangle_G$ contains no edges. Hence,

$$\begin{split} \|G\| &\leq \triangle(G) + \triangle(G) \cdot (n - \triangle(G) - 1) \\ &= \triangle(G) \cdot (n - \triangle(G)) \\ &\leq \lfloor \frac{n}{2} \rfloor \cdot (n - \lfloor \frac{n}{2} \rfloor) \\ &= \lfloor \frac{n}{2} \rfloor \cdot \lceil \frac{n}{2} \rceil \\ &= \lfloor \frac{n^2}{4} \rfloor, \end{split}$$

a contradiction.

Definition 1.9. A graph is called *H*-free if $H \nleq G$.

<u>**Research Problem.**</u> Given a graph H of order $m \leq n$. Find a graph G of order n which has the maximum number of edges, but G is H-free.

Remark.

- We use ext(n; H) to denote the above mentioned number. The graph which attends this size ext(n; H) is called an extremal graph (which forbids H).
- *G* is a complete graph of order *n* if $||G|| = \binom{n}{2}$, i.e., any two vertices of *G* are adjacent. We use K_n to denote such graph. $K_{n_1,n_2,...,n_q}$ denotes a **complete multipartite graph** with *q* partite sets, each of size $n_1, n_2, ..., n_q$ respectively.
- From Theorem 1.3, we have $ext(n; C_3) = \lfloor \frac{n^2}{4} \rfloor$ and $K_{\lfloor \frac{n}{2} \rfloor, \lceil \frac{n}{2} \rceil}$ is an extremal graph of order n which forbids $C_3(\simeq K_3)$.

Theorem 1.4 (Turán, 1941). Let n = t(p-1) + r, $1 \le r \le p-1$, and

$$M(n,p) =_{def} \frac{p-2}{2(p-1)}n^2 - \frac{r(p-1-r)}{2(p-1)}.$$

Then, $ext(n; K_p) = M(n, p)$.

Proof. By induction on t. First, if t = 0, then $n = r \le p - 1$, clearly, G does not contain K_p . Moreover,

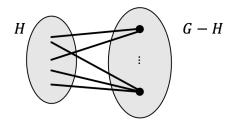
$$M(n,p) = \frac{(p-2)r^2 - rp + r + r^2}{2(p-1)} = \frac{pr^2 - rp - r^2 + r}{2(p-1)} = \frac{(p-1)(r^2 - r)}{2(p-1)} = \binom{r}{2},$$

$$G \simeq K_r.$$

Now, consider $t \ge 1$ and let the assertion be true for t - 1. Let G be the extremal graph which does not contain K_p . So, G contains K_{p-1} . Let $V(K_{p-1}) = H$. Thus, H contains p - 1 vertices. Since G does not contain K_p , the vertices outside of H are incident to at most p - 2 vertices of H. This implies that

$$||G|| \le \binom{p-1}{2} + (p-2)(n-p+1) + ext(n-p+1;K_p).$$

Now, n - p + 1 = (t - 1)(p - 1) + r. By induction, $ext(n - p + 1; K_p) = M(n - p + 1, p)$.



 $|H| = p - 1, \quad |G - H| = n - p + 1.$

Hence,

$$\begin{split} \|G\| &\leq \binom{p-1}{2} + (p-2)(n-p+1) + \frac{p-2}{2(p-1)}(n-p+1)^2 - \frac{r(p-1-r)}{2(p-1)} \\ &= \frac{p-2}{2(p-1)} \left[(p-1)^2 + 2(p-1)(n-(p-1)) + (n-(p-1))^2 \right] - \frac{r(p-1-r)}{2(p-1)} \\ &= \frac{p-2}{2(p-1)}n^2 - \frac{r(p-1-r)}{2(p-1)} \\ &= M(n,p). \end{split}$$

For the (\geq) direction, let G be the complete multipartite graph $K_{t+1,\dots,t+1,t,\dots,t}$ with r partite sets of size t+1 and p-1-r partite sets of size t. Then, n = r(t+1)+(p-1-r)t = t(p-1)+r. Now, ||G|| = M(n,p), this concludes the proof.

 $(G \text{ is an extremal graph. In fact, this is the unique extremal graph. (proof?))$

Definition 1.10. If G contains a cycle, then the length of a shortest cycle is called the *girth* of G, denoted as g(G), and the length of a longest cycle is called the *circumference* of G, denoted as c(G). Clearly, $g(G) \leq c(G)$.

Definition 1.11. If c(G) = |G|, then G is a hamiltonian graph, i.e., G contains a Hamilton cycle.

Remark.

- Determining whether a graph is hamiltonian or not is a very difficult problem. But, for the existence of an Eulerian circuit, it is simpler.
- The problem of forbidding cycles of length larger than 3 is comparatively difficult.

Theorem 1.5. If a graph G of order n has more than $\frac{n\sqrt{n-1}}{2}$ edges, then $g(G) \leq 4$. (G contains either a C_3 or a C_4 .)

Proof. Let $g(G) \ge 5$ and $N_G(x) = \{y_1, y_2, ..., y_d\}$. Then, $\langle N_G(x) \rangle_G$ has no edges (no C_3 's).

For vertices $y' \in V(G) \setminus N_G(x)$, y' is incident to at most one vertex in $N_G(x)$ (no C_4 's). That is, $N_G(y_i) \cap N_G(y_j) = \{x\}$, for $1 \leq i < j \leq d$. Hence, $\sum_{i=1}^d deg_G(y_i) \leq n - (d+1) + d$ = n - 1.

 $y_1 \qquad y_2 \qquad y_2 \qquad y_2 \qquad y_2 \qquad y_3 \qquad y_4 \qquad y_4$

Now, consider the volume of G, $vol(G) \le n(n-1)$.

$$\begin{split} n(n-1) &\geq \sum_{x \in V(G)} \sum_{y \sim Gx} deg_G(y) \\ &= \sum_{z \in V(G)} deg_G^2(z) \\ &\geq \frac{1}{n} (\sum_{z \in V(G)} deg_G(z))^2 \\ &= \frac{1}{n} (2 \|G\|)^2. \end{split}$$
 each z of degree $deg_G(z)$ will be counted $deg_G(z)$ times by Cauchy's inequality

Hence, $||G|| \leq \frac{1}{2}n\sqrt{n-1}$.

Corollary 1.1. $ext(n; C_3 \text{ or } C_4) \leq \frac{1}{2}n\sqrt{n-1}$. Extremal graphs:

- $n = 5 : C_5$
- n = 10: Petersen graph
- n = 50 : srg(50, 7, 0, 1) (strongly regular graph)

Corollary 1.2. $ext(n; C_4) \leq \frac{n}{4}(1 + \sqrt{4n-3})$. (proof?)