
Introduction to Combinatorics Lecture 1

Subgraphs in Simple Graphs

Definition 1.1. A graph G is an ordered pair (V,E) where V = V (G) is the vertex set

of G and E = E(G) is the edge set of G.

Definition 1.2. Two vertices u and v in G(V (G)) are adjacent, denoted by u ∼G v, if

{u, v} = uv is an edge of G(E(G)) or we say u and v are incident in G. We also say u

(and v respectively) is incident to uv.

Definition 1.3. Two graphs G1 = (V1, E1) and G2 = (V2, E2) are isomorphic if there

exists a bijection ϕ from V1 to V2 such that u ∼G1 v if and only if ϕ(u) ∼G2 ϕ(v), denoted

by G1 ' G2.

Definition 1.4. A graph G′ = (V ′, E ′) is a subgraph of G = (V,E) if V ′ ⊆ V and

E ′ ⊆ E. (Denoted by G′ ≤ G.)

General sense: G̃ is a subgraph of G if G̃ is isomorphic to a subgraph of G.

Definition 1.5. (Induced subgraph) Let S ⊆ V (G). Then, the subgraph obtained from

S and all edges in G which are incident to two vertices of S is called the induced subgraph

of G by S, denoted by < S >G. (Denoted by < S >G� G.)

←− induced by S = {a, c, d, e}
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Remark. A graph may contain a subgraph H but not an induced subgraph H.

G contains a subgraph C4 ( ) but not an induced subgraph C4.

Definition 1.6. The set of vertices in G which are incident to a vertex v is called the

neighborhood of v, denoted by NG(v); and |NG(v)| is known as the degree of v, denoted

by degG(v).

Theorem 1.1. For any graph G,
∑

v∈V (G)

degG(v) is even and the number of vertices with

odd degree is also even.

Proof. Each edge contributes two edges.

Remark.
∑

v∈V (G)

degG(v) is ”known” as the volume of G, which measures how big the

graph is.

Definition 1.7. If all degrees of the vertices in G are the same (say k), then G is a

regular graph (k-regular). Especially, if k is 3, then we have a cubic graph, and if k is 2,

then we have a ”2-factor”.

Remark.

• The maximum degree (resp. minimum degree) of G is denoted by 4(G) (resp.

δ(G)). A vertex with the maximum degree is called a major vertex.

• The average degree of G is denoted by d(G).

• |G| is the order of G.

• ‖G‖ = |E(G)| is the size of G.

Definition 1.8.

• Walk : a sequence of vertices in V (G), < v1, v2, ..., vm >, such that for

i = 1, 2, ...,m− 1, vivi+1 ∈ E(G).

• Path : a walk with all distinct vertices. (Pm; length m− 1)

2



Introduction to Combinatorics Lecture 1

• Cycle : a walk with distinct vertices except v1 = vm. (Cm; length m)

• Trail : a walk with distinct edges.

• Circuit: a walk with distinct edges and v1 = vm.

The above definitions are also applied to digraph. ((vi, vi+1) ∈ A(D), (vi, vi+1) is an arc

of a digraph D.)

Theorem 1.2. Every graph G contains a path of length δ(G) and a cycle of length at

least δ(G) + 1 provided δ(G) ≥ 2.

Proof. Let < x0, x1, ..., xk > be a longest path we can find in G. Then, NG(xk) ⊆
{x0, x1, ..., xk−1}. For otherwise, we have a longer path. Now, degG(xk) ≥ δ(G), but

degG(xk) ≤ k. Hence, k ≥ δ(G) and we have the proof of the first part.

Since degG(xk) ≥ 2, xk is incident to some vertex in {x0, x1, ..., xk−2}. Let i be the

minimum index in {0, 1, 2, ..., k − 2} such that xkxi ∈ E(G). Then, (xi, xi+1, ..., xk) is a

cycle in G. By the fact degG(xk) ≥ δ(G), i ≤ k − δ(G). This implies that the cycle has

at least δ(G) + 1 vertices.

Theorem 1.3 (Mantel, 1907). If |G| = n and ‖G‖ > bn2

4
c, then G contains a C3 (or

K3).

Proof. Let x ∈ V (G) be a major vertex, i.e., degG(x) = 4(G). Assume that C3 � G.

This implies that < NG(x) >G contains no edges. Hence,

‖G‖ ≤ 4(G) +4(G) · (n−4(G)− 1)

= 4(G) · (n−4(G))

≤ bn
2
c · (n− bn

2
c)

= bn
2
c · dn

2
e

= bn
2

4
c,

a contradiction.

Definition 1.9. A graph is called H-free if H � G.
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Extremal Graph Theory

Research Problem. Given a graph H of order m ≤ n. Find a graph G of order n which

has the maximum number of edges, but G is H-free.

Remark.

• We use ext(n;H) to denote the above mentioned number. The graph which attends

this size ext(n;H) is called an extremal graph (which forbids H).

• G is a complete graph of order n if ‖G‖ =

(
n

2

)
, i.e., any two vertices of G are

adjacent. We use Kn to denote such graph. Kn1,n2,...,nq denotes a complete mul-

tipartite graph with q partite sets, each of size n1, n2, ..., nq respectively.

• From Theorem 1.3, we have ext(n;C3) = bn2

4
c and Kbn

2
c,dn

2
e is an extremal graph of

order n which forbids C3(' K3).

Theorem 1.4 (Turán, 1941). Let n = t(p− 1) + r, 1 ≤ r ≤ p− 1, and

M(n, p) =def
p− 2

2(p− 1)
n2 − r(p− 1− r)

2(p− 1)
.

Then, ext(n;Kp) = M(n, p).

Proof. By induction on t. First, if t = 0, then n = r ≤ p− 1, clearly, G does not contain

Kp. Moreover,

M(n, p) =
(p− 2)r2 − rp+ r + r2

2(p− 1)
=
pr2 − rp− r2 + r

2(p− 1)
=

(p− 1)(r2 − r)
2(p− 1)

=

(
r

2

)
,

G ' Kr.

Now, consider t ≥ 1 and let the assertion be true for t− 1. Let G be the extremal graph

which does not contain Kp. So, G contains Kp−1. Let V (Kp−1) = H. Thus, H contains

p− 1 vertices. Since G does not contain Kp, the vertices outside of H are incident to at

most p− 2 vertices of H. This implies that

‖G‖ ≤

(
p− 1

2

)
+ (p− 2)(n− p+ 1) + ext(n− p+ 1;Kp).

Now, n− p+ 1 = (t− 1)(p− 1) + r. By induction, ext(n− p+ 1;Kp) = M(n− p+ 1, p).
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|H| = p− 1, |G−H| = n− p+ 1.

Hence,

‖G‖ ≤

(
p− 1

2

)
+ (p− 2)(n− p+ 1) +

p− 2

2(p− 1)
(n− p+ 1)2 − r(p− 1− r)

2(p− 1)

=
p− 2

2(p− 1)

[
(p− 1)2 + 2(p− 1)(n− (p− 1)) + (n− (p− 1))2

]
− r(p− 1− r)

2(p− 1)

=
p− 2

2(p− 1)
n2 − r(p− 1− r)

2(p− 1)

= M(n, p).

For the (≥) direction, let G be the complete multipartite graph Kt+1,...,t+1,t,...,t with r

partite sets of size t+1 and p−1−r partite sets of size t. Then, n = r(t+1)+(p−1−r)t =

t(p− 1) + r. Now, ‖G‖ = M(n, p), this concludes the proof.

(G is an extremal graph. In fact, this is the unique extremal graph. (proof?))

Definition 1.10. If G contains a cycle, then the length of a shortest cycle is called the

girth of G, denoted as g(G), and the length of a longest cycle is called the circumference

of G, denoted as c(G). Clearly, g(G) ≤ c(G).

Definition 1.11. If c(G) = |G|, then G is a hamiltonian graph, i.e., G contains a

Hamilton cycle.

Remark.

• Determining whether a graph is hamiltonian or not is a very difficult problem. But,

for the existence of an Eulerian circuit, it is simpler.

• The problem of forbidding cycles of length larger than 3 is comparatively difficult.

Theorem 1.5. If a graph G of order n has more than n
√
n−1
2

edges, then g(G) ≤ 4. (G

contains either a C3 or a C4.)

Proof. Let g(G) ≥ 5 and NG(x) = {y1, y2, ..., yd}. Then, < NG(x) >G has no edges (no

C3’s).
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For vertices y′ ∈ V (G) \NG(x), y′ is incident to at most one

vertex in NG(x) (no C4’s). That is, NG(yi) ∩NG(yj) = {x},
for 1 ≤ i < j ≤ d. Hence,

∑d
i=1 degG(yi) ≤ n− (d+ 1) + d

= n− 1.

Now, consider the volume of G, vol(G) ≤ n(n− 1).

n(n− 1) ≥
∑

x∈V (G)

∑
y∼Gx

degG(y)

=
∑

z∈V (G)

deg2G(z) each z of degree degG(z) will be counted degG(z) times

≥ 1

n
(
∑

z∈V (G)

degG(z))2 by Cauchy’s inequality

=
1

n
(2‖G‖)2.

Hence, ‖G‖ ≤ 1
2
n
√
n− 1.

Corollary 1.1. ext(n;C3 or C4) ≤ 1
2
n
√
n− 1. Extremal graphs:

• n = 5 : C5

• n = 10 : Petersen graph

• n = 50 : srg(50, 7, 0, 1) (strongly regular graph)

Corollary 1.2. ext(n;C4) ≤ n
4
(1 +

√
4n− 3). (proof?)
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