Introduction to Combinatorics Lecture 1

Subgraphs in Simple Graphs

Definition 1.1. A graph G is an ordered pair (V, E) where V = V(G) is the vertex set
of G and F = E(G) is the edge set of G.

Definition 1.2. Two vertices v and v in G(V(G)) are adjacent, denoted by u ~¢ v, if
{u,v} = wv is an edge of G(F(G)) or we say u and v are incident in G. We also say u

(and v respectively) is incident to uw.

Definition 1.3. Two graphs G; = (Vi, Ey) and Gy = (Va, E3) are isomorphic if there
exists a bijection ¢ from V; to V5 such that u ~¢, v if and only if p(u) ~¢g, ¢(v), denoted
by G1 ~ GQ.

Definition 1.4. A graph G' = (V',E’) is a subgraph of G = (V, E) if V/ C V and
E' C E. (Denoted by G' < G.)

General sense: G is a subgraph of G if G is isomorphic to a subgraph of G.
a Vg
b c

Definition 1.5. (Induced subgraph) Let S C V(G). Then, the subgraph obtained from
S and all edges in G which are incident to two vertices of S is called the induced subgraph
of G by S, denoted by < S >¢. (Denoted by < § >5= G.)

a

b
o€ +— induced by S = {a,c,d, e}
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Remark. A graph may contain a subgraph H but not an induced subgraph H.

G contains a subgraph Cy ( ) but not an induced subgraph Cj.

Definition 1.6. The set of vertices in (G which are incident to a vertex v is called the

neighborhood of v, denoted by Ng(v); and |Ng(v)| is known as the degree of v, denoted
by degg(v).

Theorem 1.1. For any graph G, > dega(v) is even and the number of vertices with
veV(Q)
odd degree 1s also even.

Proof. Each edge contributes two edges. O

Remark. > degs(v) is "known” as the volume of G, which measures how big the
veV(G)
graph is.

Definition 1.7. If all degrees of the vertices in G are the same (say k), then G is a
regular graph (k-regular). Especially, if k is 3, then we have a cubic graph, and if k is 2,

then we have a ”2-factor”.

Remark.

e The maximum degree (resp. minimum degree) of G is denoted by A(G) (resp.

J(@)). A vertex with the maximum degree is called a major vertex.
e The average degree of GG is denoted by d(G).
e |G| is the order of G.
e |G| = |E(G)]| is the size of G.

Definition 1.8.

e Walk : a sequence of vertices in V(G), < vy, v, ..., Uy, >, such that for
i=1,2,...,m—1, vv41 € E(G).

e Path : a walk with all distinct vertices. (P,,; length m — 1)
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e Cycle : a walk with distinct vertices except v; = vy,. (Cpy; length m)
e Trail : a walk with distinct edges.
e Circuit: a walk with distinct edges and v, = v,,.

The above definitions are also applied to digraph. ((v;,v;11) € A(D), (v;,v41) is an arc
of a digraph D.)

Theorem 1.2. Every graph G contains a path of length 6(G) and a cycle of length at
least §(G) + 1 provided 6(G) > 2.

Proof. Let < xg,21,...,4, > be a longest path we can find in G. Then, Ng(xy) C
{zg,x1,...,xx_1}. For otherwise, we have a longer path. Now, degg(zr) > 0(G), but
dega(zr) < k. Hence, k > 6(G) and we have the proof of the first part.

Since degg(xy) > 2, zp is incident to some vertex in {xg,z1,...,x5_2}. Let ¢ be the
minimum index in {0, 1,2, ...,k — 2} such that zyz; € E(G). Then, (x;, i1, ...,z1) IS a
cycle in G. By the fact degg(zr) > §(G), i < k — 0(G). This implies that the cycle has
at least (G) + 1 vertices. O

Theorem 1.3 (Mantel, 1907). If |G| = n and ||G|| > L”{J, then G contains a Cs (or
K3).

Proof. Let © € V(G) be a major vertex, ie., dege(x) = A(G). Assume that C5 £ G.
This implies that < Ng(z) >¢ contains no edges. Hence,
1G] < AG) + A(G) - (n = AG) = 1)
= A(G) - (n = A(G))

<[5 (n-15D)
= 15151
L)
a contradiction. O

Definition 1.9. A graph is called H-free if H & G.
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Extremal Graph Theory

Research Problem. Given a graph H of order m < n. Find a graph G of order n which

has the maximum number of edges, but G is H-free.

Remark.

e We use ext(n; H) to denote the above mentioned number. The graph which attends

this size ext(n; H) is called an extremal graph (which forbids H).

n
e (G is a complete graph of order n if |G| = 5 ) i.e., any two vertices of G are

adjacent. We use K, to denote such graph. K, n, .., denotes a complete mul-

-----

tipartite graph with ¢ partite sets, each of size ny,ns, ..., n, respectively.

e From Theorem 1.3, we have ext(n; Cs) = L”TQJ and K|n| 0} is an extremal graph of
order n which forbids Cs(~ Kj3).

Theorem 1.4 (Turdn, 1941). Letn=t(p—1)+r, 1 <r<p-—1, and

. p—2 o, rlp—-1-r1)
M0p) Zas 5"~ o)

Then, ext(n; K,) = M(n,p).

Proof. By induction on t. First, if t = 0, then n = r < p — 1, clearly, G does not contain
K,. Moreover,

M(n,p) =

(p—2)r> —rp+r+r? :pTQ—rp—T2+r: (p—1)(r*—r) _(r
2(p—1) 2(p—1) 2(p—1) 2/

G~ K,.
Now, consider ¢ > 1 and let the assertion be true for ¢t — 1. Let G be the extremal graph
which does not contain K,,. So, G contains K, ;. Let V(K,_1) = H. Thus, H contains

p — 1 vertices. Since G does not contain K, the vertices outside of H are incident to at
most p — 2 vertices of H. This implies that

1G] < <p;1> +(p—2)(n—p+1)+ext(in —p+1;K,).

Now,n—p+1=(t—1)(p—1)+r. By induction, ext(n —p+1; K,) = M(n—p+1,p).
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|H=p—1, |G—H|=n—p+1.

Hence,

Gl < (p;l) +(p—2)(n—p+1)+ﬂ(n_p+1)2_M

2(p—1) 2(p—1)
= P22 )2 - (- 1) + (- (- 1)) - T
2(p—1) 2(p—1)

p—2 2_T(p—1_r>

21" 2(p—1)
= M(n,p).

For the (>) direction, let G be the complete multipartite graph Ky 4414, With r

-----

partite sets of size t+1 and p— 1 —r partite sets of size t. Then, n = r(t+1)+(p—1—7r)t =
t(p — 1) +r. Now, ||G|| = M(n,p), this concludes the proof.

(G is an extremal graph. In fact, this is the unique extremal graph. (proof?))

Definition 1.10. If G contains a cycle, then the length of a shortest cycle is called the
girth of G, denoted as g((G), and the length of a longest cycle is called the circumference
of G, denoted as ¢(G). Clearly, g(G) < ¢(G).

Definition 1.11. If ¢(G) = |G|, then G is a hamiltonian graph, i.e., G contains a
Hamilton cycle.
Remark.

e Determining whether a graph is hamiltonian or not is a very difficult problem. But,

for the existence of an Eulerian circuit, it is simpler.

e The problem of forbidding cycles of length larger than 3 is comparatively difficult.

Theorem 1.5. If a graph G of order n has more than "—“21_1 edges, then g(G) < 4. (G

contains either a Cs or a Cy.)

Proof. Let g(G) > 5 and Ng(x) = {y1,y2, ...,ya}. Then, < Ng(x) > has no edges (no
0378).
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For vertices ' € V(G) \ Ng(z), ¢ is incident to at most one

vertex in Ng(z) (no Cy’s). That is, Ng(y;) N Na(y;) = {z}, o’
for 1 <i < j <d. Hence, Y0, dega(y;) <n — (d+1) +d °
=n-—1
Now, consider the volume of G, vol(G) < n(n —1). °
nn—1)> Y > dega(y)
zeV(G) y~az
= Z deg?(z) each z of degree degg(z) will be counted degg(z) times
zeV(G)
1
> = 2 - :
> n( Z dega(z)) by Cauchy’s inequality
zeV(QG)
~ ~(2lGly
= _

Hence, ||G|| < inyv/n —1.

Corollary 1.1. ext(n; Cs or Cy) < inv/n — 1. Extremal graphs:

e n=>5:(%
e n =10 : Petersen graph
e n=50:srg(50,7,0,1) (strongly regular graph)

Corollary 1.2. ext(n;Cy) < §(1 + 4n —3). (proof?)



