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9. Linearization of RIP Model
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The system structure of a rotary inverted pendulum is shown in Figure 9-1,
which is driven by a DC motor depicted in Figure 9-2. The dynamic equation has

been derived by Lagrange’s method and can be expressed as below:
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where M is the inertia matrix and B is the matrix related to the centrifugal forces and
coriolis forces. There are two important properties concerning M and B. First, the

inertia matrix is symmetric and positive-definite, i.e., M=M" and Xx"Mx>0 for all x=0.

Second, %M — B is skew-symmetic, i.e., X' (% M — Bjx =0 forall x.

It is known that the torque to drive the motor can be approximately expressed as

below:

z(t)= %vs (t)+ (BM —k—szd(t)— Jyalt) (9-2)
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such that (9-1) is rewritten as
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where v(t) is the voltage source applied to drive the system.
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Since the parameters in the model (9-3) may not easy to obtain, we have to

estimate an appropriate model before control. For estimation, define the following

constant parameters:

¢1 = ‘]M +‘]0 +m1|-§f ¢2 = mlLoll’ ¢3 = m1|12’
k? k
¢4:CO+F_BM’ ¢5:C1' ¢6:E' ¢7:m1g|1

and thus, (9-3) is changed into
$.6 + @, Sin® B — ¢, cos B + B,
+2¢,asinpeos B+, p7sinf=gv,  (9-4)
— ¢, c08 B +(J, + @, ) — y6” sin Bcos B+, B—, sin =0 (9-5)
or rewritten as
P+ p, Sin® i — p, COS B + p,c
+2p,0f3sin BCos S+ p,fPsinf=pv,  (9-6)
— p, C0S Béi+ B— p,a” sin fcos B+ p, f— p, sinf=0 (9-7)
where the related constants are

o= k=127
Jl +¢3

Further rearranging (9-7) will leads to
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E(t):ngz(t)+p3g3(t)+p5g5(t)+p7g7(t) (9-8)
where

E(t)=5, g,(t)=cospBéa, g,(t)=a’sinBcosp,

gs(t)=—4, g,(t)=sing.
and rearranging (9-6) will leads to
F(t)= phy(t)+ ouh, () + oshe ) (9-9)
where
F(t)= p, sin? B — p, cos B + 2 p,af3sin Bcos S+ p, 37 sin
h(t)=—c, h,(t)=—c, h(t)=v,
Note that the angular positions «(t) and A(t) at time t are measurable and the

derivatives af(t), A(t), &(t) and A(t) can be estimated from o(t) and A(t) by the

identification technology. As a results, all the values of E(t), F(t), h(t) and g;(t),

i=1,4,6 and j=2,3,5,7, at time t are known. To achieve the constant parameters p,

j=1,2,...,7, we can employ the least squares method by the use of E(kT), F(kT),

h(kT) and g;(kT), i=1,46 and j=2,3,5,7, at time t=kT. Let E[k]=E(KT),

Flk]= F(kT), h[k]=h(kT) and g,[k]=g,(kT), where k=1,2,...,n, then we have
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Based on the least squares method, first we obtain

a=(G'G)'G"E (9-12)

After a is achieved, we can have F from (9-9) and then
b=(HTH)'HTF (9-13)
Therefore, the identification of the dynamic model (9-6) and (9-7) are completed.
Now, we can design the controller to drive the RIP to the upright angular
position £=0. In general, to simplify the controller design, we often assume the RIP is
initially loctated around a(0)=0, $(0)~0, ¢(0)~0 and /(0)=0. Therefore, the model
(9-6) and (9-7) are linearized as

G—o,f+0,0=0,V, (9-14)

_p1d+B+p2,B_p3:8: 0 (9-19)
where cosf~1, sinf~f and all the nonlinear terms are neglected. This linearized model

can be rewritten as

S TS S Al
Aol = Ao+ . + v, (9-16)
! 1 b 0 -p| B 0 o] LB 0
)l el S )
R A0+ . + A (9-17)
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or

where
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Hence, the state equation of the RIP is expressed as
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-u (9-18)

x-{m; 2 ™ R

where X = [a p ,B]r and u=v,. From (9-18), we can control the RIP in upright

angular position by the use of state-feedback control.
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