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9. Linearization of RIP Model 

 

The system structure of a rotary inverted pendulum is shown in Figure 9-1, 

which is driven by a DC motor depicted in Figure 9-2. The dynamic equation has 

been derived by Lagrange’s method and can be expressed as below: 
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where M is the inertia matrix and B is the matrix related to the centrifugal forces and 

coriolis forces. There are two important properties concerning M and B. First, the 

inertia matrix is symmetric and positive-definite, i.e., M=MT and xTMx>0 for all x0. 

Second, BM 
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 for all x.  

It is known that the torque to drive the motor can be approximately expressed as 

below: 
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such that (9-1) is rewritten as 
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where vs(t) is the voltage source applied to drive the system.  

Since the parameters in the model (9-3) may not easy to obtain, we have to 

estimate an appropriate model before control. For estimation, define the following 

constant parameters: 
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and thus, (9-3) is changed into 
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or rewritten as 
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where the related constants are 
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Further rearranging (9-7) will leads to 
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          tgtgtgtgtE 77553322    (9-8) 

where 

   tE ,    costg 2 ,    cossintg 2

3
 , 

   tg5 ,   sintg 7 . 

and rearranging (9-6) will leads to 
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where 
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Note that the angular positions (t) and (t) at time t are measurable and the 

derivatives  t ,  t ,  t  and  t  can be estimated from (t) and (t) by the 

identification technology. As a results, all the values of  tE ,  tF ,  thi  and  tg j , 

i=1,4,6 and j=2,3,5,7, at time t are known. To achieve the constant parameters j, 

j=1,2,…,7, we can employ the least squares method by the use of  kTE ,  kTF , 

 kThi  and  kTg j , i=1,4,6 and j=2,3,5,7, at time t=kT. Let    kTEkE  , 

   kTFkF  ,    kThkh ii   and    kTgkg jj  , where k=1,2,…,n, then we have 
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Based on the least squares method, first we obtain 

   EGGGa
TT 1

  (9-12) 

After a is achieved, we can have F from (9-9) and then  

   FHHHb
TT 1

  (9-13) 

Therefore, the identification of the dynamic model (9-6) and (9-7) are completed. 

Now, we can design the controller to drive the RIP to the upright angular 

position =0. In general, to simplify the controller design, we often assume the RIP is 

initially loctated around (0)0, (0)0,  0 0 and  0 0. Therefore, the model 

(9-6) and (9-7) are linearized as 

   sv432     (9-14) 

      0321      (9-15) 

where cos1, sin and all the nonlinear terms are neglected. This linearized model 

can be rewritten as 
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or 
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where 
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Hence, the state equation of the RIP is expressed as 
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where  T x  and u=vs. From (9-18), we can control the RIP in upright 

angular position by the use of state-feedback control. 


