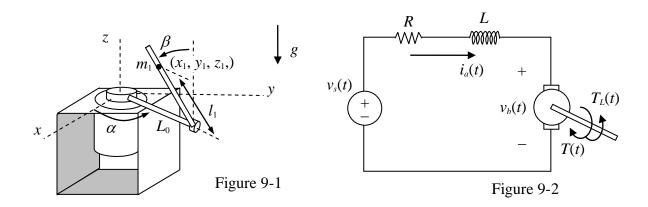
9. Linearization of RIP Model



The system structure of a rotary inverted pendulum is shown in Figure 9-1, which is driven by a DC motor depicted in Figure 9-2. The dynamic equation has been derived by Lagrange's method and can be expressed as below:

$$\begin{bmatrix}
J_{0} + m_{1}L_{0}^{2} + m_{1}l_{1}^{2} \sin^{2}\beta & -m_{1}L_{0}l_{1}\cos\beta \\
-m_{1}L_{0}l_{1}\cos\beta & J_{1} + m_{1}l_{1}^{2}
\end{bmatrix} \begin{bmatrix} \ddot{\alpha} \\ \ddot{\beta} \end{bmatrix}$$

$$+ \begin{bmatrix} m_{1}l_{1}^{2}\dot{\beta}\sin\beta\cos\beta & m_{1}l_{1}^{2}\dot{\alpha}\sin\beta\cos\beta + m_{1}L_{0}l_{1}\dot{\beta}\sin\beta \\
-m_{1}l_{1}^{2}\dot{\alpha}\sin\beta\cos\beta & 0
\end{bmatrix} \begin{bmatrix} \dot{\alpha} \\ \dot{\beta} \end{bmatrix}$$

$$+ \begin{bmatrix} 0 \\ -m_{1}gl_{1}\sin\beta \end{bmatrix} = \begin{bmatrix} \tau - C_{0}\dot{\alpha} \\ -C_{1}\dot{\beta} \end{bmatrix}$$
(9-1)

where M is the inertia matrix and B is the matrix related to the centrifugal forces and coriolis forces. There are two important properties concerning M and B. First, the inertia matrix is symmetric and positive-definite, i.e., $M=M^T$ and $x^TMx>0$ for all $x\neq 0$. Second, $\frac{1}{2}\dot{M}-B$ is skew-symmetric, i.e., $x^T\left(\frac{1}{2}\dot{M}-B\right)x=0$ for all x.

It is known that the torque to drive the motor can be approximately expressed as below:

$$\tau(t) = \frac{k}{R} v_s(t) + \left(B_M - \frac{k^2}{R} \right) \dot{\alpha}(t) - J_M \ddot{\alpha}(t)$$
 (9-2)

such that (9-1) is rewritten as

$$\begin{bmatrix} J_{M} + J_{0} + m_{1}L_{0}^{2} + m_{1}l_{1}^{2} \sin^{2}\beta & -m_{1}L_{0}l_{1}\cos\beta \\ -m_{1}L_{0}l_{1}\cos\beta & J_{1} + m_{1}l_{1}^{2} \end{bmatrix} \begin{bmatrix} \ddot{\alpha} \\ \ddot{\beta} \end{bmatrix}$$

$$+ \begin{bmatrix} C_{0} + \frac{k^{2}}{R} - B_{M} + m_{1}l_{1}^{2}\dot{\beta}\sin\beta\cos\beta & m_{1}l_{1}^{2}\dot{\alpha}\sin\beta\cos\beta + m_{1}L_{0}l_{1}\dot{\beta}\sin\beta \\ -m_{1}l_{1}^{2}\dot{\alpha}\sin\beta\cos\beta & C_{1} \end{bmatrix} \begin{bmatrix} \dot{\alpha} \\ \dot{\beta} \end{bmatrix}$$

$$+ \begin{bmatrix} 0 \\ -m_{1}gl_{1}\sin\beta \end{bmatrix} = \begin{bmatrix} k/R \\ 0 \end{bmatrix} v_{s}$$

$$(9-3)$$

where $v_s(t)$ is the voltage source applied to drive the system.

Since the parameters in the model (9-3) may not easy to obtain, we have to estimate an appropriate model before control. For estimation, define the following constant parameters:

$$\begin{aligned} \phi_1 &= J_M + J_0 + m_1 L_0^2, & \phi_2 &= m_1 L_0 l_1, & \phi_3 &= m_1 l_1^2, \\ \phi_4 &= C_0 + \frac{k^2}{R} - B_M, & \phi_5 &= C_1, & \phi_6 &= \frac{k}{R}, & \phi_7 &= m_1 g l_1 \end{aligned}$$

and thus, (9-3) is changed into

$$\begin{split} \phi_1 \ddot{\alpha} + \phi_3 \sin^2 \beta \ddot{\alpha} - \phi_2 \cos \beta \ddot{\beta} + \phi_4 \dot{\alpha} \\ + 2\phi_3 \dot{\alpha} \dot{\beta} \sin \beta \cos \beta + \phi_2 \dot{\beta}^2 \sin \beta = \phi_6 v_s \\ - \phi_2 \cos \beta \ddot{\alpha} + \left(J_1 + \phi_3\right) \ddot{\beta} - \phi_3 \dot{\alpha}^2 \sin \beta \cos \beta + \phi_5 \dot{\beta} - \phi_7 \sin \beta = 0 \quad (9-5) \end{split}$$

or rewritten as

$$\rho_{1}\ddot{\alpha} + \rho_{3}\sin^{2}\beta\ddot{\alpha} - \rho_{2}\cos\beta\ddot{\beta} + \rho_{4}\dot{\alpha}$$

$$+ 2\rho_{3}\dot{\alpha}\dot{\beta}\sin\beta\cos\beta + \rho_{2}\dot{\beta}^{2}\sin\beta = \rho_{6}v_{s} \qquad (9-6)$$

$$- \rho_{2}\cos\beta\ddot{\alpha} + \ddot{\beta} - \rho_{3}\dot{\alpha}^{2}\sin\beta\cos\beta + \rho_{5}\dot{\beta} - \rho_{7}\sin\beta = 0 \quad (9-7)$$

where the related constants are

$$\rho_k = \frac{\phi_k}{J_1 + \phi_3}, \quad k=1,2,...,7$$

Further rearranging (9-7) will leads to

$$E(t) = \rho_2 g_2(t) + \rho_3 g_3(t) + \rho_5 g_5(t) + \rho_7 g_7(t)$$
(9-8)

where

$$E(t) = \ddot{\beta}, \quad g_2(t) = \cos \beta \ddot{\alpha}, \quad g_3(t) = \dot{\alpha}^2 \sin \beta \cos \beta,$$

$$g_5(t) = -\dot{\beta}, \quad g_7(t) = \sin \beta.$$

and rearranging (9-6) will leads to

$$F(t) = \rho_1 h_1(t) + \rho_4 h_4(t) + \rho_6 h_6(t) \tag{9-9}$$

where

$$F(t) = \rho_3 \sin^2 \beta \ddot{\alpha} - \rho_2 \cos \beta \ddot{\beta} + 2\rho_3 \dot{\alpha} \dot{\beta} \sin \beta \cos \beta + \rho_2 \dot{\beta}^2 \sin \beta$$
$$h_1(t) = -\ddot{\alpha}, \quad h_4(t) = -\dot{\alpha}, \quad h_6(t) = v_s$$

Note that the angular positions $\alpha(t)$ and $\beta(t)$ at time t are measurable and the derivatives $\dot{\alpha}(t)$, $\dot{\beta}(t)$, $\ddot{\alpha}(t)$ and $\ddot{\beta}(t)$ can be estimated from $\alpha(t)$ and $\beta(t)$ by the identification technology. As a results, all the values of E(t), F(t), $h_i(t)$ and $g_j(t)$, i=1,4,6 and j=2,3,5,7, at time t are known. To achieve the constant parameters ρ_j , $j=1,2,\ldots,7$, we can employ the least squares method by the use of E(kT), F(kT), $h_i(kT)$ and $g_j(kT)$, i=1,4,6 and j=2,3,5,7, at time t=kT. Let E[k]=E(kT), F[k]=F(kT), $h_i[k]=h_i(kT)$ and $g_j[k]=g_j(kT)$, where $k=1,2,\ldots,n$, then we have

$$\begin{bmatrix}
E[1] \\
E[2] \\
\vdots \\
E[n]
\end{bmatrix} = \begin{bmatrix}
g_{2}[1] & g_{3}[1] & g_{5}[1] & g_{7}[1] \\
g_{2}[2] & g_{3}[2] & g_{5}[2] & g_{7}[2] \\
\vdots & \vdots & \vdots & \vdots \\
g_{2}[n] & g_{3}[n] & g_{5}[n] & g_{7}[n]
\end{bmatrix} \cdot \begin{bmatrix}
\rho_{2} \\
\rho_{3} \\
\rho_{5} \\
\rho_{7}
\end{bmatrix}$$

$$(9-10)$$

$$\begin{bmatrix}
F[1] \\
F[2] \\
\vdots \\
F[n]
\end{bmatrix} = \begin{bmatrix}
h_1[1] & h_4[1] & h_6[1] \\
h_1[2] & h_4[2] & h_6[2] \\
\vdots & \vdots & \vdots \\
h_1[n] & h_4[n] & h_6[n]
\end{bmatrix} \cdot \begin{bmatrix}
\rho_1 \\
\rho_4 \\
\rho_6
\end{bmatrix}$$

$$\bullet$$

Based on the least squares method, first we obtain

$$\boldsymbol{a} = (\boldsymbol{G}^T \boldsymbol{G})^{-1} \boldsymbol{G}^T \boldsymbol{E} \tag{9-12}$$

After a is achieved, we can have F from (9-9) and then

$$\boldsymbol{b} = (\boldsymbol{H}^T \boldsymbol{H})^{-1} \boldsymbol{H}^T \boldsymbol{F} \tag{9-13}$$

Therefore, the identification of the dynamic model (9-6) and (9-7) are completed.

Now, we can design the controller to drive the RIP to the upright angular position β =0. In general, to simplify the controller design, we often assume the RIP is initially loctated around $\alpha(0)\approx0$, $\beta(0)\approx0$, $\dot{\alpha}(0)\approx0$ and $\dot{\beta}(0)\approx0$. Therefore, the model (9-6) and (9-7) are linearized as

$$\ddot{\alpha} - \sigma_2 \ddot{\beta} + \sigma_3 \dot{\alpha} = \sigma_4 v_s \tag{9-14}$$

$$-\rho_1 \ddot{\alpha} + \ddot{\beta} + \rho_2 \dot{\beta} - \rho_3 \beta = 0 \tag{9-15}$$

where $\cos\beta \approx 1$, $\sin\beta \approx \beta$ and all the nonlinear terms are neglected. This linearized model can be rewritten as

$$\begin{bmatrix} 1 & -\sigma_2 \\ -\rho_1 & 1 \end{bmatrix} \cdot \begin{bmatrix} \ddot{\alpha} \\ \ddot{\beta} \end{bmatrix} = \begin{bmatrix} -\sigma_3 & 0 \\ 0 & -\rho_2 \end{bmatrix} \cdot \begin{bmatrix} \dot{\alpha} \\ \dot{\beta} \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & \rho_3 \end{bmatrix} \cdot \begin{bmatrix} \alpha \\ \beta \end{bmatrix} + \begin{bmatrix} \sigma_4 \\ 0 \end{bmatrix} \cdot v_s \quad (9-16)$$

or

$$\begin{bmatrix} \ddot{\alpha} \\ \ddot{\beta} \end{bmatrix} = \begin{bmatrix} a_{33} & a_{34} \\ a_{43} & a_{44} \end{bmatrix} \cdot \begin{bmatrix} \dot{\alpha} \\ \dot{\beta} \end{bmatrix} + \begin{bmatrix} a_{31} & a_{32} \\ a_{41} & a_{42} \end{bmatrix} \cdot \begin{bmatrix} \alpha \\ \beta \end{bmatrix} + \begin{bmatrix} b_3 \\ b_4 \end{bmatrix} \cdot v_s$$
 (9-17)

where

NCTU Department of Electrical and Computer Engineering 2015 Spring Course < Dynamic System Simulation and Implementation> by Prof. Yon-Ping Chen

$$\begin{bmatrix} a_{33} & a_{34} \\ a_{43} & a_{44} \end{bmatrix} = \begin{bmatrix} 1 & -\sigma_2 \\ -\rho_1 & 1 \end{bmatrix}^{-1} \begin{bmatrix} -\sigma_3 & 0 \\ 0 & -\rho_2 \end{bmatrix}$$
$$\begin{bmatrix} 0 & a_{32} \\ 0 & a_{42} \end{bmatrix} = \begin{bmatrix} 1 & -\sigma_2 \\ -\rho_1 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 0 & 0 \\ 0 & \rho_3 \end{bmatrix}$$
$$\begin{bmatrix} b_3 \\ b_4 \end{bmatrix} = \begin{bmatrix} 1 & -\sigma_2 \\ -\rho_1 & 1 \end{bmatrix}^{-1} \begin{bmatrix} \sigma_4 \\ 0 \end{bmatrix}$$

Hence, the state equation of the RIP is expressed as

$$\begin{bmatrix}
\dot{\alpha} \\
\dot{\beta} \\
\ddot{\alpha} \\
\ddot{\beta}
\end{bmatrix} = \begin{bmatrix}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & a_{32} & a_{33} & a_{34} \\
0 & a_{42} & a_{43} & a_{44}
\end{bmatrix} \cdot \begin{bmatrix}
\alpha \\
\beta \\
\dot{\alpha} \\
\dot{\beta}
\end{bmatrix} + \begin{bmatrix}
0 \\
0 \\
b_3 \\
\dot{b}
\end{bmatrix} \cdot u$$
(9-18)

where $\mathbf{x} = \begin{bmatrix} \alpha & \beta & \dot{\alpha} & \dot{\beta} \end{bmatrix}^T$ and $u = v_s$. From (9-18), we can control the RIP in upright angular position by the use of state-feedback control.