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8. Modeling of Rotary Inverted Pendulum

Figure 8-1

The dynamic model of a rotary inverted pendulunsh®wn in Figure 8-1,
which is also called Furuta pendulum. The systeuncsire is formed by a motor, an
arm with lengthL, and a pendulum with effective massand effective length. The
angular positioror of the arm referring t@-axis is increasing when it rotates about the
z-axis in right-hand rule. The angular positighof the pendulum referring to the
upward axis is increasing when it is rotating abthe axis along the arm, also in

right-hand rule.
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Figure 8-2

It is known that the motor is driven by the voltag¢g) and its dynamic equation

is given as

=R 0L, 50 0 Ri, -0 () -
where the armature inductante can be neglected and, (t) = ka(t). Hence, the

torque generated by the motor is
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which is used to control the system via the follogvequation
Jualt)+Byalt) =T, (t)-7(t) (8-3)
whereJy, is the rotor moment of inerti®&, is the frictional coefficient and the torque

7(t) is required to drive the rotary inverted pendultitom (8-2) and (8-3), we have

2

)=o)+ 8 - -3, 84
R R
For simplicity, we will omit the time variabkein the following equations.

Now, we will derive the dynamic model of the rotamyerted pendulum based

on the Lagrange’s equations, expressed as

i(a_l_j - a_L = Ta (8_5)
dt\ o) oa

d(oL) oL _ ]
1ﬂ£}£”ﬁ &9

where L=T-V is the LagrangianT is the total kinetic energy and is the total
potential energy. It is easy to find that the kinenergyT, and the potential energ

of the arm are

T, =13 42 (8-7)
2
V, =0 (8-8)

whereJ, is the moment of inertia related to the arm. Astifi@ pendulum, its effective
mass m, is concentrated atx( yi, z) as shown in Figure 8-1. The Cartesian

coordinates can be obtained as

X =L,cosa +l, snasing (8-9)
y, =L, sina -l ,cosasng (8-10)
z, =1, cosf (8-11)

and their derivatives are
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X, =-L,dsina +l,acosasin B+, Ssina cosfB (8-12)
y, = Lyacosa +l,asinasinf—1,3cosa cos B (8-13)
2, =-,Bsinp (8-14)

Hence, we have
x> = Léc?zsin2cr+If(c‘rcosasin,8+,fj’sina'cos,é’)2 (8-15)
—2Lollasina(acosasin,8+ﬁ"sinacos[:’)
y2 = Lia?cos’ a +1; (c‘rsinasin,é’ - Bcosa cos,é’)2 (8-16)
+ 2L, cosa(a snasing - ﬁ"cosacosﬁ)
z=1}p%sin’ B (8-17)
The kinetic energy and potential energy of the pdurd are then obtained as
1. . 1 . . .
T= 3B om{x g 2 (8-18)
Ly e tmize? + mizp? + Imiza sin? - mL L dBcos B
- 2 1 2 rnl 0 2 rn.'l. 1 2 rn.'l. 1 rn.'l. 0'1
Vi =mgz, =mgl, cosf (8-19)

whereJ, is the moment related to the pendulum. The tatadtic energy and the total

potential energy arel =T, +T, and V =V, +V, and the Lagrangian is expressed as
L=T-V=T,+T,-V, -V, (8-20)
1 o 1 o 1 P
:E(‘]o + mlLf))az +E(‘]1 + ml|12),32 +§ml|12a2 sin? B

—m,L,l,@BcosB-mgl, cos S

Concerning the generalized coordinateve have

%:(‘]o+mlLS)CHrnllfasinzﬂ—rnlLoll,Bcos,B (8-21)
%(S_Zj: (95 +mL2 +miZ sin? Bl - myL |, Boos 3 (8-22)

+2mlZafBsinBcosf+mL |, B> sing
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oL 0 (8-23)
oa
From (8-5), it can be obtained that
(JO +mL2 +ml’sin’ ,B)d -m,L,l,BcospB (8-24)
+2mlZapBsinBcosf+mL ), B°snB=1-C,a
where 7, =17 -C,a, i.e., the generalized force, includes the torque applied to

the arm and the viscous frictior C,ar of the arm. As to the generalized coordinate

B, it can be found that

Z—; = (31 + me),B— m,L,l,& cos B (8-25)
%(g_;j = (Jl + ”‘1'12),5’ —mL,l,dcosB+mL|.dBsing (8-26)
g_;:nylfaZSinﬁcos,B+mlLollaﬁsinﬁ+ mdgl, sin 3 (8-27)

From (8-6), we obtain
—mLgl,dcosB+ (3, +mi2)B (8-28)
-ml2a?sinBcosB-mgl,sing=-C[

where 7, = —Cl,B, i.e., 7, is the viscous friction- C,B of the pendulum.

From (8-24) and (8-28), the dynamic equation of timeerted pendulum is

expressed in matrix form as below:

Jo+mLi+mlZsin®B -mlL,l,cosg| a
N (8-29)
—-mL,l, cos 5 Jp +ml; B
M
+_mllf,83inﬂcos,8 mlZasinfBcosB+mlL |, BsinB | a
| —my|2arsin Bcos B 0 B
B

+_ 0 _[r-Cya
_—rnlgllsin/s}‘{ —clﬁ}
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whereM is the inertia matrix anB is the matrix related to the centrifugal forces an
coriolis forces. There are two important properwesicerningM and B. First, the

inertia matrix is symmetric and positive-definite., M=M™ andx"Mx>0 for all x£0.
Second,%l\il -B is skew-symmetic, i.e.x' (% M - Bjx =0 forallx.

For the first property, it can be seen from themaets of M that the
symmetricityM=M" is true. Furthermore, by direct calculation wedav

Jo + mll-é + rnlllz sin? B —mlL0|1COSIB}{X1

) (8-30)
-myL,l, cosf J;+myl; X,

XTMx =[x, xz][

= (3, + mL2 +m12 sin? )¢ - 2m Lyl cos B x, +(J; +mi2 )2
= (9, +mi12sin? B)x? + m (L2x2 - 2Ll cos B x, +12x2)+ 3,2
= (3, + mizsin? ) +my((Lox, 1, cos B )2 + (1, sin B, )?)+ 3,2 >0

which showsx™x>0 for all x#20. This proves the first property. For the second

property, let’s calculate the matri% M - B, which can be obtained as

1M—B{O _} (8-31)
2 p O

where @= mllfdsinﬂcosﬂ+%mlLoll,85in,8. For all x, it is easy to check that
XT(% M - Bjx =0, i.e., the second property is true.

From (8-2), we substitute the torqueapplied to the arm into (8-29) and then

the dynamic equation is rewritten as

Jy, +J,+mL2+ml’sin®*B -mL,J, cosgB| d (8-32)
—mL,l, cosf J1+ml|12 :8
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B 2
| Co+ X =By, +miZpdnpooss mifasinfoosf+ Ly, fsing m
i

-mlZasinBcos B C,

0 } {k/R}
+ = v
L™ mgl, sin8 0 )

wherev(t) is the voltage source to drive the system.
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