
NCTU Department of Electrical and Computer Engineering 2015 Spring Course 
<Dynamic System Simulation and Implementation> by Prof. Yon-Ping Chen 

 

8-1 

8. Modeling of Rotary Inverted Pendulum 

 

The dynamic model of a rotary inverted pendulum is shown in Figure 8-1, 

which is also called Furuta pendulum. The system structure is formed by a motor, an 

arm with length L0 and a pendulum with effective mass m1 and effective length l1. The 

angular position α of the arm referring to x-axis is increasing when it rotates about the 

z-axis in right-hand rule. The angular position β of the pendulum referring to the 

upward axis is increasing when it is rotating about the axis along the arm, also in 

right-hand rule. 

 

It is known that the motor is driven by the voltage vs(t) and its dynamic equation 

is given as 
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where the armature inductance La can be neglected and ( ) ( )tktvb α&= . Hence, the 
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which is used to control the system via the following equation 

 ( ) ( ) ( ) ( )ttTtBtJ MMM ταα −=+ &&&  (8-3) 

where JM is the rotor moment of inertia, BM is the frictional coefficient and the torque 

τ(t) is required to drive the rotary inverted pendulum. From (8-2) and (8-3), we have 
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For simplicity, we will omit the time variable t in the following equations. 

Now, we will derive the dynamic model of the rotary inverted pendulum based 

on the Lagrange’s equations, expressed as 
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where L=T−V is the Lagrangian, T is the total kinetic energy and V is the total 

potential energy. It is easy to find that the kinetic energy T0 and the potential energy V0 

of the arm are 

 2
00 2

1 α&JT =  (8-7) 

 00 =V  (8-8) 

where J0 is the moment of inertia related to the arm. As for the pendulum, its effective 

mass m1 is concentrated at (x1, y1, z1) as shown in Figure 8-1. The Cartesian 

coordinates can be obtained as 

 βαα sinsinlcosLx 101 +=  (8-9) 

 βαα sincoslsinLy 101 −=  (8-10) 

 βcoslz 11 =  (8-11) 

and their derivatives are 
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Hence, we have 
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The kinetic energy and potential energy of the pendulum are then obtained as 
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where J1 is the moment related to the pendulum. The total kinetic energy and the total 

potential energy are 01 TTT +=  and 01 VVV +=  and the Lagrangian is expressed as 

 1010 VVTTVTL −−+=−=  (8-20) 
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Concerning the generalized coordinate α, we have 
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From (8-5), it can be obtained that 
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where αττ α &0C−= , i.e., the generalized force ατ  includes the torque τ applied to 

the arm and the viscous friction α&0C−  of the arm. As to the generalized coordinate 

β, it can be found that 
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From (8-6), we obtain 
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where βτ β
&

1C−= , i.e., βτ  is the viscous friction β&1C−  of the pendulum. 

From (8-24) and (8-28), the dynamic equation of the inverted pendulum is 

expressed in matrix form as below: 
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where M is the inertia matrix and B is the matrix related to the centrifugal forces and 

coriolis forces. There are two important properties concerning M and B. First, the 

inertia matrix is symmetric and positive-definite, i.e., M=MT and xTMx>0 for all x≠0. 

Second, BM −&
2

1
 is skew-symmetic, i.e., 0
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





 − xBMx &T  for all x.  

For the first property, it can be seen from the elements of M that the 

symmetricity M=MT is true. Furthermore, by direct calculation we have 
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which shows xTMx>0 for all x≠0. This proves the first property. For the second 

property, let’s calculate the matrix BM −&
2

1
, which can be obtained as 
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where ββββαφ sinlLmcossinlm && 101
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1+= . For all x, it is easy to check that 
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From (8-2), we substitute the torque τ applied to the arm into (8-29) and then 

the dynamic equation is rewritten as 
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where vs(t) is the voltage source to drive the system. 


