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7. Lagrange’s Equations

To derive the dynamic equations of a mechanicalesyswe often apply the
Lagrange’s equations which is based on an enerignba relation and expressed in
terms of the kinetic energy, the potential energy, and a set of independent
coordinates. Before introducing the Lagrange’s &qguos, let's consider the simplest
mechanicalMBK system and adopt tHdewton’s second law to obtain its dynamic

systems.
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In engineering, most of the systems are construgyeshechanical components
such as damper and spring. Figure7-1 shows thelestimechanical system, called
the mass-damper-spring systemMIBK system in brief, wher®! is the mass of the
moving object,B is the damping coefficient of the damper a&hds the stiffiness of
the spring. Letf(t) be an extra force exerted on the object and assthis the
resulted deviation of the spring referred to itfoured status,=0. Then, there are
two forcesreacted to restrain the motion of the object, esged as

f.(t) = -Bx(t) (7-1)

f. (t) = —Kx(t) (7-2)
wherefg(t) is caused by the damper afh@) is the spring force. According to the
Newton’s second law of motion, we have

F0)+ fo (1) + fic () = Mx(1) (7-3)
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M(t) + Bx(t) + Kx(t) = f (t) (7-4)

which is the dynamic equation of the MBK system.

For the mechanical system, the external fd(Des the input and the deviation
X(t) is commonly chosen as the output. Let the Laptesnesforms bd-(s) andX(s),
then the system (7-4) can be described as
(Ms? +Bs+K )X(s) = F(s) (7-5)
The transfer function is then obtained as

X(s) 1 a,
His)= = =k 7-
S F(s) Ms?+Bs+K °s’+as+a, (7-9)

where a, :E, a :£ and k :i. Clearly, it is a low-pass filter and can reject
M M ° K

high-frequency inputs. For convenience, we defme=«’ and a, = 2&w, and

rewrite the transfer function in (7-6) as

_ @, ]
H(s) =k, YA (7-7)

wherea, is the natural frequency aids the damping ratio. The analysis of (7-7) has

been introduced in some fundamental courses.
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Figure7-2

Let's further consider a more complicated mechdnsteucture depicted in
Figure7-2 where two masses andm, are linked to two dampets andb, and two
springs k; and k,. Let f(t) be the extra force and assumgt) and x(t) are the
deviations of the springs referred to their unfdrcasex;,=0 andx,,=0. According to

the Newton’s second law of motion, we have
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F(t)+ fuu(t)+ Falt) = mx, (t) (7-8)

foo(t)+ Fio(t) = oy ()= Fiu(t) = myx, (t) (7-9)
where

fon (t) = =1 (% (t) - % (t)) (7-10)

fio(t) = =k, (x,(t) - %, (t)) (7-11)

foo(t) = =B, %, (t) (7-12)

fio(t) = =K%, (t) (7-13)

Therefore, (7-8) and (7-9) can be rewritten as
rnlxl(t) = _b1X1(t) + b1X2 (t) - klxl(t) + leZ (t) + f (t) (7'14)
m,X, (t) = blxl(t) - (bl + bz )Xz (t) + klxl(t) - (kl + kz )Xz (t) (7-15)

which are the dynamic equations of two-mass system.

From (7-14) and (7-15), we may know that the dymaraguation of a
mechanical system will become much more complicdtéte number of masses are
further increased. To deal with the modeling ofystem withn masses, the famous

Lagrange’s equations

d( oL oL .
—|=|-—=Q, i=1,2,... 7-16
dt(aqij % Q n (7-16)

are often employed to simplify the procedure, whegrds the i-th generalized
coordinate, ¢ is its derivativeQ is thei-th generalized force and. =T -U is a
scalar function called Lagrangian. Clearly, the faagjianL is the difference between

the total kinetic energy and the total potential enerty Note that the kinetic energy

T depends on the generalized coordinajesind their derivativesy , i=1,2,...n,
while the potential energy only depends on the gdized coordinates}. Hence,

substituting L =T —U into (7-16) yields
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d(aT) aT ou .
| —|-—+—==Q, i=1,2,... 7-17
dt(aqij o “oq 2 " (74

where the truth ofg—L_J =0 is used.
i

Now, instead of Newton’s second law, let's deriveléd) and (7-15) by the
Lagrange’s equations (7-17). First, the total kmehergy is
1 1 >
T =omg(t)+ 5 mxi(t) (7-18)
and the total potential energy is

U =k 0) - 0 + ki) (7-19)

From (7-17), we need to calculate the followingrtsr

dfoT |_ -
o &j =m,(t) (7-20)
d(aT)_ ]
d Kj =m0 (-21)
oT _ -
5{“0 (7-22)
oT _ -
ag-o (7-23)
ou _ B ]
bl =% (t) (7-24)
2% = k(1 (0) - 0)+ ko) (7-25)

Since the mass, encounters the external forég) and the force caused by the

connected damper b, (x,(t) - %,(t)) along the coordinate, we have
Q:=f(t) = by (%, (t) - %, (t)) (7-26)

As for the masam, it encounters the forces caused by the connedtedpers

—b,(%,(t)- % (t)) and —b,x,(t). This results in

Q= b, 0)- (1) - b5, () (7-27)
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Hence, according to (7-17)

d [aTJ- M,V _q, =12 (7-28)

dailox ) ox  ox
the dynamic equations of the two-mass system are

M, (£) + k0 (£) = %, (t) = £ (£) - by (%, (t) - %, (t)) (7-29)

m,%, (t) =k (x4, (£) = %, (1)) + ko, (t) = by (%, () - %, (t)) - b, (t) (7-30)

mlxl(t) = _blxl(t) +by X, (t) - k1X1(t) +kX, (t) +f (t) (7-31)
m, X, (t) = blxl(t) - (b1 +b, )Xz (t) + klxl(t) - (kl +k, )Xz (t) (7-32)

both similar to (7-14) and (7-15).

Now, let’'s derive the Lagrange’s equations fbmasses, denoted ag, m, ...,
my, and their positions are described by the Camest@rdinates. Since each mass is
given by three coordinates, the total coordinatesai=1,2,...,3\. For simplicity, we
assume the first mass, is located atx, x,, X;), the second mass; is located atXj,

Xs, X5), and so on. As a result, the total kinetic enesgy
1 3N
T=>> mx’ (7-33)
2
where my =m,,;),5 - Further assume the system will be representeterims of

generalized coordinates;, j=1,2,...n. This implies each coordinatg can be

expressed as a functiongfj=1,2,...n. Hence, we have

LI; )8 0X.
X =) —(, +— 7-34
=200 (7-34)

which leads to

IR N _
—ZZH{Z _qj+atJ (7-35)

i=1

If we define the generalized momentum with respeat, k=1,2,...n, as
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3N ax

— = i (X 7-36
Py aqk ;m 6qk =M% G (7-36)

where the truth of::—.i :gi can be obtained from (7-34). Differentiatipgwith
M oD

Zrnix _'+z dt(aqkj (7-37)

0x

where E is also a function afandq, j1,2,...n. Thus,
k
n 2 2
dfox =y 0% g, + 0% (7-38)
dt\ aq, =1 09,09, otaq,

From (7-34), we have

S5 0%, O (7-39)
aqk =10q,0 otoq,
Both (7-38) and (7-39) are the same, i.e.,
dfox |_ 0% (7-40)
dt\ oq, ) 0q,
which will change (7-37) into
% 25+ mix (7-41)
Z 6qk Zl: 6qk
3N 6X
Its last term Zm’xi —— can be also shown related to the kinetic energ¥3j7as
i=1 k
below:
— X, (7-42)
aqk 21: aqk
Therefore, we have
3N axl
P =) M —- (7-43)
‘ z a9, GQk

According to the Newton’s second law, the magsshould obey the following
equation

m% =F +R (7-44)
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whereF; represents the sum of the applied forces Rnd the sum of the workless

constraint forces. Now, (7-43) Is written as
3N

ZR 0X; aT (7-45)
i=1 aqk o 0q, aqk

For the sum of the workless constraint forBesve assume it has done a virtual work

P =

AW by moving a virtual displacement, expressed as

I = i(zR—j . (7-46)

=1\ i=1

Note that the virtual workdW done by constraint forces should be zero for any

3N
independent virtual displacememX; . This implies the termZR(;9i in (7-46)

i=1 Kk

should be zero, i.e.,

R (7-47)
z GQk
Consequently, (7-45) becomes
oT
+ 20 7-48
=Qy 2, (7-48)
where
3N GX-
Q =Y F - (7-49)
‘ zl o,
is defined as the generalized fo@ewith respect tay,. Further from the definition of
oT

Px —a—. in (7-36), we rewrite (7-48) as

k

d( oT oT
— , k=1,2,... 7-50
dt(an g, " (7-50)

whish are known as the fundamental form of Lagrangguations.

Under the condition that the system only encourtezsconservative forces, all
the generalized force®, can be obtained by the gradient of the potentiagrgy V

with respect ta}.. The generalized forc&g, k=1,2,...n, are then expressed as
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Q -V 120 (7-51)

aq,

As a result, the Lagrange’s equations under coasige/forces are governed by

d [OT j— M, N _5 k12,..n (7-52)

dt\dg, ) aq, aq,

In case that there are non-conservative forcesymgpto the system, the Lagrange’s

equations will be described as

d [OT j— or , v =Q,, k=1,2,..n (7-53)

dt\dq, ) dqg, dq,
where Q,, k=1,2,...n, are the non-conservative forces. The standardh foff

Lagrange’s equations are then shown as

d( oL oL
—|—|-—=0Q,, k=1,2,... 7-54
dt(aqu a9, g 4 ( )

whereL=T-V is called the Lagrangian. Note that here usesrthk that the potential

energyV is independent tag, , the derivative of generalized coordinatgs.
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