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7. Lagrange’s Equations 

To derive the dynamic equations of a mechanical system, we often apply the 

Lagrange’s equations which is based on an energy-balance relation and expressed in 

terms of the kinetic energy T, the potential energy U, and a set of independent 

coordinates. Before introducing the Lagrange’s equations, let’s consider the simplest 

mechanical MBK system and adopt the Newton’s second law to obtain its dynamic 

systems. 

 

In engineering, most of the systems are constructed by mechanical components 

such as damper and spring. Figure7-1 shows the simplest mechanical system, called 

the mass-damper-spring system or MBK system in brief, where M is the mass of the 

moving object, B is the damping coefficient of the damper and K is the stiffiness of 

the spring. Let f(t) be an extra force exerted on the object and assume x(t) is the 

resulted deviation of the spring referred to its unforced status x0=0. Then, there are 

two forces reacted to restrain the motion of the object, expressed as 

 ( ) ( )txBtf B &−=  (7-1) 

 ( ) ( )tKxtf K −=  (7-2) 

where fB(t) is caused by the damper and fK(t) is the spring force. According to the 

Newton’s second law of motion, we have 

 ( ) ( ) ( ) ( )txMtftftf KB &&=++  (7-3) 

i.e., 

Figure7-1 
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 ( ) ( ) ( ) ( )tftKxtxBtxM =++ &&&  (7-4) 

which is the dynamic equation of the MBK system. 

For the mechanical system, the external force f(t) is the input and the deviation 

x(t) is commonly chosen as the output. Let the Laplace transforms be F(s) and X(s), 

then the system (7-4) can be described as 

 ( ) ( ) ( )sFsXKBsMs =++2  (7-5) 

The transfer function is then obtained as 

 ( ) ( )
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where 
M

B
a =1 , 

M

K
a =0  and 

K
k

1
0 = . Clearly, it is a low-pass filter and can reject 

high-frequency inputs. For convenience, we define 2
0 na ω=  and na ξω21 =  and 

rewrite the transfer function in (7-6) as 
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where ωn is the natural frequency and ξ is the damping ratio. The analysis of (7-7) has 

been introduced in some fundamental courses. 

 

Let’s further consider a more complicated mechanical structure depicted in 

Figure7-2 where two masses m1 and m2 are linked to two dampers b1 and b2 and two 

springs k1 and k2. Let f(t) be the extra force and assume x1(t) and x1(t) are the 

deviations of the springs referred to their unforced cases x10=0 and x20=0. According to 

the Newton’s second law of motion, we have 

Figure7-2 
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 ( ) ( ) ( ) ( )txmtftftf kb 1111 &&=++  (7-8) 

 ( ) ( ) ( ) ( ) ( )txmtftftftf kbkb 221122 &&=−−+  (7-9) 

where  

 ( ) ( ) ( )( )txtxbtfb 2111 && −−=  (7-10) 

 ( ) ( ) ( )( )txtxktf k 2111 −−=  (7-11) 

 ( ) ( )txbtfb 222 &−=  (7-12) 

 ( ) ( )txktf k 222 −=  (7-13) 

Therefore, (7-8) and (7-9) can be rewritten as 

 ( ) ( ) ( ) ( ) ( ) ( )tftxktxktxbtxbtxm ++−+−= 2111211111 &&&&  (7-14) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )txkktxktxbbtxbtxm 221112211122 +−++−= &&&&  (7-15) 

which are the dynamic equations of two-mass system. 

From (7-14) and (7-15), we may know that the dynamic equation of a 

mechanical system will become much more complicated if the number of masses are 

further increased. To deal with the modeling of a system with n masses, the famous 

Lagrange’s equations  

 i
ii
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q
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d =
∂
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


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



∂
∂
&

,  i=1,2,…,n (7-16) 

are often employed to simplify the procedure, where qi is the i-th generalized 

coordinate, iq&  is its derivative, Qi is the i-th generalized force and UTL −=  is a 

scalar function called Lagrangian. Clearly, the Lagrangian L is the difference between 

the total kinetic energy T and the total potential energy U. Note that the kinetic energy 

T depends on the generalized coordinates qi and their derivatives iq& , i=1,2,…,n, 

while the potential energy only depends on the generalized coordinates qi. Hence, 

substituting UTL −=  into (7-16) yields 
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,  i=1,2,…,n (7-17) 

where the truth of 0=
∂
∂

iq

U
&

 is used. 

Now, instead of Newton’s second law, let’s derive (7-14) and (7-15) by the 

Lagrange’s equations (7-17). First, the total kinetic energy is 

 ( ) ( )txmtxmT 2
22

2
11 2

1

2

1
&& +=  (7-18) 

and the total potential energy is 

 ( ) ( )( ) ( )txktxtxkU 2
22

2
211 2

1

2

1 +−=  (7-19) 

From (7-17), we need to calculate the following terms: 
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 (7-24) 

 ( ) ( )( ) ( )txktxtxk
x

U
22211

2
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∂
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 (7-25) 

Since the mass m1 encounters the external force f(t) and the force caused by the 

connected damper ( ) ( )( )txtxb 211 && −−  along the coordinate x1, we have  

 Q1=f(t) ( ) ( )( )txtxb 211 && −−  (7-26) 

As for the mass m2, it encounters the forces caused by the connected dampers 

( ) ( )( )txtxb 121 && −−  and ( )txb 22 &− . This results in 

 Q2= ( ) ( )( )txtxb 121 && −− ( )txb 22 &−  (7-27) 
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Hence, according to (7-17)  
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the dynamic equations of the two-mass system are 

 ( ) ( ) ( )( ) ( ) ( ) ( )( )txtxbtftxtxktxm 21121111 &&&& −−=−+  (7-29) 

 ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )txbtxtxbtxktxtxktxm 221212221122 &&&&& −−−=+−−  (7-30) 

i.e., 

 ( ) ( ) ( ) ( ) ( ) ( )tftxktxktxbtxbtxm ++−+−= 2111211111 &&&&  (7-31) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )txkktxktxbbtxbtxm 221112211122 +−++−= &&&&  (7-32) 

both similar to (7-14) and (7-15). 

Now, let’s derive the Lagrange’s equations for N masses, denoted as m1, m2, …, 

mN, and their positions are described by the Cartesian coordinates. Since each mass is 

given by three coordinates, the total coordinates are xi, i=1,2,…,3N. For simplicity, we 

assume the first mass m1 is located at (x1, x2, x3), the second mass m2 is located at (x4, 

x5, x6), and so on. As a result, the total kinetic energy is 

 ∑
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&  (7-33) 

where ]3)2[( /ii mm +=′ . Further assume the system will be represented in terms of 

generalized coordinates qj, j=1,2,…,n. This implies each coordinate xi can be 

expressed as a function of qj, j=1,2,…,n. Hence, we have 
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which leads to 
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If we define the generalized momentum with respect to qk, k=1,2,…,n, as 
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where the truth of 
k

i

k
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 can be obtained from (7-34). Differentiating pk with 
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where 
k

i
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x
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 is also a function of t and qj j1,2,…,n. Thus, 
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From (7-34), we have 
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Both (7-38) and (7-39) are the same, i.e., 

 
k

i

k

i

q

x

q

x

dt

d

∂
∂

=








∂
∂ &

 (7-40) 

which will change (7-37) into 
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Its last term ∑
= ∂
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&  can be also shown related to the kinetic energy (7-33) as 

below: 
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Therefore, we have 
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According to the Newton’s second law, the mass mi should obey the following 

equation 

 iiii RFxm +=′ &&  (7-44) 
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where Fi represents the sum of the applied forces and Ri is the sum of the workless 

constraint forces. Now, (7-43) is written as 
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For the sum of the workless constraint forces Ri, we assume it has done a virtual work 

δW by moving a virtual displacement, expressed as 
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Note that the virtual work δW done by constraint forces should be zero for any 

independent virtual displacement jqδ . This implies the term ∑
= ∂

∂N
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should be zero, i.e.,  
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Consequently, (7-45) becomes 
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is defined as the generalized force Qk with respect to qk. Further from the definition of 

k
k q

T
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&∂
∂=  in (7-36), we rewrite (7-48) as 
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whish are known as the fundamental form of Lagrange’s equations. 

Under the condition that the system only encounters the conservative forces, all 

the generalized forces Qk can be obtained by the gradient of the potential energy V 

with respect to qk. The generalized forces Qk, k=1,2,…,n, are then expressed as 
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As a result, the Lagrange’s equations under conservative forces are governed by 
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In case that there are non-conservative forces applying to the system, the Lagrange’s 

equations will be described as 
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where Qk, k=1,2,…,n, are the non-conservative forces. The standard form of 

Lagrange’s equations are then shown as 
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where L=T−V is called the Lagrangian. Note that here uses the truth that the potential 

energy V is independent to kq& , the derivative of generalized coordinates kq . 


