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6. Controller Design of the DC Motor 

This topic will focus on the controller design of the DC motor to drive its rotor 

moving in a desired speed (t)=d or to a specified angle (t)=d.  

 

The system structure of a DC motor is shown in Figure 6-1, including the 

armature resistance Ra and winding leakage inductance La. Its dynamic equation can 

be expressed as 
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where J=JM+ JL if the rotor is connected to a payload  
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Substituting it into (6-2), we have 
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Now, based on (6-4), let’s discuss the controller design of the rotor’s angular velocity 

(t) and angular position (t). 

To obtain the practical model of a DC motor described by (6-4), we can identify 

the modell via the experiment, not through the measurement of structure parameters J, 

Ra, k and BM. Assume the resulted dynamic model is 

 
 

   tvt
dt

td
s


  (6-5) 

and then from  
 

dt

td
t


   we have 

 
   

 tv
dt

td

dt

td
s







2

2

 (6-6) 

Hence, the transfer function of (t) with respect to vs(t) becomes 
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and the transfer function of (t) with respect to vs(t) becomes 
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The block diagrams of (6-5) and (6-6) are shown in Figure 6-2 and Figure 6-3, 

respectively. Next, let’s discuss the velocity controller design of the model (6-5). 

 

 

If the control goal is to drive the motor to a desired speed (t)=d, the intuitive 
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way is to give a constant input   ds tv 



  and then (6-5) is changed into 
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whose response becomes 
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Since >0, if t we have   dt    and reach the control goal. This is a kind of 

direct feed-forward control and it is only suitable for a system precisely modeled. 

In case that the values  and  are possessed of uncertainties, the direct 

feed-forward control is not able to appropriately drive the motor to operate at a 

desired speed. To deal with such problem, the first step of controller design is often to 

assign an error function as below: 

     dtte    (6-11) 

which shows the difference for the current speed to reach its desired value. It is clear 

that the control purpose is fulfilled when the error e(t) vanishes, i.e., e(t)=0. Based on 

(6-11), we change (6-5) into 
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and design the controller by feedback technology. 

First, let’s employ the proportional feedback control by setting the input as 

below: 

    tektv ps   (6-13) 

and then (6-12) becomes 
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Suitably choosing kp such that 0 pp k  yields 
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which leads to 
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In other words, there exists a steady-state error and the error can be only reduced by 

choosing p. large enough. 

 

In order to eliminate the steady-state error, we often employ the integral control 

which is set to be 
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and then (6-12) becomes 
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Further taking the derivative of (6-18) leads to 

 
   

  0
2

2

 tek
dt

tde

dt

ted
I  (6-19) 

By choosing kI such that 0 Ik , we can conclude that the eigenvalues of (6-19) 

are stable and thus the error   0te  as t . This makes the control successful. 

Figure 6-4 shows the block diagram with the integral control. 

To drive the motor to a specified angle, we can use the model (6-6) and choose 

the error function as below: 

Figure 6-4 
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     dtte    (6-20) 

which shows the difference for the current angle to reach its desired value. Similarly, 

the control purpose is reached if the error e(t) vanishes, i.e., e(t)=0. Based on (6-20), 

we change (6-6) into 
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and design the controller by proportional feedback technology. 

    tektv ps   (6-22) 

The resulted system becomes 
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Obviously, if 0 pk , the error e(t) will approach zero as t. The angular 

position control is thus completed. Figure 6-5 shows the block diagram with the 

proportional control. 

 

Although the error can be reduced to zero, its approaching rate may not be as 

desired, too fast or too slow. To avoid such drawback, we could employ the 

prroportional-derivative control as below: 

      tektektv dps   (6-24) 

which leads to 

Figure-8-5 
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Now, the approaching rate of the error e(t) to reach zero can be assigned by choosing 

appropriate roots of the characteristic equation   02  pd kk  . 

The other way is to trace a desired trajectory by setting a feedforward filter 

given as 
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such that the desired angular position is changed into      d
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where    00  D . Note that   dD t    as t . Figure 6-6 shows the block 

diagram with a feedforward filter. 

 
Figure 6-6 
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