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5. Identification of Dynamic Systems

Before processing or controlling a dynamic system, it is often required to
identify its practical mathematical model by using parameter estimation techniques.
There are two important estimation algorithms often used for system identification,

including the Least squares method and the Lagrange’s polynomial.

For example, let’s consider a second order linear time invariant system which is
described as below:
9(t)+a,y(t)+ ay(t) = bu(t) + bou(t) (5-1)
where u(t) is the input, y(t) is the output and all the coefficients a;, a, b, and b, are
unknown. In general, the input u(t) is given by ourselves, so both u(t) and u(t) are
exactly known. As for the output, we assume that only y(t) is measurable, but y(t)
and §(t) are not obtainable. Based on the above statement, now let’s find a way to

determine the unknown coefficients a;, a, b, and b, by applying the data related to

u(), u(t) and y(t).

If the sampling time to measure the output y(t) is T, then the data available for
the determination of a;, a,, b, and b, are u(kT), u(kT) and y(kT) where k=0,1,2,...,n
Since there are four unknown coefficients, we need to adopt at least four equations
formed by (7-1) at t=k T, i=1,2,...,n and n>4. For simplicity, we arbitrarily choose five
data, i.e., n=5, at k;=100, k,=140, k;=200, k,=250 and ks=310. Then, we can write five

equations from (7-1) as below:

§(100T )+ a,y(100T )+ a,y(100T ) = b,u(100T ) + b,u(100T ) (5-2)
§(140T )+ 2, y(140T ) + a,y(140T ) = b,u(140T )+ b,u(140T ) (5-3)
§(200T )+a,y(200T ) + a,y(200T ) = bu(200T) + bu(200T) ~ (5-4)
9(250T )+ &, y(250T )+ a,y(250T ) = b,u(250T ) + b,u(250T ) (5-5)
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$(310T )+ &, ¥(310T ) + &, y(310T ) = b,u(310T ) + b,u(310T) (5-6)

which can be rearranged as the following matrix form:

[u(100T) u(100T) - y(100T) —y(100T)’_b [ y(100T)]
u(140T) u(140T) —y(140T) —y(140T) bl §(140T)
u(200T) u(200T) -y(200T) —y(200T)| ° [=|y(200T)| (5-7)
u(250T) u(250T) —y(250T) —y(250T) % y(250T)
|u(310T) u(310T) -y(310T) —y(310T)f),zL | §(310T) ]

A P

Without loss of generality, A is often of full rank and then AT A s invertible. As a

result, the vector x concerning the unknown parameters is solved as below:
v=(ATAJ"ATp (5-8)
Actually, (7-8) is referred to the least squares method which is introduced in the end

of this topic as an appendix.

Unfortunately, (7-8) is not available yet because we still need to get the data of
y(t) and §(t) at t=100T, 140T, 200T, 250T and 310T. Here, let’s adopt the data of

y(t) and §(t) at t=100T to explain how to estimate them from the data y(t) based on

the lagrange’s polynomial.

In fact, the most simpliest way to estimate y(t) at t=100T can be implemented

by the definition:

(100T )= im y(100T )- r>]/(100T —h) _ y(100T)~ r)T/](_T_OOT —mT) (5.9)

where m is an integer but not necessary to be 1. As for the estimation of y(t) at

t=100T, we further calculate

y(100T —mT)=lim y(100T —mT)-y(100T —mT - h)

h—0 h
y(100T —mT)- y(100T —2mT)
mT

(5-10)

~
~

then
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y(100T )— y(100T —h)  y(100T )- y(100T —mT)

§(100T )= lim ~
h—0 h mT
(5-11)
y(100T )—2y(100T —mT )+ y(100T —2mT)

~
~

m°T?

Althogh (5-9) and (5-11) is simple, they often lead to undesirable estimation errors. In
instead, we add two other data y(100T+mT) and y(100T+2mT), i.e., we use five data of
y(t) to estimate y(t) and y(t) att=100T. For convenient, let’s define

t,=100T-2mT, t,=100T—-mT, t,=100T, t,=100T+mT, t;=100T+2mT

yi=y(t), Yo=Y (k). Ys=Y(ts), Ya=y (L), ys=y(ts)
then a possible curve of y(t) passing y; at t=t;, i=1,2,3,4,5, can be formed as

5 5 5
y(t)= zl‘{y jgi (t-t,) jgi (t, -, )j (5-12)

or

t—t, \t—t, N\t —t, Nt -1,
y(t) =y1 (tf _tz )251 _ts §t1 _t4)§(t1 _t)s) (5-13)
(t_tl)(t_ta)(t_t4)(t_t5) (t_tl)(t_tz)(t_t4)(t_t5)
i (tz _tl)(tz _ts)(tz _t4)(t2 _t5)+ s (t3 _t1)(t3 _tz )(ts _t4)(t3 _ts)
(t_tl)(t_tz)(t_ts)(t_ts) + (t_tl)(t_tz)(t_ta)(t_t4)

+y
’ (t4 _tl)(t4 _tz )(t4 _ts)(t4 _ts) ° (ts _tl)(tS _tz )(ts _ts)(ts _t4)

which is called the Lagrange’s polynomial. Hence, after directly taking derivative

with respect to t and then setting t=t,=100T, we obtain

. . y1_8y2 +8y3_y5
100T )=ylt, )= 5-14
y( ) y( 3) 1omT ( )

Similarly, taking derivative twice with respect to t yields

— B y1 +16y2 _42y3 +16y4 B ys
12m?T?

9(100T )= y(t,) (5-15)
The above procedure can be applied to estimate y(t) and y(t) at t=140T, 200T,
250T and 310T. Then, with all these estimated data, the vector v in (5-8) can be

implemented to get the unknown parameters a;, a,, b; and b, in (5-1) which describes

the dynamic system under processing.
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Appendix: Least Square Method

Consider an engineering problem which have to determine the unknown

coefficients a;, 1=1,2,...,n, in the following linear equation

y=aX +a,X, +---+a,X, (A-1)
where the values of y, X, X,,..., X, are measured up to m times, where m>n. Assume Yy,
Xet, Xiay...@Nd Xy, are the values obtained at the k-th measurement. Unfortunately,
measurement often exists inaccuracy and results in errors such that

Y Xy X, +o 8, X, (A-2)
Hence, it is impossible to find the n coefficients a;, i=1,2,...,n, just by n times of
measurement. Instead, a large amount of measurements are needed to obtain a set of
coefficients a;, i=1,2,...,n, to fit (A-1) best. Now, let’s introduce how to apply the least
squares method to determine the best coefficients for (A-1). First, define the k-th error
function as

e, = Yy —(a Xy +a,X, +-+a, X ) (A-3)
where k=1,2,...,m, and a performance index as

m
E=el+e)+--+e2=>e; (A-4)
k=1

It is required to determine the coefficients a;, i=1,2,...,n, such that the performance
index is minimal, i.e., reaches the smallest value. Since the index is the sum of error

squares, this method is usually called “least squares method.”

Further rewrite the set of m error functions defined in (A-3) as the following

matrix form
€ Y: Xip X o Xy aQ
€, _ Y, _ X1 Xy 0 Xy . a, (A-5)
em ym Xml Xm2 an an
[ —
€ y X

5-4
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where yeR™ and X e R™" are fixed and known since both of them contain all

the measured values. The vector a e R" consists of the unknown n coefficients.

Let’s define
a, X1 Xy Xin a X11 X2 Xin
o X X X a X X
2 | _ .21 22 .2n 2| _ a, .21 +a, 22 +oeta, 2n (A-6)
am Xml XmZ an an Xml Xm2 an
\ —
a X a X, X, X,

which implies the vector a € R" is in the space formed by the column vectors of X,
denoted as x;, i=1,2,...,n, i.e., a is in the column space of X. Now, (A-5) can be
expressed as

e=y-a (A-7)
depicted in Figure A-1. Without loss of generality, the column vectors x;, i=1,2,...,n,
are all assumed to be independent, i.e., X is of full rank or rank(X)=n for m>n. Under

the condition rank(X)=n, it has been proved that the square matrix X'X e R™" is

invertible and its inverse (XT X)_l exists.

Column space of X Figure A-1

It is required to find a suitable coefficient vector a € R" such that the error e is

reduced as small as possible based on the performance index (A-4), given as below:
£ =D et =eTe =[e|| =|y- Xl =|y-af (a9
k=1

Then, its minimum is determined by the following condition:

5-5
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m 2 m m
E_S® 36 Bl o3 ex, =0,i=12..0  (A9)
0a; = 0a, o 0a k=1
which can be rearranged as
Xli
. X2i .
dexi=[e e e, ]| 7 |=0, i=12,...,n (A-10)
k=1 oF :
Xmi
Hr_/
X

Clearly, if the index E in (A-8)

is minimal, then the error vector e must be

perpendicular to all the column vectors of X, which implies the error vector e must be

orthogonal to the column space of X. It can be seen from Figure A-1 that the error

vector e, is the one satisfying (A-10); therefore, we have

X1i
T | Xai _ -
&- . =0, 1=12...n (A-11)
Xmi
Xi
which implies
Xll X12 Xln
Xy, X X
| . 1=l o 0] or XTe,=0  (A-12)
' 0
Xml Xm2 an
X
From (A-5), let a, be the coefficient vector related to e,, i.e.,
e, =Yy— Xa, (A-13)
then
XTe,=X"(y-Xa,)=0 (A-14)
ie.,
XTXa, =X"y (A-15)

Due to the fact that (X i X)_1 exists, the coefficient vector is attained as

5-6
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a, =(XTX)" X7y (A-16)
which is the solution of the least squares problem. In addition, it can be found that the

smallest error vector is
T YLy T Ty Yy T
&, = y— Xa, = y— X(X"X)" X y:(l—x(x X)* x )y (A-17)
and the minimal performance index is

E=ele,=y' (I— X(x™x)* xT)T (I— X(x™x)* XT)y

(A-18)
—y (I— X(xTx)* xT)y =yTe,

ie.,

(y—e,)'e, =0 (A-19)
Further from (A-6), we define

a, = Xa, (A-20)
then (A-13) leads to

y—€, =@, (A-21)
Hence, from (A-19) and (A-21) we obtain

(y—e,) e, =a, e =0 (A-22)

which demonstrates the truth shown in Figure 3-1 that e is perpendicular to e,.

B. An Example: Estimation of a Circular Boundary

Let’s take an example concerning an object with circular boundary where all the

points (x,y) form a circle given as
(x—cx)2+(y—cy)2:r2 (A-23)
The center (c,,c,) and radius r are unknown and will be determined by measuring 12

boundary points with values listed as below:

5-7



NCTU Department of Electrical and Computer Engineering 2015 Spring Course
<Dynamic System Simulation and Implementation> by Prof. Yon-Ping Chen

i-th points X; Yi

1 4.0 -0.95
2 3.0 1.26
3 2.0 1.81
4 1.0 2.01
5 0.0 -3.80
6 -1.0 -3.23
7 2.0 -0.97
8 -1.0 1.21
9 0.0 1.83
ﬂ 1.0 -4.00

2.0 -3.78
12 30 326

As expected, due to the measurement error, the boundary points (x;y:), i=1,2,...,12,

are a little deviated from the circle, i.e., (x —c, )’ +(y, —c, J = r?. Let the error be

defined as
& =(x —c, ) +(y,—c,f -r?
= (xi2 + yf)— 2c, X —2C,y; —r* + (cf + cj) (A-24)
= (x2 +y2)-2c,x - 2c,y; —¢,
where
¢, =r?—(c?+¢?) (A-25)

It is required to determine c,, ¢, and c, in (A-24). Once c,, ¢, and c, are solved, the

circle is then obtained with the center (c,,c,) and the radius

r=.c, +c2+c? (A-26)

Follow the process of least squares method, first let’s rewrite (A-24) as

CX
e =(x>+y’)-[2x. 2y, 1]-|c (A-27)
i i i i i y
Cr
fori=1,2,...,12. Hence,
e X, +y; 2x, 2y, 1 3
e 24 y? 2x, 2 1]
e=| 7 |=| 2tV || T e Cle, |=2-xa (A29)
: o : e
€ X+ Y] [2%2 2Yi, 1 A
z X

which is the same as (A-5). From (A-16), the coefficent vector is solved as

5-8
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CX
a,=|c, |=(XTX)"X"z (A-29)
CI"

The calculation in MATLAB is given as below:

>> 0% Calculation in MATLAB
>> %lInput (xi, yi)
>>x=[43210-1-2-10123];
>>y=[-0.95 1.26 1.81 2.01 -3.80 -3.23 -0.97 1.21 1.83 -4.00 -3.78 -3.26];
>> %Calculate X and z
>> for i=1:12;
X(i,:)=[2*x(i) 2*y(i) 1];
z(i,:)=[x()"2+y(i)"2];
end
>> X

X =

8.0000  -1.9000 1.0000
6.0000 2.5200 1.0000
4.0000 3.6200 1.0000
2.0000 4.0200 1.0000
0 -7.6000 1.0000
-2.0000  -6.4600 1.0000
-4.0000  -1.9400 1.0000
-2.0000 2.4200 1.0000
0 3.6600 1.0000
2.0000 -8.0000 1.0000
4.0000 -7.5600 1.0000
6.0000 -6.5200 1.0000

>>z=z(:,1)
Z=

16.9025
10.5876
7.2761
5.0401
14.4400
11.4329
4.9409
2.4641
3.3489
17.0000
18.2884
19.6276

5-9
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>> % Calculate the rank of X
>> rank(X)

ans=
3

>> a=inv(X'*X)*X'*z
a=
1.0065
-0.9934

6.9675

>> 0 Calculate the radius r
>> r=sqrt(a(3)+a(1)*2+a(2)"2)

r=
2.9946

From the numeric results, we obtain the circle with the center (1.0065,-0.9934) and
the radius r=2.9946.
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