4. Runge-Kutta Formula For Differential Equations

To solve the differential equations numerically, the most useful formula is called Runge-Kutta formula which has been widely used in numerical analysis.

For a dynamic system without input, it is generally expressed as the following first-order differential equation:

$$\dot{x}(t) = f(t, x(t)), \qquad x(t_0) = \alpha \tag{4-1}$$

where $t=t_0$ is the initial time and $x(t_0)=\alpha$ is the initial condition. The problem to solve x(t) in (4-1) for $t>t_0$ is called the initial value problem, or IVP in brief. For example, the following equation

$$\dot{x}(t) = -x(t) + t$$
, $x(0)=1$ (4-2)

is an IVP and its solution can be obtained in closed form as below:

$$x(t) = 2e^{-t} + t - 1, \qquad t \ge 0$$
 (4-3)

However, if (4-1) is more complicated, such as

$$\dot{x}(t) = -x^2(t) + t \cdot \sin(t), \qquad x(0) = 1$$
 (4-4)

then it is impossible to find the solution x(t) in closed form. Hence, it is required to solve (4-4) in a numerical method.

The simplest numerical method is called the Euler formula, which was propsed by Euler in 1768. With the use of fixed grid size $\Delta t = h$, the grid points along t are denoted as $t_0, t_1, t_2,...$ in order, where

$$t_i = t_0 + i \cdot h$$
, $i=1,2,3,...$ (4-5)

and the value x(t) at t_i is defined as

$$x_i = x(t_i), \qquad i=0,1,2,3,....$$
 (4-6)

where the initial value $x_0=x(t_0)=\alpha$ is known. According to the definition of derivative, we have

$$\dot{x}(t) = \lim_{\Delta t \to 0} \frac{x(t + \Delta t) - x(t)}{\Delta t},\tag{4-7}$$

which implies the derivative of x(t) at $t=t_i$ can be approximately expressed as

$$\dot{x}(t_i) \approx \frac{x(t_i + \Delta t) - x(t_i)}{\Delta t} = \frac{x(t_{i+1}) - x(t_i)}{h} = \frac{x_{i+1} - x_i}{h}$$
(4-8)

Substituting (4-8) into (4-1) at $t=t_i$ leads to

$$\frac{x_{i+1} - x_i}{h} \approx f(t_i, x_i), \qquad x_0 = \alpha$$
 (4-9)

and then

$$x_{i+1} = x_i + h \cdot f(t_i, x_i), \qquad x_0 = \alpha$$
 (4-10)

which is the famous Euler formula. Clearly, if we try to achieve a solution more precisely, the grid size h should be chosen as small as possible. However, reducing the grid size h is inefficient since the cost of calculation time may increase tremendously.

Now, let's introduce Taylor's expansion to explain the error caused by Euler formula (4-10). According to Taylor's expansion, a function x(t) continuous at $t=t_i$ can be expressed as

$$x(t) = a_0 + a_1(t - t_i) + a_2(t - t_i)^2 + \dots + a_n(t - t_i)^n + \dots$$
 (4-11)

whose higher order derivatives are

$$\dot{x}(t) = a_1 + 2a_2(t - t_i) + 3a_3(t - t_i)^2 + \dots + na_n(t - t_i)^{n-1} + \dots$$
 (4-12)

$$\ddot{x}(t) = 2! \, a_2 + 3 \cdot 2a_3(t - t_i) + 4 \cdot 3a_4(t - t_i)^2 + \dots + \dots + n(n-1)a_n(t - t_i)^{n-2} + \dots$$
(4-13)

$$\ddot{x}(t) = 3! \, a_3 + 4 \cdot 3 \cdot 2a_4(t - t_i) + 5 \cdot 4 \cdot 3a_5(t - t_i)^2 + \cdots + \cdots + n(n-1)(n-2)a_n(t - t_i)^{n-3} + \cdots$$
(4-14)

From the above equations, we have $a_0 = x(t_i)$ and $a_k = \frac{1}{k!}x^{(k)}(t_i)$ for $k=1,2,...,\infty$.

Thus, (4-11) can be rewritten as

$$x(t) = x(t_i) + \dot{x}(t_i)(t - t_i) + \frac{\ddot{x}(t_i)}{2!}(t - t_i)^2 + \dots + \frac{x^{(n)}(t_i)}{n!}(t - t_i)^n + \dots$$
 (4-15)

Let $t=t_{i+1}$, we have

$$x(t_{i+1}) = x(t_i) + \dot{x}(t_i)(t_{i+1} - t_i) + \frac{\ddot{x}(t_i)}{2!}(t_{i+1} - t_i)^2 + \cdots + \frac{x^{(n)}(t_i)}{n!}(t_{i+1} - t_i)^n + \cdots$$

$$(4-16)$$

i.e.,

$$x_{i+1} = x_i + f(t_i, x_i)h + \frac{f'(t_i, x_i)}{2!}h^2 + \dots + \frac{f^{(n-1)}(t_i, x_i)}{n!}h^n + \dots$$

$$= x_i + f(t_i, x_i)h + O(h^2)$$
(4-17)

where

NCTU Department of Electrical and Computer Engineering 2015 Spring Course <Dynamic System Simulation and Implementation> by Prof. Yon-Ping Chen

$$O(h^{2}) = \frac{f'(t_{i}, x_{i})}{2!}h^{2} + \dots + \frac{f^{(n-1)}(t_{i}, x_{i})}{n!}h^{n} + \dots$$
 (4-18)

Comparing (4-17) with (4-10), we know that the term $O(h^2)$ is the error of Euler formula, which is proportional to h^2 .

In order to reduce the error to h^3 , we further modify Euler form (4-10) as below:

$$\frac{x_{i+1} - x_i}{h} = \beta_0 f(t_i, x_i) + \beta_1 f(t_i + \gamma h, x_i + \delta h), \tag{4-19}$$

where β_0 , β_1 , γ and δ are variables to be determined. Since f(t, x(t)) depends on x(t) and t, its Taylor's expansion at $x(t)=x_i$ and $t=t_i$ can be expressed as

$$f(t, y(t)) = a_0 + a_t(t - t_i) + a_x(x(t) - x_i) + a_{tt}(t - t_i)^2 + a_{tx}(x(t) - x_i)(t - t_i)$$

$$+ a_{xx}(x(t) - x_i)^2 + a_{tt}(t - t_i)^3 + a_{tx}(t - t_i)^2(x(t) - x_i)$$

$$+ a_{txx}(t - t_i)(x(t) - x_i)^2 + a_{xxx}(x(t) - x_i)^3 + \cdots$$
(4-20)

where all the coefficients a_0 , a_t , a_x , a_{tt} , a_{tx} ... are constant. The partial derivatives of f(t, x(t)) are

$$f_{t}(t, x(t)) = \frac{\partial f(t, x(t))}{\partial t}$$

$$= a_{t} + 2a_{tt}(t - t_{i}) + a_{tx}(x(t) - x_{i}) + 3a_{tt}(t - t_{i})^{2}$$

$$+ 2a_{tt}(t - t_{i})(x(t) - x_{i}) + a_{tx}(x(t) - x_{i})^{2} + \cdots$$

$$(4-21)$$

$$f_{x}(t, x(t)) = \frac{\partial f(t, x(t))}{\partial x(t)}$$

$$= a_{x} + a_{tx}(t - t_{i}) + 2a_{xx}(x(t) - x_{i}) + a_{tx}(t - t_{i})^{2}$$

$$+ 2a_{txx}(t - t_{i})(x(t) - x_{i}) + 3a_{xxx}(x(t) - x_{i})^{2} + \cdots$$

$$(4-22)$$

$$f_{tt}(t, y(t)) = \frac{\partial^2 f(t, x(t))}{\partial t^2} = \frac{\partial f_t(t, x(t))}{\partial t}$$

$$= 2a_{tt} + 3 \cdot 2a_{tt}(t - t_i) + 2a_{tt}(x(t) - x_i) + \cdots$$

$$(4-23)$$

$$f_{tx}(t, y(t)) = \frac{\partial^2 f(t, x(t))}{\partial x(t)\partial t} = \frac{\partial f_x(t, x(t))}{\partial t}$$

$$= a_{tx} + 2a_{tx}(t - t_i) + 2a_{txx}(x(t) - x_i) + \cdots$$
(4-24)

$$f_{xx}(t,x(t)) = \frac{\partial^2 f(t,x(t))}{(\partial x(t))^2} = \frac{\partial f_x(t,x(t))}{\partial x(t)}$$

$$= 2a_{xx} + 2a_{txx}(t - t_i) + 3 \cdot 2a_{xxx}(x(t) - x_i) + \cdots$$
(4-25)

Clearly, all the coefficients can be derived from the above partial derivatives and expressed as

$$a_{0} = f(t_{i}, x_{i}), \quad a_{t} = f_{t}(t_{i}, x_{i}), \quad a_{x} = f_{x}(t_{i}, x_{i}),$$

$$a_{tt} = \frac{1}{2!} f_{tt}(t_{i}, x_{i}), \quad a_{tx} = f_{tx}(t_{i}, x_{i}), \quad a_{xx} = \frac{1}{2!} f_{xx}(t_{i}, x_{i}), \dots$$

Substituting them into (4-20) yields

$$f(t,x(t)) = f(t_{i},x_{i}) + f_{t}(t_{i},x_{i})(t-t_{i}) + f_{x}(t_{i},x_{i})(x(t)-x_{i}) + \frac{1}{2!}f_{tt}(t_{i},x_{i})(t-t_{i})^{2} + f_{tx}(t_{i},x_{i})(t-t_{i})(x(t)-x_{i}) + \frac{1}{2!}f_{xx}(t_{i},x_{i})(x(t)-x_{i})^{2} + \frac{1}{3!}f_{ttt}(t_{i},x_{i})(t-t_{i})^{3} + \frac{1}{3!}f_{xxx}(t_{i},x_{i})(x(t)-x_{i})^{3} + \cdots$$

$$(4-26)$$

Let $t=t_i+\gamma h$ and $x(t)=x_i+\delta h$, then

$$f(t_{i} + \gamma h, x_{i} + \delta h)$$

$$= f(t_{i}, x_{i}) + h \gamma f_{t}(t_{i}, x_{i}) + h \delta f_{x}(t_{i}, x_{i}) + \frac{1}{2} h^{2} \gamma^{2} f_{tt}(t_{i}, x_{i})$$

$$+ h^{2} \gamma \delta f_{tx}(t_{i}, x_{i}) + \frac{1}{2} h^{2} \delta^{2} f_{xx}(t_{i}, x_{i}) + O(h^{3})$$

$$(4-27)$$

Hence, (4-19) can be rearranged and rewritten as

$$x_{i+1} = x_i + h[(\beta_0 + \beta_1)f(t_i, x_i)] + \frac{h^2}{2!}[2\beta_1 \mathcal{J}_t(t_i, x_i) + 2\beta_1 \mathcal{J}_x(t_i, x_i)]$$

$$+ \frac{h^3}{3!}[3\beta_1 \gamma^2 f_{tt}(t_i, x_i) + 6\beta_1 \gamma \mathcal{J}_{tx}(t_i, x_i) + 3\beta_1 \delta^2 f_{xx}(t_i, x_i)]$$

$$+ O(h^4)$$
(4-28)

If we want to take the precision to h^2 , from (4-17) and (4-28) we have

$$x_{i+1} \approx x_i + f(t_i, x_i)h + \frac{f'(t_i, x_i)}{2!}h^2 + O(h^3)$$

$$\approx x_i + h[(\beta_0 + \beta_1)f(t_i, x_i)]$$

$$+ \frac{h^2}{2!}[2\beta_1 \mathcal{Y}_t(t_i, x_i) + 2\beta_1 \delta f_x(t_i, x_i)] + O(h^3)$$
(4-29)

Since $\dot{x}(t_i) = f(t_i, x_i)$, the term $f'(t_i, x_i)$ can be changed into the following form:

$$f'(t_i, x_i) = f_t(t_i, x_i) + f_x(t_i, x_i)\dot{x}(t_i)$$

= $f_t(t_i, x_i) + f_x(t_i, x_i)f(t_i, x_i)$ (4-30)

As a result, from (4-29) and (4-30) we obtain

$$f(t_{i}, x_{i})h + \frac{h^{2}}{2!}(f_{t}(t_{i}, x_{i}) + f_{x}(t_{i}, x_{i})f(t_{i}, x_{i}))$$

$$= h[(\beta_{0} + \beta_{1})f(t_{i}, x_{i})] + \frac{h^{2}}{2!}[2\beta_{1}\mathcal{Y}_{t}(t_{i}, x_{i}) + 2\beta_{1}\delta f_{x}(t_{i}, x_{i})]$$
(4-31)

which leads to

$$\beta_0 + \beta_1 = 1 \tag{4-32}$$

$$2\beta_{1} \mathcal{J}_{t}(t_{i}, x_{i}) + 2\beta_{1} \mathcal{J}_{x}(t_{i}, x_{i}) = f_{t}(t_{i}, x_{i}) + f_{x}(t_{i}, x_{i}) f(t_{i}, x_{i})$$
(4-33)

From (4-33), wehave

$$2\beta_1 \gamma = 1 \tag{4-34}$$

$$2\beta_1 \delta = f(t_i, x_i) \tag{4-35}$$

Since there are four variables β_0 , β_1 , γ and δ in three equations (4-32), (4-34) and (4-35), the choice of these variables is not unique and commonly they are selected as

$$\beta_0 = \beta_1 = \frac{1}{2}, \quad \gamma = 1, \quad \delta = f(t_i, x_i)$$
 (4-36)

That means the numerical solution (4-28) is chosen as

$$x_{i+1} = x_i + \frac{h}{2} f(t_i, x_i) + \frac{h}{2} f(t_i + h, x_i + h f(t_i, x_i)), \tag{4-37}$$

which is called the second-order Runge-Kutta formula. For the convenience of programming, the formula is often rearranged as below:

$$x_{i+1} = x_i + \frac{1}{2}(k_0 + k_1) \tag{4-38}$$

where

$$\begin{cases}
k_0 = h \cdot f(t_i, x_i) \\
k_1 = h \cdot f(t_i + h, x_i + k_0)
\end{cases}$$
(4-39)

In case that a higher precision is required, we often employ the higher order Runge-Kutta formula. For example, if a precision of h^4 is needed, then the fourth-order Runge-Kutta formula must be used, which is often given as

$$x_{i+1} = x_i + \frac{1}{6} (k_0 + 2k_1 + 2k_2 + k_3)$$
 (4-40)

where

$$\begin{cases} k_{0} = h \cdot f(t_{i}, x_{i}), & k_{1} = h \cdot f\left(t_{i} + \frac{h}{2}, x_{i} + \frac{k_{0}}{2}\right) \\ k_{2} = h \cdot f\left(t_{i} + \frac{h}{2}, x_{i} + \frac{k_{1}}{2}\right), & k_{3} = h \cdot f\left(t_{i}, x_{i} + k_{2}\right) \end{cases}$$
(4-41)

This formula has been widely applied to a lot of applications in engineering due to its simplicity and acceptable accuracy.

Next, let's use an example to show the programming of the fourth-order

Runge-Kutta formula in MATLAB. Consider the following equation:

$$\dot{x}(t) = f(x(t), t) = -x(t) + 1, \qquad x(0) = 0.5$$
 (4-42)

and find the solution x(t) for $t \ge 0$, which can be solved as below:

$$x(t) = -0.5e^{-t} + 1 (4-43)$$

Now let's apply the fourth-order Runge-Kutta formula to verify (4-43) with the step size h=0.01. The precision is then in the order of h⁴=10⁻⁸. From (4-40), we have

$$x_{i+1} = x_i + \frac{1}{6} (k_0 + 2k_1 + 2k_2 + k_3)$$
 (4-44)

where

$$k_{0} = h \cdot f(t_{i}, x_{i}) = h(-x_{i} + 1) = -h(x_{i} - 1)$$

$$k_{1} = h \cdot f\left(t_{i} + \frac{h}{2}, x_{i} + \frac{k_{0}}{2}\right) = h\left(-\left(x_{i} + \frac{k_{0}}{2}\right) + 1\right) = -h\left(x_{i} + \frac{k_{0}}{2} - 1\right)$$

$$k_{2} = h \cdot f\left(t_{i} + \frac{h}{2}, x_{i} + \frac{k_{1}}{2}\right) = h\left(-\left(x_{i} + \frac{k_{1}}{2}\right) + 1\right) = -h\left(x_{i} + \frac{k_{1}}{2} - 1\right)$$

$$k_{3} = h \cdot f\left(t_{i}, x_{i} + k_{2},\right) = h\left(-\left(x_{i} + k_{2}\right) + 1\right) = -h\left(x_{i} + k_{2} - 1\right)$$

The programming in MATLAB is given as below:

```
_____
```

```
>> % Fourth order Runge-Kutta method
```

>> for n=1:599 % total simulation time 6 sec

```
>> k0=-h*(x(n)-1); k1=-h*(x(n)+k0/2-1);
```

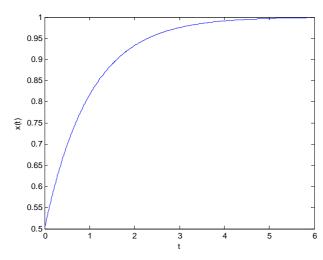
$$\rightarrow$$
 k2=-h*(x(n)+k1/2-1); k3=-h*(x(n)+k2-1);

$$>> t(n+1)=(n+1)*h;$$
 % t-axis

$$>> e(n+1)=x(n+1)-(-0.5*exp(-t(n+1))+1);$$
 % numerical error

>> end

>> plot(t,x); xlabel('t'); ylabel('x(t)')



>> x0=0.5; h=0.01; % initial condition x(0)=0.5 and step size 0.01sec

>> k0=-h*(x0-1); k1=-h*(x0+k0/2-1); k2=-h*(x0+k1/2-1); k3=-h*(x0+k2-1);

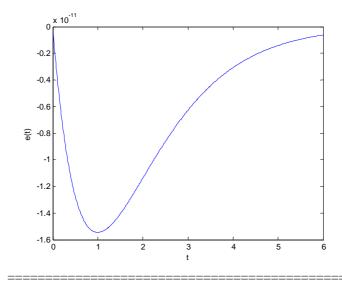
>> x(1)=x0+(k0+2*k1+2*k2+k3)/6;

>> e(1)=x(1)-(-0.5*exp(-h)+1); % numerical error at t=h

>> t(1)=h;

>> x(n+1)=x(n)+(k0+2*k1+2*k2+k3)/6;

>> plot(t,e); xlabel('t'); ylabel('e(t)')



From the above numerical results of error function e(t), it is true that the precision is around 10^{-10} which is indeed less than $h^4(10^{-8})$. In MATLAB, some instructions are provided to solve the differential equations, such as ode23 and ode45. In fact, these instructions are also implemented by the Runge-Kutta method. Now, let's use the instruction ode23 to solve the system (4-42) and use the instruction ode45 to solve the system described as below:

$$\dot{x}(t) = f(t, x(t)) = -x(t) + 0.5 \sin(\sin 10t), \qquad x(0) = 0.5$$
 (4-45)

whose solution can not be expressed in closed form. The programming in MATLAB is given in the following, which includes two m-files. The file first1.m is written for (4-43) and solved by ode23. The file first2.m is written for (4-45) and solved by ode45. Clearly, the result of (4-45) can not be expressed in closed form since it is more complicated than the result of (4-43).

Create m-file: first1.m
function dx=first1(t,x)

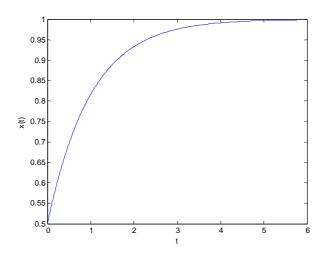
dx=-x+1;

Create m-file: first2.m function dx=first2(t,x) dx=-x+0.5*sin(sin(10*t));

>> % key in the following instructions

>> [t,x]=ode23(@first1,[0:0.01:6],0.5)

>> plot(t,x); xlabel('t'); ylabel('x(t)')



- >> % key in the following instructions >> [t,x]=ode45(@first2,[0:0.01:6],0.5) >> plot(t,x); xlabel('t'); ylabel('x(t)')

