
NCTU Department of Electrical and Computer Engineering 2015 Spring Course
<Dynamic System Simulation and Implementation> by Prof. Yon-Ping Chen

4-1

4. Runge-Kutta Formula For Differential Equations

To solve the differential equations numerically, the most useful formula is called

Runge-Kutta formula which has been widely used in numerical analysis.

For a dynamic system without input, it is generally expressed as the following

first-order differential equation:

 () ()()txtftx ,=& , x(t0)=α (4-1)

where t=t0 is the initial time and x(t0)=α is the initial condition. The problem to solve

x(t) in (4-1) for t>t0 is called the initial value problem, or IVP in brief. For example,

the following equation

 () () ttxtx +−=& , x(0)=1 (4-2)

is an IVP and its solution can be obtained in closed form as below:

 () 12 −+= − tetx t , t≥0 (4-3)

However, if (4-1) is more complicated, such as

 () () ()tsinttxtx ⋅+−= 2
& , x(0)=1 (4-4)

then it is impossible to find the solution x(t) in closed form. Hence, it is required to

solve (4-4) in a numerical method.

The simplest numerical method is called the Euler formula, which was propsed

by Euler in 1768. With the use of fixed grid size ∆t=h, the grid points along t are

denoted as t0, t1, t2,… in order, where

 hitt ⋅+= 0i , i=1,2,3,…… (4-5)

and the value x(t) at ti is defined as

 ()ii txx = , i=0,1,2,3,…… (4-6)

where the initial value x0=x(t0)=α is known. According to the definition of derivative,

we have

 () () ()
t

txttx
limtx
t ∆

∆
∆

−+=
→0

& , (4-7)

which implies the derivative of x(t) at t=ti can be approximately expressed as

 () () () () ()
h

xx

h

txtx

t

txttx
tx iiiiii

i

−
=

−
=

−+
≈ ++ 11

∆
∆

& (4-8)

Substituting (4-8) into (4-1) at t=ti leads to

NCTU Department of Electrical and Computer Engineering 2015 Spring Course
<Dynamic System Simulation and Implementation> by Prof. Yon-Ping Chen

4-2

 ()ii
ii x,tf

h

xx
≈

−+1 , x0=α (4-9)

and then

 ()ii xtfhxx ,ii ⋅+=+1 , x0=α (4-10)

which is the famous Euler formula. Clearly, if we try to achieve a solution more

precisely, the grid size h should be chosen as small as possible. However, reducing the

grid size h is inefficient since the cost of calculation time may increase tremendously.

Now, let’s introduce Taylor’s expansion to explain the error caused by Euler

formula (4-10). According to Taylor’s expansion, a function x(t) continuous at t=ti can

be expressed as

 () () () () LL +−++−+−+= n
inii ttattattaatx 2

210 (4-11)

whose higher order derivatives are

 () () () () LL& +−++−+−+= −12
321 32 n

inii ttnattattaatx (4-12)

() () ()

() () LL

L&&

+−−++

+−⋅+−⋅+=
−2

2
432

1

34232
n

in

ii

ttann

ttattaa!tx
 (4-13)

() () ()

()() () LL

L&&&

+−−−++

+−⋅⋅+−⋅⋅+=
−3

2
543

21

3452343
n

in

ii

ttannn

ttattaa!tx
 (4-14)

From the above equations, we have ()itxa =0 and () ()i
k

k tx
k

a
!

1= for k=1,2,…,∞.

Thus, (4-11) can be rewritten as

 () () ()() () ()
() () () LL

&&
& +−++−+−+= n

i
i

n

i
i

iii tt
n

tx
tt

tx
tttxtxtx

!!
2

2
 (4-15)

Let t=ti+1, we have

() () ()() () ()

() () () LL

L
&&

&

+−++

+−+−+=

+

+++

n
ii

i
n

ii
i

iiiii

tt
n

tx

tt
tx

tttxtxtx

1

2
111

2

!

!
 (4-16)

i.e.,

() () () ()

() ()2

1
2

1

2

hOhxtfx

h
n

xtf
h

xtf
hxtfxx

iii

nii
n

ii
iiii

++=

+++
′

++=
−

+

,
!

,

!

,
, LL

 (4-17)

where

NCTU Department of Electrical and Computer Engineering 2015 Spring Course
<Dynamic System Simulation and Implementation> by Prof. Yon-Ping Chen

4-3

 () () () ()
LL +++

′
=

−
nii

n
ii h

n

xtf
h

xtf
hO

!

,

!

, 1
22

2
 (4-18)

Comparing (4-17) with (4-10), we know that the term ()2hO is the error of Euler

formula, which is proportional to h2.

In order to reduce the error to h3, we further modify Euler form (4-10) as below:

 () ()hxhtfxtf
h

xx δγββ +++=
−+

iiii
ii , , 10

1 , (4-19)

where β0, β1, γ and δ are variables to be determined. Since ()()txtf , depends on x(t)

and t, its Taylor’s expansion at x(t)=xi and t=ti can be expressed as

()() () ()() () ()()()

()() () () ()()iittxitttixx

iitxittixit

xtxttattaxtxa

ttxtxattaxtxattaaty,tf

−−+−+−+

−−+−+−+−+=
232

2
0

 () ()() ()() L+−+−−+ 32 ixxxiitxx xtxaxtxtta (4-20)

where all the coefficients a0, at, ax, att, atx … are constant. The partial derivatives of

()()txtf , are

()() ()()

() ()() ()
() ()() ()() L+−+−−+

−+−+−+=
∂

∂=

2

2

2

32

itxxiittx

itttitxittt

t

xtxaxtxtta

ttaxtxattaa

t

tx,tf
tx,tf

 (4-21)

()() ()()
()

() ()() ()
() ()() ()() L+−+−−+

−+−+−+=

∂
∂=

2

2

32

2

ixxxiitxx

ittxixxitxx

x

xtxaxtxtta

ttaxtxattaa

tx

txtf
txtf

,
,

 (4-22)

()() ()() ()()

() ()() L+−+−⋅+=
∂

∂
=

∂
∂=

ittxittttt

t
tt

xtxattaa
t

txtf

t

txtf
tytf

2232

2

2 ,,
,

 (4-23)

()() ()()

()
()()

() ()() L+−+−+=
∂

∂
=

∂∂
∂=

itxxittxtx

x
tx

xtxattaa

t

txtf

ttx

txtf
tytf

22

2 ,,
,

 (4-24)

()() ()()

()()
()()

()
() ()() L+−⋅+−+=

∂
∂

=
∂

∂=

ixxxitxxxx

x
xx

xtxattaa

tx

txtf

tx

txtf
txtf

2322

2

2 ,,
,

 (4-25)

Clearly, all the coefficients can be derived from the above partial derivatives and

expressed as

NCTU Department of Electrical and Computer Engineering 2015 Spring Course
<Dynamic System Simulation and Implementation> by Prof. Yon-Ping Chen

4-4

 ()ii xtfa ,=0 , ()iitt xtfa ,= , ()iixx xtfa ,= ,

 ()iitttt xtfa ,
!2

1= , ()iitxtx xtfa ,= , ()iixxxx xtfa ,
!2

1= , ….

Substituting them into (4-20) yields

 ()() () ()() () ()() ()()2

2

1
iiittiiixiiitii ttx,tf

!
xtxx,tfttx,tfx,tftx,tf −+−+−+=

()() ()() () ()()

()() () ()() L+−+−+

−+−−+

33

2

3

1

3

1

2

1

iiixxxiiittt

iiixxiiiitx

xtxx,tf
!

ttx,tf
!

xtxx,tf
!

xtxttx,tf
 (4-26)

Let t=ti+γh and x(t)=xi+δh, then

()
() () () ()

() () ()3222

22

,
2

1
 ,

 ,
2

1
 , , ,

hOxtfhxtfh

xtfhxtfhxtfhxtf

hxhtf

xxtx

ttxt

+++

+++=

++

iiii

iiiiiiii

ii ,

δγδ

γδγ

δγ

 (4-27)

Hence, (4-19) can be rearranged and rewritten as

() ()[] () ()[]

() () ()[]
()4

2
11

2
1

3

11

2

101

,3,6,3
3

,2,2
2

 ,

hO

xtfxtfxtf
!

h

xtfxtf
!

h
xtfhxx

iixxiitxiitt

iixiitiiii

+

+++

++++=+

δβγδβγβ

δβγβββ

 (4-28)

If we want to take the precision to h2, from (4-17) and (4-28) we have

() () ()
() ()[]

() ()[] ()3
11

2

10

32
1

,2,2
2

 ,

2

hOxtfxtf
!

h

xtfhx

hOh
!

x,tf
hx,tfxx

iixiit

iii

ii
iiii

+++

++≈

+
′

++≈+

δβγβ

ββ (4-29)

Since () ()iii xtftx ,=& , the term ()ii x,tf ′ can be changed into the following form:

() () () ()

() () ()iiiixiit

iiixiitii

xtfxtfxtf

txxtfxtfxtf

,,,

,,,

+=
+=′ &

 (4-30)

As a result, from (4-29) and (4-30) we obtain

() () () ()()

() ()[] () ()[]iixiitii

iiiixiitii

xtfxtf
!

h
xtfh

xtfxtfxtf
!

h
hx,tf

,2,2
2

 ,

,,,
2

11

2

10

2

δβγβββ +++=

++
 (4-31)

NCTU Department of Electrical and Computer Engineering 2015 Spring Course
<Dynamic System Simulation and Implementation> by Prof. Yon-Ping Chen

4-5

which leads to

 110 =+ ββ (4-32)

 () () () () ()iiiiiiiiii xtfxtfxtfxtfxtf xtxt , , , ,2,2 11 +=+ δβγβ (4-33)

From (4-33), wehave

 12 1 =γβ (4-34)

 ()ii xtf ,2 1 =δβ (4-35)

Since there are four variables β0, β1, γ and δ in three equations (4-32), (4-34) and

(4-35), the choice of these variables is not unique and commonly they are selected as

 ()ii xtf , ,1 ,
2

1
10 ==== δγββ (4-36)

That means the numerical solution (4-28) is chosen as

 () ()()ii xthfxhtf
h

xtf
h

xx ,
2

 ,
21 ++++=+ iiiiii , , (4-37)

which is called the second-order Runge-Kutta formula. For the convenience of

programming, the formula is often rearranged as below:

 ()101 2

1
kkxx ++=+ ii (4-38)

where

()
()




++⋅=
⋅=

01

0

 ,

kx,htfhk

xtfhk

ii

ii (4-39)

In case that a higher precision is required, we oftem employ the higher order

Runge-Kutta formula. For example, if a precision of h4 is needed, then the

fourth-order Runge-Kutta formula must be used, which is often given as

 ()32101 22
6

1
kkkkxx ++++=+ ii (4-40)

where

()

()









+⋅=






 ++⋅=








 ++⋅=⋅=

23
1

2

0
10

 ,
22

22
 ,

kx,tfhk

k
x,

h
tfhk

k
x,

h
tfhkx,tfhk

iiii

iiii

 (4-41)

This formula has been widely applied to a lot of applications in engineering due to its

simplicity and acceptable accuracy.

Next, let’s use an example to show the programming of the fourth-order

NCTU Department of Electrical and Computer Engineering 2015 Spring Course
<Dynamic System Simulation and Implementation> by Prof. Yon-Ping Chen

4-6

Runge-Kutta formula in MATLAB. Consider the following equation:

 () ()() () 1+−== txttxftx ,& , x(0)=0.5 (4-42)

and find the solution x(t) for t≥0, which can be solved as below:

 () 150 +−= −tetx . (4-43)

Now let’s apply the fourth-order Runge-Kutta formula to verify (4-43) with the step

size h=0.01. The precision is then in the order of h4=10−8. From (4-40), we have

 ()32101 22
6

1
kkkkxx ++++=+ ii (4-44)

where

() () ()

() ()() ()11

1
2

1
222

1
2

1
222

11,

2223

111
2

000
1

0

−+−=++−=+⋅=








 −+−=







+






 +−=






 ++⋅=








 −+−=







+






 +−=






 ++⋅=

−−=+−=⋅=

kxhkxh,kx,tfhk

k
xh

k
xh

k
x,

h
tfhk

k
xh

k
xh

k
x,

h
tfhk

xhxhxtfhk

iiii

iiii

iiii

iiii

The programming in MATLAB is given as below:

===
>> % Fourth order Runge-Kutta method
>> x0=0.5; h=0.01; % initial condition x(0)=0.5 and step size 0.01sec
>> k0=-h*(x0-1); k1=-h*(x0+k0/2-1); k2=-h*(x0+k1/2-1); k3=-h*(x0+k2-1);
>> x(1)=x0+(k0+2*k1+2*k2+k3)/6;
>> e(1)=x(1)-(-0.5*exp(-h)+1); % numerical error at t=h
>> t(1)=h;
>> for n=1:599 % total simulation time 6 sec
>> k0=-h*(x(n)-1); k1=-h*(x(n)+k0/2-1);
>> k2=-h*(x(n)+k1/2-1); k3=-h*(x(n)+k2-1);
>> x(n+1)=x(n)+(k0+2*k1+2*k2+k3)/6;
>> t(n+1)=(n+1)*h; % t-axis
>> e(n+1)=x(n+1)-(-0.5*exp(-t(n+1))+1); % numerical error
>> end
>> plot(t,x); xlabel(‘t’); ylabel(‘x(t)’)

0 1 2 3 4 5 6
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

t

x(
t)

NCTU Department of Electrical and Computer Engineering 2015 Spring Course
<Dynamic System Simulation and Implementation> by Prof. Yon-Ping Chen

4-7

>> plot(t,e); xlabel(‘t’); ylabel(‘e(t)’)

0 1 2 3 4 5 6
-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0
x 10

-11

t

e(
t)

===

From the above numerical results of error function e(t), it is true that the

precision is around 10−10 which is indeed less than h4(10−8). In MATLAB, some

instructions are provided to solve the differential equations, such as ode23 and ode45.

In fact, these instructions are also implemented by the Runge-Kutta method. Now,

let’s use the instruction ode23 to solve the system (4-42) and use the instruction ode45

to solve the system described as below:

 () ()() () ()tsinsintxtxtftx 1050., +−==& , x(0)=0.5 (4-45)

whose solution can not be expressed in closed form. The programming in MATLAB

is given in the following, which includes two m-files. The file first1.m is written for

(4-43) and solved by ode23. The file first2.m is written for (4-45) and solved by

ode45. Clearly, the result of (4-45) can not be expressed in closed form since it is

more complicated than the result of (4-43).

===
Create m-file: first1.m
function dx=first1(t,x)
dx=-x+1;

===
Create m-file: first2.m
function dx=first2(t,x)
dx=-x+0.5*sin(sin(10*t));

===
>> % key in the following instructions
>> [t,x]=ode23(@first1,[0:0.01:6],0.5)
>> plot(t,x); xlabel(‘t’); ylabel(‘x(t)’)

NCTU Department of Electrical and Computer Engineering 2015 Spring Course
<Dynamic System Simulation and Implementation> by Prof. Yon-Ping Chen

4-8

0 1 2 3 4 5 6
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

t

x(
t)

>> % key in the following instructions
>> [t,x]=ode45(@first2,[0:0.01:6],0.5)
>> plot(t,x); xlabel(‘t’); ylabel(‘x(t)’)

0 1 2 3 4 5 6
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

t

x(
t)

===

