NCTU Department of Electrical and Computer Engineger2015 Spring Course
<Dynamic System Simulation and Implementation> lyf.PYon-Ping Chen

4. Runge-Kutta Formula For Differential Equations

To solve the differential equations numericallyg thost useful formula is called

Runge-Kutta formula which has been widely usedumerical analysis.

For a dynamic system without input, it is generakpressed as the following
first-order differential equation:

x(t) = £ (t,x(t)), x(t)=a (4-1)
wheret=t, is the initial time an(t,)=a is the initial condition. The problem to solve
x(t) in (4-1) fort>t, is called the initial value problem, or IVP in &fti For example,
the following equation

x(t) = -x(t) +t, x(0)=1 (4-2)
is an IVP and its solution can be obtained in ald®em as below:

x(t)=2e" +t -1, t>0 (4-3)
However, if (4-1) is more complicated, such as

x(t) = —-x2(t) +t Gin(t), x(0)=1 (4-4)
then it is impossible to find the soluticat) in closed form. Hence, it is required to

solve (4-4) in a numerical method.

The simplest numerical method is called the Ewemiila, which was propsed
by Euler in 1768. With the use of fixed grid siZg=h, the grid points along are

denoted a, t;, t,,... in order, where

t, =ty +ith, i=1,2,3,...... (4-5)
and the value(t) att; is defined as

x =x{t,), i=0,1,2,3,...... (4-6)
where the initial value,=x(t;)=a is known. According to the definition of derivagiv
we have

x(t) = H%W’ (4-7)

which implies the derivative of(t) att=t; can be approximately expressed as
s(t,) = x(t, +4t)-xt,) - X(t..) - (t,) —XaTX (4-8)
Ot h h
Substituting (4-8) into (4-1) att; leads to

4-1

NCTU Department of Electrical and Computer Engineger2015 Spring Course
<Dynamic System Simulation and Implementation> lyf.PYon-Ping Chen

S A= £ ,x), X=a (4-9)

and then
Xy =% +hOf (ti ,xi), Xo=a (4-10)
which is the famous Euler formula. Clearly, if wg to achieve a solution more

precisely, the grid sizle should be chosen as small as possible. Howedrcirgg the

grid sizeh is inefficient since the cost of calculation timay increase tremendously.

Now, let’s introduce Taylor's expansion to expldive error caused by Euler
formula (4-10). According to Taylor’s expansiorfuactionx(t) continuous at=t; can
be expressed as

xt)=a, +ayt -t)+at-t)+ +a,ft-t) + (4-11)

whose higher order derivatives are

)'((t): a +2a2(t_ti)+3a3(t_ti)2 """"'nan(t_ti)n_1 *ee (4-12)

W)=2a,+32a -t)+ aBa, -t f e (4-13)
+.-+n(n-2a,(t-t)% +--

X(t)=3a, +4B2a,(t-t,)+5@Ba(t -t) +-- (4-14)

+--+n(n-1(n-2)a,(t-t,)"> +--

From the above equations, we hasg = x(ti) and a, :k—l'x(")(ti) for k=1,2,...90.

Thus, (4-11) can be rewritten as

=)+ x-Sy s

Let t=t,,,, we have

) =)+) 1)+ X -

(4-16)
x"(t,) "
toeet nl (ti+1_ti) +
i.e.,
_ f'(ti ’Xi) 2 f (n_l)(ti 'Xi) n
Xigg =% + f(ti,xi)h+ o h*+...+ o h (4-17)
=x + 1 ,xi)h+O(h2)
where

4-2

NCTU Department of Electrical and Computer Engineger2015 Spring Course
<Dynamic System Simulation and Implementation> lyf.PYon-Ping Chen

1 (n—l)
O(hz):Mhz +...+mhn+... (4-18)
2 n!
Comparing (4-17) with (4-10), we know that the tem(hz) is the error of Euler

formula, which is proportional to?.

In order to reduce the error g we further modify Euler form (4-10) as below:
B2 = B f(x)* B Hhx), (4-19)

where/f, [, yandod are variables to be determined. Sint(l,x(t)) depends om(t)

andt, its Taylor’s expansion &(t)=x andt=t; can be expressed as

Ftylt) =2 +a t-t)+a (xt)-x)+a,(t-t) +a,(xt)-x)t -t)
+a,(x(t)-x] +a, (t-t) +a,t-t) (xt)-x)
+ 8 (=1)(X(t) = %) + @ (X(t) = x) + - (4-20)
where all the coefficients,, a, a,, a, ax ... are constant. The partial derivatives of
f(t,x(t) are
(1) = 200
=a, +2a,(t -t) +a,(x(t) - x) +3a,(t-t)’ (4-21)
+ 28, (=1 Jx{t) = %)+ @ (X(t) = x)+
o) =2
=a.t atx(t -t)+ 2axx(x(t)_ X)+attx (t -t)2 (4-22)
23, =1 Jot)~)+ 3 () -) + -
fo(ty) =2 égtt o)) _ ot (ta,tx(t)) -
= 2a, +3[2a, (t -1)+ Zanx(x(t)_ Xi)+"'
=2) _an)
= 8y +2attx(t -t)+ 2atxx(x(t)_ X;)+
o)y = 92T x(e) _ of, (¢ x(t)
S R W () (4-25)
=2a, +2a,(t -t)+32a,, (x({t)- x)+

Clearly, all the coefficients can be derived frohe tabove partial derivatives and

expressed as

4-3

NCTU Department of Electrical and Computer Engineger2015 Spring Course
<Dynamic System Simulation and Implementation> lyf.PYon-Ping Chen

q = f(ti 'Xi)’ a = ft(ti ’Xi)' a, = fx(ti 'Xi)'
1 1
attZEftt(ti'Xi)’ atxzftx(ti’xi)' axx:Efxx(ti'Xi)"”

Substituting them into (4-20) yields
f (t,X(t)) = f (ti X)+ f, (ti X)(t -t)+ fx(ti X)(X(t)_ X)+% fy (ti X)(t -t)2
+ o (ti X)(t -t)(X(t) =%) +% fr (ti X)(X(t) - X)2

1 1 (4-26)
3 3
+§ fe (ti %)(t _ti) +§ fxxx(ti %)(X(t)_xi) to
Let t=t+yh andx(t)=x+dh, then
f(ti +)h, X +d“)
= 1x)+ o) end xS) @)
+h e, (4,)"’%hzé_z Flti X)+O(h3)
Hence, (4-19) can be rearranged and rewritten as
h2
Xa =% +h[(By + B)F . x)]+ (2804, x) + 288, (6 %)
3
+ %[sﬁlyz folty x)+ 6808, (1,%) +380° (0 x)]| (4-28)

+o(h*)
If we want to take the precision b, from (4-17) and (4-28) we have
X, =x+f&mw+i%%Qm+o®ﬂ
=x +h[(8, + B)(t,x)] (4-29)
+E[2ﬂ1yf(%)+ 28,4, %)]+ o)

Since)‘((ti): 1‘(ti X) the term '(t,,x,) can be changed into the following form:

f'(ti’xi)z ft(ti’xi)+ fx(ti’xi)X(ti)

=)+ 1, 6% 1) =0
As a result, from (4-29) and (4-30) we obtain
f(ti ’Xi)h+h_|2(ft(ti ’Xi)+ fx(ti’xi)f (ti ’Xi))
2 (4-31)

=hl(B, + 8,) T (t:,)]+—[2ﬁ1yft(t X)+ 28,4, [t x)]

4-4

NCTU Department of Electrical and Computer Engineger2015 Spring Course
<Dynamic System Simulation and Implementation> lyf.PYon-Ping Chen

which leads to
Botp =1 (4-32)
284 (t x)+ 28,4, (t, %) = f.(t,,x)+ f.(t,x)ft,x) (4-33)
From (4-33), wehave
2By=1 (4-34)
28,6= f(t,,x) (4-35)
Since there are four variablgs, £, yand o in three equations (4-32), (4-34) and

(4-35), the choice of these variables is not unigug commonly they are selected as
1
Bo=B=3, V=1 5= ft,x) (4-36)
That means the numerical solution (4-28) is ch@sen

X =X +gf(t. x.)+gf(ti +h,x +hf(t;,x), (4-37)

which is called the second-order Runge-Kutta foemufor the convenience of

programming, the formula is often rearranged asvel

Xig =X +%(ko + kl) (4-38)
where
o =nCr () w0
k, =hCF(t, +h,x +k,)

In case that a higher precision is required, wesroftemploy the higher order
Runge-Kutta formula. For example, if a precision f is needed, then the

fourth-order Runge-Kutta formula must be used, Wicoften given as

xﬂ=x,+%&0+mg+2@+kg (4-40)

where

kothf(ti,X-), kl:th(t_+_,x_+ﬁj

n ok (4-41)
k2=hm(n+§xfh§} k, =hOF(t ,x +k,)

This formula has been widely applied to a lot gblagations in engineering due to its

simplicity and acceptable accuracy.

Next, let's use an example to show the programnohghe fourth-order

4-5

NCTU Department of Electrical and Computer Engineger2015 Spring Course
<Dynamic System Simulation and Implementation> lyf.PYon-Ping Chen

Runge-Kutta formula in MATLAB. Consider the follomg equation:
x(t) = £(x(t).t) = -x(t) +1, x(0)=0.5 (4-42)
and find the solutiom(t) for t=0, which can be solved as below:
x(t) =-05e" +1 (4-43)
Now let's apply the fourth-order Runge-Kutta formub verify (4-43) with the step
sizeh=0.01. The precision is then in the ordehtf10®. From (4-40), we have

X=X + % (k, + 2k, +2k, +k,) (4-44)

where

>> % Fourth order Runge-Kutta method

>> x0=0.5; h=0.01; % initial condition x(0)=0ahid step size 0.01sec
>> k0=-h*(x0-1); k1=-h*(x0+k0/2-1); k2=-h*(x0+k1/4); k3=-h*(x0+k2-1);
>> X(1)=x0+(k0+2*k1+2*k2+k3)/6;

>> e(1)=x(1)-(-0.5*exp(-h)+1); % numerical ermart=h

>>t(1)=h;
>>for n=1:599 % total simulation time 6 sec
>> kO=-h*(x(n)-1); k1=-h*(x(n)+k0/2-1);

>> k2=-h*(x(n)+k1/2-1); k3=-h*(x(n)+k2-1);
>> x(n+1)=x(n)+(k0+2*k1+2*k2+k3)/6;

>> t(n+1)=(n+1)*h; % t-axis
>> e(n+1)=x(n+1)-(-0.5*exp(-t(n+1))+1); % nuriwal error
>> end

>> plot(t,x); xlabel(‘'t"); ylabel("x(t)")

1

0.95
0.9
0.85}
0.8
£ 0.75¢
0.7}
0.65
0.6

0.55-

0.5

4-6

NCTU Department of Electrical and Computer Engineger2015 Spring Course
<Dynamic System Simulation and Implementation> lyf.PYon-Ping Chen

>> plot(t,e); xlabel(‘t)); ylabel(‘e(t)’)

0

-0.2

041

-0.6

-0.81

e(t)

1k

-1.2¢

L4t

-1.6

From the above numerical results of error functeft), it is true that the
precision is around 18 which is indeed less tha’(10®). In MATLAB, some
instructions are provided to solve the differenéiquations, such as odea@Bd_ode45

In fact, these instructions are also implementedhsy Runge-Kutta method. Now,

let’s use the instruction ode28 solve the system (4-42) and use the instruciten5

to solve the system described as below:

x(t) = £ (t,x(t)) = -x(t) + 0.5sin(sim.0x), x(0)=0.5 (4-45)
whose solution can not be expressed in closed foha.programming in MATLAB
is given in the following, which includes two md8d. The file firstl.m is written for
(4-43) and solved by ode23he file first2.m is written for (4-45) and sotvéy
ode45 Clearly, the result of (4-45) can not be exprdsseclosed form since it is

more complicated than the result of (4-43).

Create m-file: firstl.m
function dx=first1(t,x)
dx=-x+1;

Create m-file: first2.m
function dx=first2(t,x)
dx=-x+0.5*sin(sin(10%*));

>> % key in the following instructions
>> [t,x]=ode23(@first1,[0:0.01:6],0.5)
>> plot(t,x); xlabel(‘'t"); ylabel("x(t)")

4-7

NCTU Department of Electrical and Computer Engineger2015 Spring Course
<Dynamic System Simulation and Implementation> lyf.PYon-Ping Chen

>> % key in the following instructions
>> [t,x]=ode45(@first2,[0:0.01:6],0.5)
>> plot(t,x); xlabel('t"); ylabel("x(t)")

0.6

x(t)

0.1 1 1 1 1 1
0

4-8

