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4. Runge-Kutta Formula For Differential Equations 

To solve the differential equations numerically, the most useful formula is called 

Runge-Kutta formula which has been widely used in numerical analysis. 

For a dynamic system without input, it is generally expressed as the following 

first-order differential equation: 

 ( ) ( )( )txtftx ,=& ,     x(t0)=α (4-1) 

where t=t0 is the initial time and x(t0)=α is the initial condition. The problem to solve 

x(t) in (4-1) for t>t0 is called the initial value problem, or IVP in brief. For example, 

the following equation 

 ( ) ( ) ttxtx +−=& ,     x(0)=1 (4-2) 

is an IVP and its solution can be obtained in closed form as below: 

 ( ) 12 −+= − tetx t ,     t≥0 (4-3) 

However, if (4-1) is more complicated, such as 

 ( ) ( ) ( )tsinttxtx ⋅+−= 2
& ,     x(0)=1 (4-4) 

then it is impossible to find the solution x(t) in closed form. Hence, it is required to 

solve (4-4) in a numerical method. 

The simplest numerical method is called the Euler formula, which was propsed 

by Euler in 1768. With the use of fixed grid size ∆t=h, the grid points along t are 

denoted as t0, t1, t2,… in order, where 

 hitt ⋅+= 0i ,    i=1,2,3,…… (4-5) 

and the value x(t) at ti is defined as  

 ( )ii txx = ,    i=0,1,2,3,…… (4-6) 

where the initial value x0=x(t0)=α is known. According to the definition of derivative, 

we have 

 ( ) ( ) ( )
t

txttx
limtx
t ∆

∆
∆

−+=
→0

& , (4-7) 

which implies the derivative of x(t) at t=ti can be approximately expressed as 

 ( ) ( ) ( ) ( ) ( )
h

xx

h

txtx

t

txttx
tx iiiiii
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=
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≈ ++ 11

∆
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&  (4-8) 

Substituting (4-8) into (4-1) at t=ti leads to 
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 ( )ii
ii x,tf

h

xx
≈

−+1 ,     x0=α (4-9) 

and then  

 ( )ii xtfhxx ,ii ⋅+=+1 ,     x0=α (4-10) 

which is the famous Euler formula. Clearly, if we try to achieve a solution more 

precisely, the grid size h should be chosen as small as possible. However, reducing the 

grid size h is inefficient since the cost of calculation time may increase tremendously. 

Now, let’s introduce Taylor’s expansion to explain the error caused by Euler 

formula (4-10). According to Taylor’s expansion, a function x(t) continuous at t=ti can 

be expressed as 

 ( ) ( ) ( ) ( ) LL +−++−+−+= n
inii ttattattaatx 2

210  (4-11) 

whose higher order derivatives are 

 ( ) ( ) ( ) ( ) LL& +−++−+−+= −12
321 32 n

inii ttnattattaatx  (4-12) 
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 (4-13) 

 
( ) ( ) ( )

( )( ) ( ) LL

L&&&

+−−−++

+−⋅⋅+−⋅⋅+=
−3

2
543

21                                    

3452343
n

in

ii

ttannn

ttattaa!tx
 (4-14) 

From the above equations, we have ( )itxa =0  and ( ) ( )i
k

k tx
k

a
!

1=  for k=1,2,…,∞. 

Thus, (4-11) can be rewritten as 
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 (4-15) 

Let t=ti+1, we have 
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i.e., 
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 (4-17) 

where 
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 ( ) ( ) ( ) ( )
LL +++

′
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−
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n
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n

xtf
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!

,

!

, 1
22

2
 (4-18) 

Comparing (4-17) with (4-10), we know that the term ( )2hO  is the error of Euler 

formula, which is proportional to h2. 

In order to reduce the error to h3, we further modify Euler form (4-10) as below: 

 ( ) ( )hxhtfxtf
h

xx δγββ +++=
−+

iiii
ii  , , 10

1 , (4-19) 

where β0, β1, γ and δ are variables to be determined. Since ( )( )txtf ,  depends on x(t) 

and t, its Taylor’s expansion at x(t)=xi and t=ti can be expressed as 
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 ( ) ( )( ) ( )( ) L+−+−−+ 32                  ixxxiitxx xtxaxtxtta  (4-20) 

where all the coefficients a0, at, ax, att, atx … are constant. The partial derivatives of 

( )( )txtf ,  are 
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Clearly, all the coefficients can be derived from the above partial derivatives and 

expressed as  
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 ( )ii xtfa ,=0 , ( )iitt xtfa ,= , ( )iixx xtfa ,= , 

 ( )iitttt xtfa ,
!2

1= , ( )iitxtx xtfa ,= , ( )iixxxx xtfa ,
!2

1= , …. 

Substituting them into (4-20) yields 
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Let t=ti+γh and x(t)=xi+δh, then 
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Hence, (4-19) can be rearranged and rewritten as 
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If we want to take the precision to h2, from (4-17) and (4-28) we have 
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Since ( ) ( )iii xtftx ,=& , the term ( )ii x,tf ′  can be changed into the following form: 
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As a result, from (4-29) and (4-30) we obtain 

 
( ) ( ) ( ) ( )( )

( ) ( )[ ] ( ) ( )[ ]iixiitii

iiiixiitii

xtfxtf
!

h
xtfh

xtfxtfxtf
!

h
hx,tf

,2,2
2

   ,

,,,
2

11

2

10

2

δβγβββ +++=

++
 (4-31) 



NCTU Department of Electrical and Computer Engineering 2015 Spring Course 
<Dynamic System Simulation and Implementation> by Prof. Yon-Ping Chen 

 

4-5 

which leads to 

 110 =+ ββ  (4-32) 

 ( ) ( ) ( ) ( ) ( )iiiiiiiiii xtfxtfxtfxtfxtf xtxt  , , , ,2,2 11 +=+ δβγβ  (4-33) 

From (4-33), wehave 

 12 1 =γβ  (4-34) 

 ( )ii xtf  ,2 1 =δβ  (4-35) 

Since there are four variables β0, β1, γ and δ in three equations (4-32), (4-34) and 

(4-35), the choice of these variables is not unique and commonly they are selected as 

 ( )ii xtf  ,    ,1    ,
2

1
10 ==== δγββ  (4-36) 

That means the numerical solution (4-28) is chosen as 

 ( ) ( )( )ii xthfxhtf
h

xtf
h

xx ,
2

 ,
21 ++++=+ iiiiii , , (4-37) 

which is called the second-order Runge-Kutta formula. For the convenience of 

programming, the formula is often rearranged as below:  

 ( )101 2

1
kkxx ++=+ ii  (4-38) 

where 
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In case that a higher precision is required, we oftem employ the higher order 

Runge-Kutta formula. For example, if a precision of h4 is needed, then the 

fourth-order Runge-Kutta formula must be used, which is often given as 

 ( )32101 22
6

1
kkkkxx ++++=+ ii  (4-40) 
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 (4-41) 

This formula has been widely applied to a lot of applications in engineering due to its 

simplicity and acceptable accuracy. 

Next, let’s use an example to show the programming of the fourth-order 



NCTU Department of Electrical and Computer Engineering 2015 Spring Course 
<Dynamic System Simulation and Implementation> by Prof. Yon-Ping Chen 

 

4-6 

Runge-Kutta formula in MATLAB. Consider the following equation: 

 ( ) ( )( ) ( ) 1+−== txttxftx ,& ,     x(0)=0.5 (4-42) 

and find the solution x(t) for t≥0, which can be solved as below: 

 ( ) 150 +−= −tetx .  (4-43) 

Now let’s apply the fourth-order Runge-Kutta formula to verify (4-43) with the step 

size h=0.01. The precision is then in the order of h4=10−8. From (4-40), we have 

 ( )32101 22
6

1
kkkkxx ++++=+ ii  (4-44) 
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The programming in MATLAB is given as below: 

=================================================== 
>> % Fourth order Runge-Kutta method 
>> x0=0.5; h=0.01;    % initial condition x(0)=0.5 and step size 0.01sec 
>> k0=-h*(x0-1); k1=-h*(x0+k0/2-1); k2=-h*(x0+k1/2-1); k3=-h*(x0+k2-1); 
>> x(1)=x0+(k0+2*k1+2*k2+k3)/6; 
>> e(1)=x(1)-(-0.5*exp(-h)+1);    % numerical error at t=h 
>> t(1)=h; 
>> for n=1:599   % total simulation time 6 sec 
>>    k0=-h*(x(n)-1);  k1=-h*(x(n)+k0/2-1); 
>>    k2=-h*(x(n)+k1/2-1); k3=-h*(x(n)+k2-1); 
>>    x(n+1)=x(n)+(k0+2*k1+2*k2+k3)/6; 
>>    t(n+1)=(n+1)*h;      % t-axis 
>>    e(n+1)=x(n+1)-(-0.5*exp(-t(n+1))+1);   % numerical error 
>> end 
>> plot(t,x); xlabel(‘t’); ylabel(‘x(t)’) 
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>> plot(t,e); xlabel(‘t’); ylabel(‘e(t)’) 
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=========================================================== 

From the above numerical results of error function e(t), it is true that the 

precision is around 10−10 which is indeed less than h4(10−8). In MATLAB, some 

instructions are provided to solve the differential equations, such as ode23 and ode45. 

In fact, these instructions are also implemented by the Runge-Kutta method. Now, 

let’s use the instruction ode23 to solve the system (4-42) and use the instruction ode45 

to solve the system described as below: 

 ( ) ( )( ) ( ) ( )tsinsintxtxtftx 1050., +−==& ,     x(0)=0.5 (4-45) 

whose solution can not be expressed in closed form. The programming in MATLAB 

is given in the following, which includes two m-files. The file first1.m is written for 

(4-43) and solved by ode23. The file first2.m is written for (4-45) and solved by 

ode45. Clearly, the result of (4-45) can not be expressed in closed form since it is 

more complicated than the result of (4-43). 

========================================= 
Create m-file: first1.m  
function dx=first1(t,x) 
dx=-x+1; 

========================================= 
Create m-file: first2.m  
function dx=first2(t,x) 
dx=-x+0.5*sin(sin(10*t)); 

========================================= 
>> % key in the following instructions 
>> [t,x]=ode23(@first1,[0:0.01:6],0.5) 
>> plot(t,x); xlabel(‘t’); ylabel(‘x(t)’) 
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>> % key in the following instructions 
>> [t,x]=ode45(@first2,[0:0.01:6],0.5) 
>> plot(t,x); xlabel(‘t’); ylabel(‘x(t)’) 
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===================================================== 


