3. Simulation of DC Motor

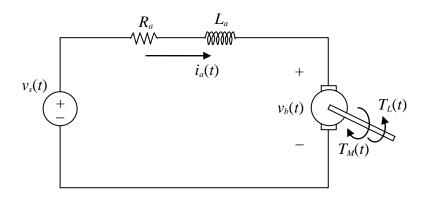


Figure 3-1

The dynamic model of a DC motor, depicted in Figure 3-1, has been derived to contain the electrical part:

$$R_a i_a(t) + L_a \frac{di_a(t)}{dt} + k\omega(t) = v_s(t)$$
(3-1)

and the mechanical part:

$$J_M \dot{\omega}(t) + B_M \omega(t) - ki_a(t) = -T_L(t) \tag{3-2}$$

$$\dot{\theta}(t) = \omega(t) \tag{3-3}$$

where $i_a(t)$ is the armature current, $v_s(t)$ is the voltage source, $\omega(t)$ and $\theta(t)$ is the angular velocity and position of the rotor, and $T_L(t)$ the external torque from payload. In practice, the motor is connected to a transmitting device and then a payload. For example, the dynamic model of the payload can be a rotary structure described as

$$J_L \dot{\omega}_L(t) + B_L \omega_L(t) = T_L'(t) \tag{3-4}$$

$$\dot{\theta}_L(t) = \omega_L(t) \tag{3-5}$$

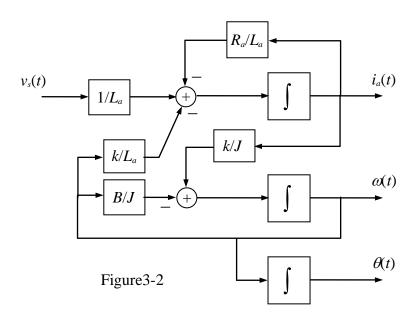
where the torque $T'_L(t)$ comes from the shaft of a transmittig device and is assumed satisfying

$$T_L(t) - T'(t) = K_s(\theta(t) - \theta_L(t)) + B_s(\omega(t) - \omega_L(t))$$
(3-6)

For simplicity, let the payload strictly stick to the motor, i.e., $\theta_L(t) = \theta(t)$ and $\omega_L(t) = \omega(t)$. Then, $T_L(t) = T'(t)$ and from (3-2) and (3-4) we have

$$J\dot{\omega}(t) + B\omega(t) - ki_a(t) = 0 \tag{3-7}$$

where $J = J_M + J_L$ and $B = B_M + B_L$. Next, we will use (3-1), (3-7) and (3-3) as the dynamic model of the DC motor in simulation.



To simulate the dynamic behavior of the DC motor, we have to rewrite (3-1), (3-7) and (3-3) as below:

$$\frac{di_a(t)}{dt} = -\frac{R_a}{L_a}i_a(t) - \frac{k}{L_a}\omega(t) + \frac{1}{L_a}v_s(t)$$
(3-8)

$$\dot{\omega}(t) = -\frac{B}{J}\omega(t) + \frac{k}{J}i_a(t) \tag{3-9}$$

$$\dot{\theta}(t) = \omega(t) \tag{3-10}$$

and Figure 3-2 shows the block diagram correspondingly. For demonstration, let's consider the following case: R_a =0.5 Ω , L_a =1.6×10⁻³ H, J=4×10⁻⁴ N-m/(rad/s²), k=0.05 V/(rad/s) and B=1.5×10⁻⁴ N-m/(rad/s), and simulate the DC motor in MATLAB Simulink with the block diagram in Figure 3-3. The simulation results of $i_a(t)$, $\omega(t)$ and $\theta(t)$ for initially idled DC motor with input $v_s(t)$ = V_s =1 V are given in Figure 3-4, where $i_a(t)$ and $\omega(t)$ finally approach I_a =0.0608 A and Ω =19.393 rad/s. Based on these results, is that possible to retrieve the motor parameters R_a , L_a , J, k and B?

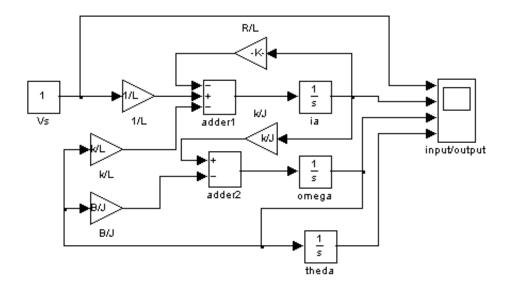


Figure 3-3

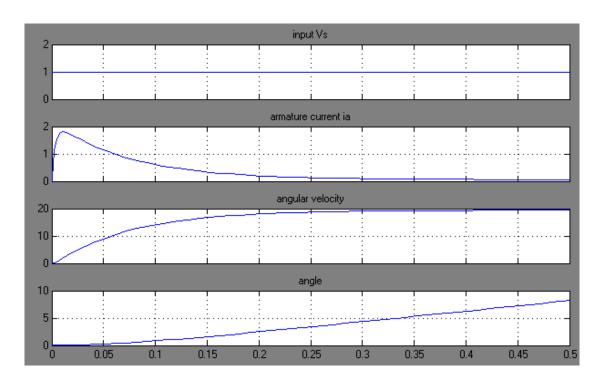


Figure 3-4

From (3-8) and (3-9), we knows that once the DC motor is in steady state, i.e., the motor rotates in a constant velocity $\omega(t)=\Omega$ and the armature current reaches a constant value $i_a(t)=I_a$. That implies the variations of $i_a(t)$ and $\omega(t)$ almost vanish and (3-8) and (3-9) become

$$0 = -\frac{R_a}{L_a} i_a(t) - \frac{k}{L_a} \omega(t) + \frac{1}{L_a} v_s(t)$$
 (3-11)

$$0 = -\frac{B}{J}\omega(t) + \frac{k}{J}i_a(t) \tag{3-12}$$

which result in $R_a I_a + k\Omega = V_s$ and $B\Omega - kI_a = 0$. Since $V_s = 1$ V, $I_a = 0.0608$ A and $\Omega = 19.393$ rad/s, we have $\frac{k}{B} = \frac{\Omega}{I_a} = 318.96$ and $k = \frac{V_s - R_a I_a}{\Omega} = 0.0516 - 0.0031R_a$.

Clearly, the parameters can not be obtained just from the simulation results.

In practice, we can simply measure the armature resistance R_a =0.5 Ω , and then obtain $k = 0.0516 - 0.0031R_a = 0.05005$ and $B = \frac{k}{318.96} = 1.57 \times 10^{-4}$, which are approximated to the values in simulation. As for the values of J, we have to simplify the model by neglecting the small inductanc L_a , i.e., (3-8) is changed into

$$0 = -R_a i_a(t) - k\omega(t) + v_s(t)$$
 (3-13)

and (3-9) is rewritten as

$$\dot{\omega}(t) = -\left(\frac{B}{J} + \frac{k^2}{JR_a}\right)\omega(t) + \frac{k}{JR_a}v_s(t)$$
(3-14)

That means the time constant of $\omega(t)$ is $\left(\frac{B}{J} + \frac{k^2}{JR_a}\right)^{-1}$. From the simulation result of $\omega(t)$, we can find the time constant is 0.078 sec, i.e., $\frac{B}{J} + \frac{k^2}{JR_a} = \frac{1}{0.078}$ which leads to $J = 0.078 \left(B + k^2/R_a\right) = 4.02 \times 10^{-4}$, near to the value in simulation as expected. The only term left to be determined is the small inductance L_a . Actually, in the spped control of DC motor, we do not care about the exact model and often employ the simplied mode (3-14), which is given as

$$\dot{\omega}(t) = -12.82 \,\omega(t) + 249 \,v_s(t) \tag{3-15}$$

It is easy to check that if $v_s(t)=1$ V then $\omega(t)$ reaches 19.422 rad/sec as t increases, which is near to the simulation result 19.393 rad/sec.