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2. Modeling of DC Motor 

The most common device used as an 

actuator in mechanical control is the DC 

motor. For example, the control of a rotary 

inverted pendulum requires a DC motor to 

drive the arm and the pendulum as shown in 

Figure 2-1.  

 

The system structure of a DC motor is depicted in Figure2-2, including the 

armature resistance Ra and winding leakage inductance La. According to the 

Kirchhoff’s voltage law, the electrical equation of the DC motor is described as 

  
 

   tvtv
dt

tdi
LtiR sb

a

aaa   (2-1) 

where ia(t) is the armature current, vb(t) is the back emf voltage and vs(t) is the voltage 

source. The back emf voltage vb(t) is proportional to the angular velocity (t) of the 

rotor in the motor, expressed as 

    tktv bb   (2-2) 

where bk  is the back emf constant. In addition, the motor generates a torque TM 

proportional to the armature current, given as 

+ 

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    tiktT aTM   (2-3) 

where Tk  is the torque constant.  

If the input voltage vs(t)=Vs is a constant, the resulted armature current ia(t)=Ia, 

angular velocity (t)= and torque TM(t)=T are also constant in the steady state. From 

(2-1) to (2-3), we have 

 sbaa VkIR    (2-4)

 aT IkT   (2-5) 

Under the conservation of power, we know that the input power IaVs is equal to the 

external power T and the power 2

aa IR  consumed in the resistance, i.e., 

 2

aaas IRTIV    (2-6) 

Substituting vs in (2-4) into (2-6) yields 

 ab IkT   (2-7) 

From (2-5) and (2-7), we know that both bT kk  and  are the same. From (2-2), we can 

rewrite (2-1) and (2-3) as 

  
 

   tvtk
dt

tdi
LtiR s

a

aaa    (2-8) 

    tkitT aM   (2-9) 

where bT kkk  . Besides, if the DC motor is used to drive an external torque TL(t) 

of payload then its mechanical behavior is described as 

 
 
       tTtTtBt

dt

td
J LMMM  


 (2-10) 

where JM is the rotor moment of inertia and BM is the frictional coefficient. 

Based on (2-8), (2-9) and (2-10), the dynamic equation of the DC motor can be 

expressed as 

 
 

     tvtktiR
dt

tdi
L saa

a

a    (2-11) 



NCTU Department of Electrical and Computer Engineering 2015 Spring Course 
<Dynamic System Simulation and Implementationon> by Prof. Yon-Ping Chen 

 

2-3 

 
 
       tTtkitBt

dt

td
J LaMM  


 (2-12) 

Note that the electrical time constant La/Ra is often neglected since it is at least one 

order in magnitude smaller than the mechanical time constant JM/BM. In other words, 

by neglecting the term 
 

dt

tdia , (2-11) becomes 

      t
R

k
tv

R
ti

a

s

a

a 
1

 (2-13) 

Substituting it into (2-12), we have 

 
 

       tv
RJ

k
tT

J
t

RJ

k

J

B
t

dt

td
s

aM

L

MaMM

M 











12




 (2-14) 

Clearly, the motor will encounter two external sources, the input voltage vs(t) to drive 

the motor and the torque TL(t) reacted from the payload.  

Now, based on the above analysis, let’s discuss the model of a DC motor in 

state-space description and input-output description. 

First, let’s consider the case which requires the DC motor to move in a constant 

speed. Then, the angular velocity is selected as the output, expressed as 

 y(t)=(t) (2-15) 

From (2-11) and (2-12) and choosing the state variables as x1(t)=ia(t) and x2(t)=(t), 

we have 

        tvtkxtxLtxR saa  211   (2-16) 

        tTtkxtxBtxJ LMM  122  (2-17) 

Further rearranging (2-15) to (2-17) yields the state equations 

        tv
L

tx
L

k
tx

L

R
tx s

aaa

a 1
211   (2-18) 

        tT
J

tx
J

B
tx

J

k
tx L

MM

M

M

1
212   (2-19) 

and the output equation 
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 y(t)= x2(t) (2-20) 

Hence, the state-space description is given as 

 State equation:      ttt BuAxx   (2-21) 

 Output equation:    tty cx  (2-22) 

where the state vector is  
 

 








tx

tx
t

2

1
x , the input vector is  

 

 








tT

tv
t

L

s
u , and the 

system matrices are 

























M

M

M

aa

a

J

B

J

k

L

k

L

R

A  , 























M

a

J

L

1
0

0
1

B  and  10c . Note 

that the state equation (2-21) can be rearranged as 

        tututt 2211 bbAxx   (2-23) 

where u1(t)=vs(t), u2(t)=TL(t), 









0

1
1

aL
b  and 












MJ1

0
2b . If the motor is 

operated without any payload TL(t), i.e., u2(t)=TL(t)=0, then the state equation (2-23) 

can be rewritten as 

      tutt bAxx   (2-24) 

where the input is u(t)= vs(t) and the input matrix is 









0

1 aL
b . 

If the goal of control is to drive the DC motor to a desired angle, not a speed, 

then the output should be set as the angular position      
t

dtty
0

 . To 

include the angulr possition, we often change the integral form    
t

dt
0

  into 

the differential form as below: 

    tt    (2-25) 

and choose the new state variable x3(t)=(t). As a result, the total system is changed 

into the state equations 
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        tv
L

tx
L

k
tx

L

R
tx s

aaa

a 1
211   (2-26) 

        tT
J

tx
J

B
tx

J

k
tx L

MM

M

M

1
212   (2-27) 

    txtx 23   (2-28) 

and the output equation 

 y(t)= x3(t) (2-29) 

In matrix form, we have 

 State equation:      ttt BuAxx   (2-30) 

 Output equation:    tty cx  (2-31) 

where  

  
 
 
 

















tx

tx

tx

t

3

2

1

x ,  
 

 








tT

tv
t

L

s
u , 

 























010

0

0

MMM

aaa

JBJk

LkLR

A , 



















00

10

01

M

a

J

L

B ,  100c . 

Similarly, without any payload TL(t), the state equation (2-30) can be expressed as 

      tutt bAxx   (2-32) 

where the input is u(t)= vs(t) and the input matrix is 

T

aL








 00

1
b . 

Now let’s consider the following numerical example of a DC motor with 

parameters Ra=0.5, La=1.510 H, JM=2.510 N-m/(rad/s2), kT=0.05 N-m/A, 

kb=0.05 V/(rad/s) and BM=1.010 N-m/(rad/s). Without any payload TL(t), the motor 

is described by (2-32) and listed as below: 
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 
 

 

 
 

 

 tu

.

t

tx

tx

tx

.

..

t

tx

tx

tx


























































































  








bxAx

0

0

67666

010

0400200

0333333333

3

2

1

3

2

1

 (2-33) 

where x1(t)=ia(t), x2(t)=(t), x3(t)=(t) and u(t)=vs(t). If the output is x3(t)=(t), then 

    
 
 
 

















tx

tx

tx

ty

3

2

1

100


c

 (2-34) 

Based on (2-33) and (2-34), let’s find the input-output description of the DC motor. 

First, let’s determine the characteristic polynomial of the DC motor from (2-33), 

which is obtained as 

       s.s.s

s

.s

..s

s 33679973333

10

0400200

0333333333
23 







 AI  (2-35) 

According to the Cayley-Hamilton theory, we know that 

 0AAA  33679973333 23 ..  (2-36) 

After calculating the following terms 

 
     

   tu..

ty.ty.ty

bcAxAAAc
223 33679973333

33679973333



 
 (2-37) 

we have the input-output description as below: 

        tuty.ty.ty 13333433679973333    (2-38) 

where 1333342 bcA . It is obvious that the transfer function is 

  
 
  s.s.ssU

sY
sH

33679973333

133334
23 

  (2-39) 

Moreover, it can be further decomposed as 

  
  933118021

133334

.s.ss
sH


  (2-40) 

which implies the pole at s311.93 can be omitted since it is much faster than the 

pole at s21.80. In other words, the transfer function H(s) can be approximated by a 
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second order transfer function Ha(s) expressed as 

  
  ssss

sH a














2
 (2-41) 

where  is near to 21.80. There are several methods to obtain the approximate transfer 

function Ha(s). One of the simplest one is to determine Ha(s) under the condition that  

 
 

 
 




0for       ,1

jH

jH

a

 (2-42) 

which leads to  

 
 

 

   
   
















0for       ,1
2

2

jsaaa
sHsH

sHsH

jH

jH
 (2-43) 

To adopt the condition, let’s rewrite the transfer function as 

  
 200014710049101

61019

s.s.s

.
sH


  (2-44) 

and choose the approximate transfer function as  

  
 ss

.
sH a




1

61019
 (2-45) 

Hecnce, we have 

 

   
   

 
 

 
 

 
482

4822

482

22

22

1016382002101

101638200210
1

1016382002101

1

00014710049101

1

00014710049101

1

s.s.

s.s.

s.s.

s

s.s.

s

s.s.

s

sHsH

sHsH

-

-

-

aa






























 (2-46) 

Clearly, between 
   
   sHsH

sHsH

aa 


 and 1, there exists an error 

  
 

482

4822

1016382002101

101638200210

s.s.

s.s.
sE

-

-







 (2-47) 

which is minimized when 0002102  .  or 04580. . From (2-45), the 

approximate transfer function is then obtained as 
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  
   8321

17428

045801

61019

.ss

.

s.s

.
sH a





  (2-48) 

which implies =21.83 near to 21.80 and =428.17 as shown in (2-41). 

The other one is just neglect the state variable x1(t)=ia(t) since the convergence 

rate of ia(t) is much faster than that of angular velocity x2(t)=(t). From (2-33), we 

assume that   01 tx  and then 

  
 

 
 
 

 tu

.

tx

tx

tx

.

..

tx

tx 









































































0

0

67666

010

0400200

03333333330

3

2

1

3

2



  (2-49) 

or 

       067666333333333 21  tu.tx.tx.  (2-50) 

      tx.txtx 212 400200   (2-51) 

    txtx 23   (2-52) 

From (2-50), we have 

      tutx.tx 210 21   (2-53) 

and substituting it into (2-51) becomes 

      tutx.tx 400420 22   (2-54) 

Hence, differentiating (2-52) yields 

            tutx.tutx.txtx 400420400420 3223    (2-55) 

Since y(t)=x3(t), we obtain 

      tuty.ty 400420    (2-56) 

and the approximate transfer function is 

  
 
   420

400

.sssU

sY
sH a


  (2-57) 

which is approximate to the one derived in (2-48). 

 


