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2. Modeling of DC Motor

pendulum

The most common device used as an
actuator in mechanical control is the DC

motor. For example, the control of a rotary

inverted pendulum requires a DC motor to
DC motor

drive the arm and the pendulum as shown in

Figure 2-1. Figure 2-1

Figure2-2

The system structure of a DC motor is depicted in Figure2-2, including the
armature resistance R, and winding leakage inductance L.. According to the
Kirchhoff’s voltage law, the electrical equation of the DC motor is described as

R0+ 1, B v 0= ) @2-1)
where i,(t) is the armature current, v,(t) is the back emf voltage and vq(t) is the voltage

source. The back emf voltage v,(t) is proportional to the angular velocity «(t) of the
rotor in the motor, expressed as

v, (t) =k, olt) (2-2)
where k, is the back emf constant. In addition, the motor generates a torque Ty

proportional to the armature current, given as

2-1



NCTU Department of Electrical and Computer Engineering 2015 Spring Course
<Dynamic System Simulation and Implementationon> by Prof. Yon-Ping Chen

Ty () =kei, () (2-3)

where k; is the torque constant.

If the input voltage vi(t)=Vs is a constant, the resulted armature current i,(t)=l,,
angular velocity o(t)=£2and torque Ty(t)=T are also constant in the steady state. From
(2-1) to (2-3), we have

R,I, +k, 2=V, (2-4)
T =k, (2-5)
Under the conservation of power, we know that the input power 1,V is equal to the

external power T2 and the power R_12 consumed in the resistance, i.e.,

VI, =TQ+RI? (2-6)
Substituting v; in (2-4) into (2-6) yields

T=k,1, (2-7)
From (2-5) and (2-7), we know that both k; and k, are the same. From (2-2), we can

rewrite (2-1) and (2-3) as

Ri.(1)+ La%(thkw(t):vs(t) 2-8)

Ty (t) = ki, (t) (2-9)
where k =k; =k, . Besides, if the DC motor is used to drive an external torque T(t)

of payload then its mechanical behavior is described as

2 ) 8, 0ft)=T, ()T, 0) @10)

where J,, is the rotor moment of inertia and By, is the frictional coefficient.

Based on (2-8), (2-9) and (2-10), the dynamic equation of the DC motor can be

expressed as

] %(th R.i. 1)+ kaoft)=v, (1) (2-11)

a
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3, 9 ) 8, 0f0) -1, 0)= 7. 0) @12)

Note that the electrical time constant L./R, is often neglected since it is at least one

order in magnitude smaller than the mechanical time constant Ju/By. In other words,
. di (t)
by neglecting the term TR (2-11) becomes

)= 2V, )=o) (2-13)

a a

Substituting it into (2-12), we have

dw(t)(t)+(BM K Jw(t):—%TL(tH K v, (t) (2-14)

+
dt J,  JuR,

Clearly, the motor will encounter two external sources, the input voltage vi(t) to drive

the motor and the torque T,(t) reacted from the payload.

Now, based on the above analysis, let’s discuss the model of a DC motor in

state-space description and input-output description.

First, let’s consider the case which requires the DC motor to move in a constant
speed. Then, the angular velocity is selected as the output, expressed as
y(H)=at) (2-15)
From (2-11) and (2-12) and choosing the state variables as x,(t)=i,(t) and X,(t)=a(t),
we have
R, X, (t)+ L%, (t)+kx, (t) = v, (t) (2-16)
I %, (t)+ By X, (t)—kx (t) = T, (t) (2-17)

Further rearranging (2-15) to (2-17) yields the state equations

oy R _k 1 i
x(t)= T X, (t) T xz(t)+—La v,(t) (2-18)
. K _ By 1 i
%t)= x0T (2-19)

and the output equation
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y(t)= X(t) (2-20)
Hence, the state-space description is given as
State equation: X(t)= Ax(t)+ Bu(t) (2-21)

Output equation: y(t)=cx(t) (2-22)

where the state vector is x(t):{:l(t)] the input vector is u(t):{vS (t)} and the
2

(t) T.(t)
=] LR
system matrices are A=| " o* |, B=| L | and c= [0 1]. Note
AT 0 - ——
Jy Jy Iy
that the state equation (2-21) can be rearranged as
x(t) = Ax(t)+byu, (t)+b,u,(t) (2-23)

where uy(t)=vi(t), u(t)=T.(t), blz{l/é'a} and b, :{_ ]/OJ } If the motor is

operated without any payload T,(t), i.e., u,(t)=T.(t)=0, then the state equation (2-23)
can be rewritten as
x(t) = Ax(t)+bu(t) (2-24)

L
where the input is u(t)= vi(t) and the input matrix is b = F/O a} :

If the goal of control is to drive the DC motor to a desired angle, not a speed,

then the output should be set as the angular position y(t):H(t):J:a)(r)dr. To

include the angulr possition, we often change the integral form 6(t) = _[; w(r)dz into

the differential form as below:
0(t) = wlt) (2-25)
and choose the new state variable x;(t)=&t). As a result, the total system is changed

into the state equations
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= _Ray ) K 1 .
X, (t)= » X, (t) L xz(t)+Lavs(t) (2-26)
AL SVAN - VA .
%t)= x0T (2-27)
X5(t) = X, (t) (2-28)

and the output equation
y(0)= xs(t) (2-29)
In matrix form, we have
State equation: X(t)= Ax(t)+ Bu(t) (2-30)
Output equation: y(t)=cx(t) (2-31)

where

~-R,/L, -k/L, O YL, 0
A=| k/J, -B,/J, 0|, B=| 0 -1J,| c=[0 0 1].
0 1 0 0 0

Similarly, without any payload T, (t), the state equation (2-30) can be expressed as
x(t) = Ax(t)+bu(t) (2-32)

.
where the input is u(t)= vi(t) and the input matrix is b:Li 0 O} :

a

Now let’s consider the following numerical example of a DC motor with
parameters R,=0.5Q2, L,=1.5x10° H, Jy=2.5x10"* N-m/(rad/s*), k:=0.05 N-m/A,
k,=0.05 V/(rad/s) and B,=1.0x10*N-m/(rad/s). Without any payload T, (t), the motor

is described by (2-32) and listed as below:
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x(t)] [-333.33 -33.33 0] [x(t)] [666.67

%(t)[=| 200 —040 O |x,(t)|+| 0 [-ult) (2-33)
x3(t) 0 1 0] xs(t) 0

K0 A EOR

where X, (t)=ia(t), X:()=a(t), X;()=t) and u(t)=v(t). If the output is x;(t)=At), then
yt)=[0 0 1]-| x,(t) (2-34)

Based on (2-33) and (2-34), let’s find the input-output description of the DC motor.

First, let’s determine the characteristic polynomial of the DC motor from (2-33),

which is obtained as

$+333.33 3333 O
|s| - A| =| —-200 s+0.40 0| =s®+333.73s* +6799.33s  (2-35)
0 -1 S

According to the Cayley-Hamilton theory, we know that

A® +333.73A% +6799.33A =0 (2-36)

After calculating the following terms
Vi(t)+333.73y(t) + 6799.33y(t)

2-37
= c(A® +333.73A% + 6799.33A)x + cA’bu(t) (2:37)
we have the input-output description as below:
Vi(t)+333.73¥(t)+ 6799.33y(t) = 133334u(t) (2-38)
where cA’b =133334. It is obvious that the transfer function is
H(s)= Y(s) __ 1332%34 (2-30)
U(s) s®+333.73s2 +6799.33s
Moreover, it can be further decomposed as
H(s) = 133334 (2-40)
s(s+21.80)(s +311.93)

which implies the pole at s=—311.93 can be omitted since it is much faster than the

pole at s=—21.80. In other words, the transfer function H(s) can be approximated by a

2-6
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second order transfer function H,(s) expressed as

H.(s)= B s (2-41)

Cs(s+a) sP+os
where « is near to 21.80. There are several methods to obtain the approximate transfer

function H,(s). One of the simplest one is to determine H,(s) under the condition that

%:L for 0<w< oo (2-42)
a (4]
which leads to

HG®)" _ H(s

)H(_S) | = 0 -
|Ha(ja)xz - Ha(s)Ha(_S)L:jw =1 for 0<w< (2 43)

To adopt the condition, let’s rewrite the transfer function as

H (S)= S( 19.610

g (2-44)
1+0.0491s +0.0001471s? )

and choose the approximate transfer function as

19.610
H =
a(s) S(1+,OS)

(2-45)

Hecnce, we have

H(s)H(-s)
H,(s)H.(-s)
_ (L+ps) (L—ps)
~ (L+0.0491s +0.0001471s2 ) (1 0.0491s +0.0001471s? )
~ 1—/0232
~1-0.0021s* +21638x10°s*
. —(p* ~00021)* 21638 x10°s"

1-0.0021s% +21638x10°s*

H(s)H(-s)
H,(s)H.(-s)
£(s) = —(p? —o.oozg)s2 - 21638><_180'js4

1-0.0021s2 +21638x10°s

which is minimized when p*-0.0021=0 or p=0.0458. From (2-45), the

(2-46)

Clearly, between and 1, there exists an error

(2-47)

approximate transfer function is then obtained as
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(2-48)

H.(s)= 19610 42817
"7 5(1+0.0458s) s(s+21.83)

which implies =21.83 near to 21.80 and $=428.17 as shown in (2-41).

The other one is just neglect the state variable x;(t)=i,(t) since the convergence
rate of i,(t) is much faster than that of angular velocity x,(t)=a(t). From (2-33), we

assume that %, (t)~0 and then

0 —333.33 -33.33 0| x(t)] [666.67
%(t)|=| 200  -040 Ofx,(t)[+| 0 |-u(t) (2-49)
%, (t) 0 1 0 xt) 0
or
—333.33x, (t) - 33.33x,(t) + 666.67u(t) = 0 (2-50)
X, (t) = 200x, (t)— 0.40x, (t) (2-51)
Xs (t) =X, (t) (2-52)

From (2-50), we have

%, (t) =—0.1x, (t)+ 2u(t) (2-53)
and substituting it into (2-51) becomes

X, (t) = —20.4x, (t)+400u(t) (2-54)
Hence, differentiating (2-52) yields

%,(t) = X, (t) = —20.4x, (t)+ 400u(t) = —20.4%,(t)+ 400u(t)  (2-55)
Since y(t)=x,(t), we obtain

§(t)+20.4y(t) = 400u(t) (2-56)
and the approximate transfer function is
Y(s) 400

U(s)  s(s+20.4) (2:57)

H.(6)=

which is approximate to the one derived in (2-48).



