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1. Introduction 

In control engineering, a controller is often designed and constructed based on 

four basic steps as shown in Figure 1-1, including mathematical modeling, controller 

design, numerical simulation and system implementation. In this course, we will learn 

how to practically design and construct controllers for a solar charger under maximum 

power point tracking and a rotary inverted pendulum balanced around the upright 

position. Before get into the first step, the mathematical modeling, in this chapter let’s 

review some fundamental concepts of dynamic systems. 

 

A practical system generally varies with time t and is often represented by a 

block diagram as shown in Figure 1-2, where the system H receives external inputs 

and generates outputs correspondingly. Assume that there are m inputs ui(t), 

i=1,2,…,m, and p outputs yj(t), j=1,2,…,p and let them be denoted as the vector forms, 

i.e., u(t)=[u1(t) u2(t) … um(t)]T mℜ∈  and y(t) =[y1(t) y2(t) … yp(t)]T pℜ∈ . 
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Controller Design 
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System Implementation 
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According to the relationship between u(t) and y(t), systems can be classified 

into two categories: static and dynamic.  

A system is said to be static if each output yj(t) only depends on the current 

inputs, mathematically described as 

 ( ) ( )( ) ( ) ( ) ( )( )tu,,tu,tuhthty mjjj 21== u ,   j=1,2,…,p (1-1) 

where hj(u(t)) is an algebraic function of the current inputs ui(t), i=1,2,…,m. An 

example of static systems is given in Figure 1-3, which is a resistive circuit with a 

voltage input u(t). 

 

Let the output be the voltage across the resistance R3, then from the circuit 

theory we have 

 ( ) ( )( ) ( ) ( ) ( )tuktu
RRRRR

RR
tuhty ⋅=

++
==

32321

32  (1-2) 

where h(u(t)) is a linear function proportional to the current input u(t) and the constant 

gain is ( ) 32321

32

RRRRR
RR

k
++

= . Clearly, the output y(t) can be simply determined by 

the current input u(t), which means the resistive circuit is a static system. In fact, a 

static system is also referred to as a “memoryless” system since its outputs do not 

contain any information related to the past inputs.  

Unlike static systems, a system is said to be dynamic if its outputs depend not 

only on the current inputs but also their past. In order to express the behavior of a 
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dynamic system, two kinds of description are often employed, called the state-space 

description and the input-output description. Next, let’s adopt the linear time-invariant 

systems (LTI systems in brief) to discuss the description of dynamic systems. In 

system engineering, the LTI systems are known as the most useful ideal systems since 

almost every practical system can be approximated by an LTI system around the 

equivalent point in system state space. 

 

An LTI system can be modeled in time domain by the state-space description 

expressed as below: 

 ( ) ( ) ( )ttt BuAxx += ,    x(t0)=x0 (1-3) 

 ( ) ( ) ( )ttt DuCxy +=  (1-4) 

including the state equation (1-3) and the output equation (1-4) in vector form. 

Assume the system state x(t)=[x1(t) x2(t) …  xn(t)]T nℜ∈  is composed of n state 

variables xi(t), i=1,2,…,n and all the system matrices A nn×ℜ∈ , B mn×ℜ∈ , C np×ℜ∈  

and D mp×ℜ∈  are constant. Besides, the system state at the initial time t=t0 is 

represented by x(t0)=x0, called the initial state. Figure 1-4 shows the block diagram of 

an LTI system. 

From the state equation (1-3), the system state has been solved and partitioned 

Figure 1-4 
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into two vectors, ( )thx  for zero input and ( )tpx  for zero initial state, expressed as 

 
( ) ( ) ( )

( ) ( ) ( ) τττ dee

ttt
t

t

ttt

ph

Bux

xxx
AA ∫ −− +=

+=

0

0
0       

 (1-5) 

where 

 ( ) ( )
0

0 xx A tt
h et −=  (1-6) 

 ( ) ( ) ( ) τττ det
t

t

t
p Bux A∫ −=

0

 (1-7) 

For zero input u(t)=0, the state equation (1-3) is rewritten as 

 ( ) ( )tt Axx = ,    x(t0)=x0 (1-8) 

which is called the homogeneous state equation and ( ) ( )tt hxx =  is its solution called 

the zero-input state vector. As for ( )tpx , it is called the zero-state state vector under 

the condition x(t0)=x0=0. 

To verify that the system state (1-5) is really the solution of (1-3), it is required 

to employ three basic properties. The first one concerns the definition of te A . 

Consider a square matrix M and define its exponential function as 

 ++++= 32

3
1

2
1 MMMIM

!!
e  (1-9) 

which is directly extended from the scalar exponential function 

 ++++= 32

3
1

2
11 z

!
z

!
ze z  (1-10) 

If M=At, then from (1-9) we have 

 ( ) ( ) ( )∑
∞

=

=++++=
0

32 1
3
1

2
1

k

kt t
!k

t
!

t
!

te AAAAIA
  (1-11) 

For the second property, it refers to the derivative of teA , which can be obtained as 

 ( ) ( ) ( ) t

k

kt et
!k

t
!

te
dt
d AA AAAAAAAA =⋅=+++= ∑

∞

=0

2 1
2
1

  (1-12) 

In fact, it is also true that 
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 ( ) ( ) ( ) AAAAAAAA AA t

k

kt et
!k

t
!

te
dt
d

=







⋅=+++= ∑

∞

=0

2 1
2
1

   (1-13) 

Finally, the third property is given as 

 ( ) ( ) ( )∫∫ ∂
∂

+=
t

t

t

t
dt,f

t
t,tfdt,f

dt
d

00

ττττ  (1-14) 

which has been learned in Calculus.  

Based on the above three properties, taking derivative of the system state (1-5) 

with respective to time yields 

 ( ) ( ) ( ) ( ) τττ de
dt
de

dt
dt

t

t

ttt Buxx AA ∫ −− +=
0

0
0  (1-15) 

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )tt

tdee
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de
t
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t

ttt

t

t

ttt

t

t
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+=
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
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
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∂
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++=
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∫

∫
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0

0
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0

0

0

0

0

0

ττ

ττ

ττ

τ

τ

τ

 

which proves the system state (1-5) is indeed the solution of state equation (1-3). 

From the system state (1-5) and the output equation (1-4), the system output can 

be expressed as 

 
( ) ( ) ( )

( ) ( ) ( ) ( )tdee

ttt
t

t

ttt DuBuCxC

DuCxy
AA ++=

+=

∫ −− τττ

0

0
0       

 (1-16) 

Clearly, y(t) is related to the current and past input vector u(τ) for tt ≤≤ τ0 , which 

shows that the LTI system is really a dynamic system. In addition, the output y(t) only 

depends on the initial state x0 and the input vector u(τ) for tt ≤≤ τ0 ; in other words, 

no information of x(t) for t>0 is required to represent the output y(t). 

In addition to the state-space description, an LTI system can be also described 

by the input-out description, i.e., without the system state x(t).  
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By taking the Laplace transform of (1-3) and (1-4), the system can be changed 

into the following form: 

 ( ) ( ) ( ) ( )sstss BUAXxX +=− 0  (1-7) 

 ( ) ( ) ( )sss DUCXY +=  (1-8) 

where X(s), U(s) and Y(s) are the Laplace transforms of x(t), u(t) and y(t), respectively. 

Without loss of generality, assume sI−A is invertible and thus (1-7) is rearranged as 

 ( ) ( ) ( ) ( ) ( )0
11 tssss xAIBUAIX −− −+−=  (1-9) 

and (1-8) becomes 

 ( ) ( )[ ] ( ) ( ) ( )0
11 tssss xAICUDBAICY −− −++−=  (1-10) 

Further neglecting the initial condition yields 

 ( ) ( ) ( )sss UHY =  (1-11) 

which is the input-output description of the LTI system in frequency domain and 

 ( ) ( ) DBAICH +−= −1ss  (1-12) 

is called the transfer function. The block diagram of (1-11) is depicted in Figure 1-5 

correspondingly. 

In order to show the input-output description in time domain of an LTI system, 

we take a single-input single-output (SISO) system as an example, which is given as 

 ( ) ( ) ( )tutt bAxx += ,    x(t0)=x0 (1-13) 

 ( ) ( ) ( )tdutty += cx  (1-14) 

From (1-10), this SISO system is expressed as 

Figure1-5 

U(s) Y(s) 
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 ( ) ( )[ ] ( ) ( ) 0
11 xAIcbAIc −− −++−= ssUdssY  (1-15) 

where 

 ( ) ( ) ( )
AI

AIbAIc
bAIc

−

−+−⋅
=+−= −

s
sdsadj

dssH 1  (1-16) 

Let the characteristic polynomial be 

 01
1

1 asasass n
n

n ++++=− −
− AI  (1-17) 

and the numerator of H(s) be 

 ( ) 01
1

1 bsbsbsbsdsadj n
n

m
m ++++=−+−⋅ −

− AIbAIc  (1-18) 

where m≤n, then (1-15) becomes 

 ( ) ( ) ( ) ( ) 0
1 xAIc −−+= ssUsHsY  (1-19) 

 
( )
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1
1

0

01
1

1

01
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Further, neglecting the initial condition x0 leads to 

 
( ) ( )

( ) ( )sUbsbsbsb

sYasasas
n

n
m

m

n
n

n

01
1

1

01
1

1

   ++++=

++++
−

−

−
−





 (1-20) 

Taking the inverse Laplace transform yields 

 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )tubtubtubtub
tytyatyaty

m
m

m
m

n
n

n

01
1

1

1
1

1

   ++++=

++++
−

−

−
−





 (1-21) 

where ( ) ( ) ( )ty
dt
dty k

k
k ≡ . This is the input-output description of the LTI system in 

time domain. 

Actually, (1-21) can be also derived from the Cayley-Hamilton theory which 

states that if the characteristic polynomial of a square matrix A nn×ℜ∈  is given as 

 01
1

1 asasass n
n

n ++++=− −
− AI  (1-22) 
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then the following equation must be true: 

 0IAAAA =++++= −
−

=
∑ 01

1
1

0
aaaa n

n
n

n

k

k
k   (1-23) 

where an=1. Now, from (1-13) and (1-14) we have 

   

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )



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
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+++=++=
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
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2 tudtututtudtutty
tudtuttudtty
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 (1-24) 

or 

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )tdututu
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 (1-25) 

Calculating ( ) ( )∑
=

n

k

k
k tya

0
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From (1-23), we have 
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or 
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with coefficients 
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To sum up, the input-output description of a SISO LTI system is often described as the 

following form 

 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )tubtubtubtub
tytyatyaty

m
m

m
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n
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n
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





 (1-30) 

where n≥m. In general, a system satisfying n≥m is called a proper system, otherwise it 

is an improper system. Viewing from (1-29), if d=0 then bn=0 which leads to n>m. In 

control enegineering, we often deal with the SISO LTI system described in (1-30), 

which satisfies n>m. A system represented by (1-30) is called an n-th order system 

with relative degree p=n−m. From (1-29), it can be concluded that if a system with 

relative degree p=n−m must satisfy 

 0 ,0  ,  ,0  ,0  ,0 1 ≠==== − bcAbcAcAbcb ppd   (1-31) 

The relative degree p=n−m is an important property in controller design based on 

output feedback technology. 

What is output feedback technology? Also, what is state feedback? Besides, 

several important properties concerning systems are required to discuss in this course, 

such as the impulse response, poles, zeros, pole-zero cancellation, and so on. Let’s 

leave them as the discussion points in the class. 
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