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13.1 Characterization of fading
multipath channels
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The multipath fading channels with additive noise
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Time spread phenomenon of multipath channels
(Unpredictable) Time-variant factors

Delay

Number of spreads

Size of the receive pulses
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Transmitted signal

s(t) = Re{s`(t)e ı2πfc t}

Received signal in absence of additive noise

r(t) = ∫
∞

−∞
c(τ ; t)s(t − τ)dτ

= ∫
∞

−∞
c(τ ; t)Re{s`(t − τ)e ı2πfc(t−τ)}dτ

= Re{(∫
∞

−∞
c(τ ; t)e− ı2πfcτ s`(t − τ)dτ)e ı2πfc t}

= Re{(s`(t) ⋆ c(τ ; t)e− ı2πfcτ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≜c`(τ ;t)

)e ı2πfc t}
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In Slide 2-28, we define the lowpass equivalent system as
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

X`(f ) ≜ 2X+(f + f0)
Y`(f ) ≜ 2Y+(f + f0)
H`(f ) ≜ 2H+(f + f0)

and obtain

⎧⎪⎪⎨⎪⎪⎩

Y`(f ) = 1
2
X`(f )H`(f )

(i.e., y`(f ) = 1
2
x`(t) ⋆ h`(t))

Here, under a time-invariant c(τ ; t) = c(τ), we actually define

c`(τ) ≜ c(τ)e−ı2πfcτ ,

equivalently,

C`(f ) = ∫
∞

−∞
c(τ)e−ı2πfcτe−ı2πf τdτ = C(f + f0).

Thus, the new “lowpass equivalence” yields
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

S`(f ) ≜ 2S+(f + f0)
R`(f ) ≜ 2R+(f + f0)
C`(f ) ≜ C(f + f0)

⇒
⎧⎪⎪⎨⎪⎪⎩

R`(f ) = S`(f )C`(f )
(i.e., r`(f ) = s`(t) ⋆ c`(t))

An advantage of this new equivalence is that the statistics of c(τ ; t) =
∣c`(τ ; t)∣ can be determined from the statistics of c`(τ ; t).
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Note that for a time-varying system, t and τ specifically
denote time argument and convolution argument, respectively!

We should perhaps write s`(t) ⋆ c`(τ) and s`(t) ⋆ c`(τ ; t),
which respectively denote:

s`(t) ⋆ c`(τ) = ∫
∞

−∞
c`(τ)s`(t − τ)dτ

and

s`(t) ⋆ c`(τ ; t) = ∫
∞

−∞
c`(τ ; t)s`(t − τ)dτ.

From the previous slide, we know

c`(τ ; t) = c(τ ; t)e− ı2πfcτ and c(τ ; t) = ∣c`(τ ; t)∣.
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Rayleigh and Rician

Measurements suggest that in certain environment,
c(τ ; t) = ∣c`(τ ; t)∣ ≥ 0 can be Rayleigh distributed or Rician
distributed. As a consequence, such c(τ ; t) can be modeled by
letting c`(τ ; t) be a 2-D Gaussain random process in t (not in
τ).

If c`(τ ; t) zero mean, c(τ ; t) = ∣c`(τ ; t)∣ is Rayleigh
distributed. The channel c(τ ; t) is said to be a Rayleigh
fading channel.

If c`(τ ; t) nonzero mean, c(τ ; t) = ∣c`(τ ; t)∣ is Rician
distributed. The channel c(τ ; t) is said to be a Rician
fading channel.

When diversity technique is used, c(τ ; t) = ∣c`(τ ; t)∣ is well
modeled by Nakagami m-distribution.
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13.1-1 Channel correlation
functions and power spectra
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Assumption (WSS)

c`(τ ; t) is WSS in t.

Rc` (τ̄ , τ ; ∆t) = E{c`(τ̄ ; t +∆t)c∗` (τ ; t)}

is only a function of time difference ∆t.

Assumption (Uncorrelated scattering or US of a WSS channel)

For τ̄ ≠ τ , c`(τ̄ ; t1) and c`(τ ; t2) are uncorrelated for any t1, t2.

τ is the convolution argument and actually represents the
delay for a certain path.

Assumption (Math definition of US)

Rc` (τ̄ , τ ; ∆t) = Rc`(τ ; ∆t)δ(τ̄ − τ)
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Multipath intensity profile of a WSSUS channel

The multipath intensity profile or delay power
spectrum for a WSSUS multipath fading channel is
given by:

Rc` (τ) = Rc` (τ ; ∆t = 0) .

It can be interpreted as the average power output of the
channel as a function of the path delay τ .

E[∣r`(t)∣2] = E[∫
∞

−∞
c`(τ̄ ; t)s`(t − τ̄)d τ̄ ∫

∞

−∞
c∗` (τ ; t)s∗` (t − τ)dτ]

= ∫
∞

−∞
∫

∞

−∞
E[c`(τ̄ ; t)c∗` (τ ; t)]E[s`(t − τ̄)s∗` (t − τ)]d τ̄dτ

= ∫
∞

−∞
∫

∞

−∞
Rc`(τ ; 0)δ(τ̄ − τ)E[s`(t − τ̄)s∗` (t − τ)]d τ̄dτ

= ∫
∞

−∞
Rc`(τ ; 0)E[∣s`(t − τ)∣2]dτ = ∫

∞

−∞
Rc`(τ)E[∣s`(t − τ)∣2]dτ
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Multipath spread of a WSSUS channel

multipath spread or delay spread of a WSSUS
multipath fading channel

multipath spread is the range of τ over which Rc`(τ) is
essentially non-zero; it is usually denoted by Tm.

E[∣r`(t)∣2] ≈ ∫
Tm

0 R`(τ)E[∣s`(t − τ)∣2]dτ
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Each τ corresponds to one path.

No Tx power will essentially remain at Rx for paths with
delay τ > Tm.
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Transfer function of a multipath fading channel

The transfer function of a channel impulse response c`(τ ; t) is
the Fourier transform with respect to the convolutional
argument τ :

C`(f ; t) = ∫
∞

−∞
c`(τ ; t)e− ı2πf τ dτ

Property: If c`(τ ; t) is WSS, so is C`(f ; t).

The autocorrelation function of WSS C`(f ; t) is equal to:

RC`(f̄ , f ; ∆t) = E{C`(f̄ ; t +∆t)C∗
` (f ; t)}
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With an additional US assumption,

RC`(f̄ , f ; ∆t)
= E{C`(f̄ ; t +∆t)C∗

` (f ; t)}

= E{∫
∞

−∞
c`(τ̄ ; t +∆t)e− ı2πf̄ τ̄ d τ̄ ∫

∞

−∞
c∗` (τ ; t)e ı2πf τ dτ}

= ∫
∞

−∞
∫

∞

−∞
Rc`(τ ; ∆t)δ(τ̄ − τ)e ı2π(f τ−f̄ τ̄) dτd τ̄

= ∫
∞

−∞
Rc` (τ ; ∆t) e− ı2π(f̄ −f )τ dτ

= RC` (∆f ; ∆t), where ∆f = f̄ − f .

For a WSSUS multipath fading channel,

RC`(∆f ; ∆t) = E{C`(f +∆f ; t +∆t)C∗
` (f ; t)}

This is often called spaced-frequency, spaced-time
correlation function of a WSSUS channel.
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Note that R`(f ) ≠ S`(f )C`(f ; t), where

R`(f ) = ∫
∞

−∞
r`(t)e− ı 2πftdt and S`(f ) = ∫

∞

−∞
s`(t)e− ı 2πftdt.

We only have

r`(t) = ∫
∞

−∞
c`(τ ; t)s`(t − τ)dτ

= ∫
∞

−∞
(∫

∞

−∞
C`(f ; t)e ı 2πf τdτ)s`(t − τ)dτ

= ∫
∞

−∞
(∫

∞

−∞
s`(t − τ)e ı 2πf τdτ)C`(f ; t)df

= ∫
∞

−∞
(∫

∞

−∞
s`(u)e ı 2πf (t−u)dτ)C`(f ; t)df (Let u = t − τ)

= ∫
∞

−∞
S`(f )C`(f ; t)e ı 2πftdf
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Coherent bandwidth

Summarize from the last equality of the previous derivation (in red):

RC` (∆f ; ∆t) = ∫
∞
−∞Rc` (τ ; ∆t) e− ı2π(∆f )τ dτ

For the case of ∆t = 0, we have

RC` (∆f )
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
spaced-frequency

correlation function

= ∫
∞

−∞
Rc` (τ) e− ı2π(∆f ) τ dτ

Recall that Rc`(τ) = 0 outside [0,Tm).

(∆f )c = 1
Tm

is called coherent bandwidth.

From Slide 13-11, E[∣r`(t)∣2] = ∫
∞

−∞
Rc`(τ)E[∣s`(t − τ)∣2]dτ

⇒ ∫
∞

−∞
E[∣r`(t)∣2]e− ı 2π(∆f )tdt

= RC`(∆f )∫
∞

−∞
E[∣s`(t)∣2]e− ı 2π(∆f )tdt
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Example.

Give Rc`(τ) = 107(10−7 − τ) for 0 ≤ τ < 100 ns. Then,

RC`(∆f ) = 107

4π2(∆f )2
(e− ı2π⋅10−7⋅∆f − 1) − 1

2π∆f
ı .

∣RC`
(∆f )∣

∣RC`
(0)∣ Rc`(τ)
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Coherent bandwidth

RC`(f̄ , f ; 0) = E{C`(f̄ ; t)C∗
` (f ; t)} and r`(t) = ∫

∞

−∞
S`(f )C`(f ; t)e ı 2πftdf

If f̄ − f > (∆f )c , RC`(f̄ , f ; 0) will be essentially small (nearly
uncorrelated or nearly independent if Gaussian).

Thus, two sinusoids S`(f̄ ) and S`(f ) with frequency separation
greater than (∆f )c are respectively multiplied by nearly
independent C`(f̄ ; t) and C`(f ; t) and hence are affected very
differently by the channel.
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If signal transmitted bandwidth
B > (∆f )c , the channel is called
frequency selective.

If signal transmitted bandwidth
B < (∆f )c , the channel is called
frequency non-selective.
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For frequency selective channels, the signal shape is more
severely distorted than that of frequency non-selective
channels.

Criterion for frequency selectivity:

B > (∆f )c ⇔ 1

T
> 1

Tm

⇔ T < Tm.
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Time varying characterization: Doppler

Doppler effect appears via the argument ∆t.

Digital Communications: Chapter 13 Ver 2018.07.23 Po-Ning Chen 23 / 118



Doppler power spectrum of a WSSUS channel

The Doppler power spectrum is

SC`(λ) = ∫
∞

−∞
RC`(∆f = 0; ∆t)e− ı2πλ(∆t)d(∆t),

where λ is referred to as the Doppler frequency.

Bd = Doppler spread is the range such that SC`(λ) is
essentially zero.

(∆t)c = 1
Bd

is called the coherent time.

If symbol period T > (∆t)c , the channel is classified as
Fast Fading.

I.e., channel statistics changes within one symbol!

If symbol period T < (∆t)c , the channel is classified as
Slow Fading.
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Operational Characteristic of SC`(λ)

We can obtain as similarly from Slide 13-11 that

R̄r`(∆t) = lim
T→∞

1

2T ∫
T

−T
E[r`(t +∆t)r∗` (t)]dt

= lim
T→∞

1

2T ∫
T

−T
∫

∞

−∞
∫

∞

−∞
Rc`(τ ; ∆t)δ(τ̄ − τ)

×E[s`(t +∆t − τ̄)s∗` (t − τ)]d τ̄dτdt

= lim
T→∞

1

2T ∫
T

−T
∫

∞

−∞
Rc`(τ ; ∆t)E[s`(t +∆t − τ)s∗` (t − τ)]dτdt

= ∫
∞

−∞
Rc`(τ ; ∆t)R̄s`(∆t)dτ

= RC`(∆f = 0; ∆t)R̄s`(∆t)

⇒ S̄r`(λ) = SC`(λ) ⋆ S̄s`(λ).
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Scattering function

Summary:

Rc`(τ ; ∆t) Channel autocorrelation function

1-D FT:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

RC`(∆f ; ∆t) = F τ {Rc`(τ ; ∆t)}
Spaced-freq
spaced-time
correlation func

S(τ ;λ) = F∆t {Rc`(τ ; ∆t)} Scattering function

2D FT: SC`(∆f ;λ) = Fτ,∆t {Rc`(τ ; ∆t)} Doppler power
spectrum (∆f = 0)

RC`(∆f ; ∆t) Spaced-freq spaced-time correlation function

1-D FT:

⎧⎪⎪⎨⎪⎪⎩

Rc`(τ ; ∆t) = F−1
∆f {RC`(∆f ; ∆t)} Chan autocorr func

SC`(∆f ;λ) = F∆t {RC`(∆f ; ∆t)} Doppler power
spectrum (∆f = 0)

2D FT: S(τ ;λ) = F−1
∆fF∆t {RC`(∆f ; ∆t)} Scattering function
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Scattering function

The scattering function can be used to identify both
“delay spread” and “Doppler spread.”
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Example. Medium-range tropospheric scatter

channel
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Example study of delay spread

The median delay spread is the 50% value, meaning that
50% of all channels has a delay spread that is lower than the
median value. Clearly, the median value is not so interesting
for designing a wireless link, because you want to guarantee
that the link works for at least 90% or 99% of all channels.
Therefore the second column gives the measured maximum
delay spread values. The reason to use maximum delay
spread instead of a 90% or 99% value is that many papers
only mention the maximum value. From the papers that do
present cumulative distribution functions of their measured
delay spreads, it can be deduced that the 99% value is only a
few percent smaller than the maximum delay spread.
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Measured delay spreads in frequency range of 800M to 1.5
GHz (surveyed by Richard van Nee, Lucent Technologies,
Nov. 1997)
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Measured delay spreads in frequency range of 1.8 GHz to 2.4
GHz (surveyed by Richard van Nee)
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Measured delay spreads in frequency range of 4 GHz to 6 GHz
(surveyed by Richard van Nee)

Conclusion by Richard van Nee: Measurements done at
different frequencies show the multipath channel
characteristics are almost the same from 1 to 5 GHz.
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Jakes’ model: Example 13.1-3

Jakes’ model
A widely used model for Doppler power spectrum is the
so-called Jakes’ model (Jakes, 1974)

RC`(∆t) = J0(2πfm ⋅∆t)
and

SC`(λ) =
⎧⎪⎪⎨⎪⎪⎩

1
πfm

1√
1−(λ/fm)2

, ∣λ∣ ≤ fm

0, otherwise

where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fm = (v/c)fc is the maximum Doppler shift

v is the vehicle speed (m/s)

c is the light speed (3 × 108 m/s)

fc is the carrier frequency

J0(⋅) is the zero-order Bessel function

of the first kind.
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Jakes’ model: Example 13.1-3
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Difference in path length

∆L =
√

(L sin(θ))2 + (L cos(θ) + v ⋅∆t)2 − L

=
√
L2 + v2(∆t)2 + 2L ⋅ v ⋅∆t ⋅ cos(θ) − L

Phase change ∆φ = 2π ∆L
(c/fc) ( = 2π ∆L

wavelength
)
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Estimated Doppler shift

λm = lim
∆t→0

1

2π

∆φ

∆t

= 1

c/fc
lim

∆t→0

√
L2 + v2(∆t)2 + 2L ⋅ v ⋅∆t ⋅ cos(θ) − L

∆t

= vfc
c

cos(θ) = fm cos(θ)

Example. v = 108 km/hour, fc = 5 GHz and c = 1.08 × 109

km/hour.
Ô⇒ λm = 500 cos(θ) Hz.

Notably, 500 Hz
5GHz = 0.1 ppm.
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Jakes’ model

Here, a rough derivation is provided for Jakes’ model.

Just to give you a rough idea of how this model is obtained.

Suppose τ = τ(t) is the delay
of some path.

τ ′(t) = lim∆t→0
τ(t+∆t)−τ(t)

∆t

= lim∆t→0

L+∆L
c

− L
c

∆t

= lim∆t→0
∆L
c∆t

= v
c cos(θ)

⇒ τ(t) ≈ v
c cos(θ) t + τ0

(Assume for simplicity τ0 = 0.)
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Assume that c(τ ; t) ≈ a ⋅ δ(τ − τ(t)), a constant-attenuation
single-path system. Then

c`(τ ; t) = c(τ ; t)e− ı2πfcτ

≈ a ⋅ δ(τ − τ(t))e− ı2πfc ⋅τ(t)

= a ⋅ δ(τ − (v/c) cos(θ)t)e− ı2πfc( v
c

cos(θ)t)

= a ⋅ δ(τ − (fm/fc) cos(θ)t)e− ı2πfm cos(θ)t

and

Rc`(τ ; t +∆t, t)

= ∫
∞

−∞
E [c`(τ̄ ; t +∆t)c∗` (τ ; t)]d τ̄

= ∫
∞

−∞
E [a ⋅ δ(τ̄ − (fm/fc) cos(θ)(t +∆t))e− ı2πfm cos(θ)(t+∆t)

⋅a ⋅ δ(τ − (fm/fc) cos(θ)t)e ı2πfm cos(θ)t]d τ̄

= a2 ⋅E [e− ı2πfm cos(θ)⋅∆t] δ(τ − (fm/fc) cos(θ)t)
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RC`(∆f = 0; t +∆t, t) (=∫
∞

−∞
Rc`(τ ; t +∆t, t)e ı2π(∆f )τdτ ∣

∆f =0

)

= ∫
∞

−∞
Rc`(τ ; t +∆t, t)dτ

= ∫
∞

−∞
a2 ⋅E [e− ı2πfm cos(θ)⋅∆t] δ(τ − (fm/fc) cos(θ)t)dτ

= a2 ⋅E [e− ı2πfm cos(θ)⋅∆t]

= J0(2πfm ⋅∆t) ( = RC`(∆f = 0; ∆t))

where the last step is valid if θ uniformly distributed over [−π,π),

and a = 1.
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θ can be treated as uniformly distributed over [−π,π) and
independent of attenuation α and delay path τ .
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Channel model from IEEE 802.11 Handbook

A consistent channel model is required to allow
comparison among different WLAN systems.1

The IEEE 802.11 Working Group adopted the following
channel model as the baseline for predicting multipath for
modulations used in IEEE 802.11a and IEEE 802.11b,
which is ideal for software simulations.

The phase is uniformly distributed.

The magnitude is Rayleigh distributed with average
power decaying exponentially.

1B. O’Hara and A. Petrick, IEEE 802.11 Handbook: A Designer’s
Companion, pp. 164–166, IEEE Press,1999
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Time Invariant: c`(τ ; t) = c`(τ) =
imax−1

∑
i=0

αie
− ı φi δ(τ − iTs)

where

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Ts sampling period

αie ı φi ≡ N (0, σ2
i /2) + ıN (0, σ2

i /2)
σ2
i = σ2

0e
−iTs/τrms

σ2
0 = 1 − e−Ts/τrms (Thus ∑∞

i=0 σ
2
i = 1)
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Rc`(τ) = ∫
∞

−∞
E [c`(τ̄ ; t)c∗` (τ ; t)]d τ̄ = ∫

∞

−∞
E [c`(τ̄)c∗` (τ)]d τ̄

=
imax−1

∑
i=0
∫

∞

−∞
E [α2

i ] δ(τ − iTs)δ(τ̄ − τ)d τ̄

=
imax−1

∑
i=0

E [α2
i ] δ(τ − iTs)

=
imax−1

∑
i=0

σ2
0e

−iTs/τrmsδ(τ − iTs)

By this example, I want to introduce the rms delay spread. By
definition, the “effective” rms delay is

T 2
rms = ∫

∞
−∞ τ

2Rc`(τ)dτ
∫
∞
−∞ Rc`(τ)dτ

− (∫
∞
−∞ τRc`(τ)dτ
∫
∞
−∞ Rc`(τ)dτ

)
2

= ∑imax−1
i=0 (iTs)2

��σ
2
0e

−iTs/τrms

∑imax−1
i=0 ��σ

2
0e

−iTs/τrms
−
⎛
⎝
∑imax−1

i=0 (iTs)��σ
2
0e

−iTs/τrms

∑imax−1
i=0 ��σ

2
0e

−iTs/τrms

⎞
⎠

2
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We wish to choose imax such that Trms ≈ τrms.

Let τ̃rms = τrms

Ts
and T̃rms = Trms

Ts
.

These unit-less terms τ̃rms and T̃rms are usually ≥ 1.

T̃ 2
rms = ∑n−1

i=0 i2pi

∑n−1
i=0 pi

− (∑
n−1
i=0 ipi

∑n−1
i=0 pi

)
2

with p = e−1/τ̃rms = e−x and n = imax

= p

(1 − p)2
− n2pn

(1 − pn)2
(Note pn = e−nx .)

= ( 1

x2
− 1

12
+ x2

240
+⋯) − ( (nx)2e−nx

(1 − e−nx)2
) 1

x2
≈ τ̃ 2

rms =
1

x2

where Taylor expansion yields x2p
(1−p)2 = x2e−x

(1−e−x)2 = 1 − x2

12
+ x4

240
+O(x8).

(nx)2e−nx

(1 − e−nx)2
≤ 0.01⇒ nx ≥ 9⇒ imax = n ≥ 9

x
= 9τ̃rms = 9

τrms

Ts

The Handbook suggests imax = 10.
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Typical multipath delay spread for indoor environment (Table 8-1
in IEEE 802.11 Handbook) with Ts = 1/(20 × 106) = 50 nsec.

Environment Delay Spread τ̃rms imax T̃rms

Home < 50 nsec 1 10 0.957

Office ∼ 100 nsec 2 20 1.975

Manufacturing floor 200–300 nsec 4–6 40–60 3.980–5.980
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13.1-2 Statistical models for fading
channels
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In addition to zero-mean Gaussian (Rayleigh), non-zero-mean
Gaussian (Rice) and Nakagami-m distributions, there are other
models for c`(τ ; t) proposed in the literature.

Example.

Channels with a direct path and a single multipath
component, such as airplane-to-ground communications

c`(τ ; t) = αδ(τ) + β(t)δ(τ − τ0(t))

where α controls the power in the direct path and is
named specular component, and β(t) is modeled as
zero-mean Gaussian.
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Example.

Microwave LOS radio channels used for long-distance
voice and video transmission by telephone companies in
the 6 GHz band (Rummler 1979)

c`(τ) = α [δ(τ) − βe ı2πf0τδ(τ − τ0)]

where
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

α overall attenuation parameter

β shape parameter due to multipath components

τ0 time delay

f0 frequency of the fade minimum, i.e.,

f0 = arg minf ∈R ∣C`(f )∣ = arg minf ∈R ∣1 − βe− ı2π(f −f0)τ0 ∣
and R`(f0) = S`(f0)C`(f0) = S`(f0)α(1 − β).
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Rummler found that

1 α ⊥ β (Independent)

2 f (β) ≈ (1 − β)2.3 (pdf)

3 − log(α) Gaussian distributed (i.e., α lognormal
distributed)

4 τ0 ≈ 6.3 ns

Deep fading phenomenon: At f = f0, the so-called deep fading occurs.
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13.2 The effect of signal
characteristics on the choice of a

channel model
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Usually, we prefer slowly fading and frequency
non-selectivity.

So we wish to choose symbol time T and transmission
bandwidth B such that

T < (∆t)c and B < (∆f )c

Hence, using BT = 1, we wish

T

(∆t)c
B

(∆f )c
= BdTm < 1.

The term BdTm is an essential channel parameter and is called
spread factor.
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Underspread versus overspread

Underspread≡ BdTm < 1
Overspread≡ BdTm > 1
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13.3 Frequency-nonslective, slowly
fading channel
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For a frequency-nonslective, slowly fading channel, i.e.,

Tm ≪ 1

B
= T ≪ (∆t)c ,

the signal spectrum s`(f ) is almost unchanged by C`(f ; t);
hence,

C`(f ; t) ≈ C`(0; t) within the signal bandwidth

and it is almost time-invariant; hence,

C`(f ; t) ≈ C`(0) within the signal bandwidth

This gives

r`(t) = c`(τ ; t) ⋆ s`(t) + z(t)

= ∫
∞

−∞
C`(f ; t)s`(f )e− ı2πftdf + z(t)

≈ ∫
∞

−∞
C`(0)s`(f )e− ı2πftdf + z(t) = C`(0)s`(t) + z(t)
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Assume that the phase of C`(0) = αe ı φ can be perfectly
estimated and compensated by the receiver. The channel
model becomes:

r`(t) = αs`(t) + z(t).

After demodulation (i.e., vectorization), we obtain

r ` = αs` + n`.

Question: What will the error probability be under random α?
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Case 1: Equal-prior BPSK

r = ±α
√
E + n (passband vectorization with E [n2] = N0

2
)

r`,real = ±α
√

2E + n`,real (baseband vectorization with E [n2
`,real] = N0)

The optimal decision is r ≶ 0, regardless of α (due to equal
prior probability).
Thus,

Pr{error∣α} = Q
⎛
⎝

√
2α2
E
N0

⎞
⎠

Given that α is Rayleigh distributed (cf. Slide 4-167), we have

Pe,BPSK = ∫
∞

0
Pr{error∣α} α

σ2
e−

α2

2σ2

´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
Rayleigh

dα

where E[α2] = 2σ2.
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Pe,BPSK = ∫
∞

0
Q(β α

σ
) α
σ2 e

− α
2

2σ2 dα, where β2 = 2σ2 E
N0

= ∫
∞

0
Q(βx)xe−

x2

2 dx , where x = α
σ

= Q(βx)( − e−
x2

2 )∣
∞

0
− ∫

∞

0
( − β√

2π
e−

β2x2

2 )( − e−
x2

2 )dx

= 1

2
−
√

β2

1+β2 ∫
∞

0

1√
2π( 1

1+β2 )
e

− x2

2( 1
1+β2

)
dx

= 1

2
− 1

2

√
β2

1+β2

= 1

2
− 1

2

√
γ̄b

1+γ̄b , where γ̄b = E[α2] E
N0

= (2σ2)( β
2

2σ2 ) = β2

( = 1

2(1 + γ̄b +
√
γ̄2
b + γ̄b)

≈ 1

4γ̄b
when γ̄b large)
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Case 2: Equal-prior BFSK

Similarly, for BFSK,

r = {[α
√
E

0
] or [ 0

α
√
E]} + n

Under equal prior, the optimal decision is r1 ≶ r2, regardless of
α.

Pe,BFSK = ∫
∞

0
Pr{error∣α}f (α)dα

= ∫
∞

0
Q (β α

σ
) α
σ2 e

− α
2

2σ2 dα, where now β2 = σ2 E
N0

= 1

2
− 1

2

√
β2

1+β2

= 1

2
− 1

2

√
γ̄b

2+γ̄b , where γ̄b = E[α2] E
N0

= 2σ2 β2

σ2 = 2β2

( = 1

2 + γ̄b +
√
γ̄2
b + 2γ̄b

≈ 1

2γ̄b
when γ̄b large)
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Case 3: BDPSK

Pe,BDPSK = ∫
∞

0
Pr{error∣α}f (α)dα

= ∫
∞

0
(1

2
e−β

2 α2

2σ2 )( α
σ2

e−
α2

2σ2 )dα, where β2 = 2σ2 E
N0

= 1

2(1 + β2) ∫
∞

0
(1 + β2)xe−(

1+β2

2
)x2

dx

= − 1

2(1 + β2)
e−(

1+β2

2
)x2

∣
∞

0

= 1

2(1 + γ̄b)
, where γ̄b = E[α2] E

N0
= 2σ2 β2

2σ2 = β2

≈ 1

2γ̄b
when γ̄b large
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Case 4: Noncoherent BFSK

Pe,noncoherent BFSK = ∫
∞

0
Pr{error∣α}f (α)dα

= ∫
∞

0
(1

2
e−β

2 α2

2σ2 )( α
σ2

e−
α2

2σ2 )dα, where β2 = σ2 E
N0

= 1

2(1 + β2)

= 1

2 + γ̄b
, where γ̄b = E[α2] E

N0
= 2σ2 β2

σ2 = 2β2

≈ 1

γ̄b
when γ̄b large
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Pe under AWGN Pe under Approx Pe under
Rayleigh fading Rayleigh fading

BPSK Q(
√

2γb) 1
2 (1 −

√
γ̄b

1+γ̄b )
1

4γ̄b

BFSK Q(√γb) 1
2 (1 −

√
γ̄b

2+γ̄b )
1

2γ̄b

BDPSK 1
2e

−γb 1
2(1+γ̄b)

1
2γ̄b

Noncohrent
BFSK

1
2e

−γb/2 1
2+γ̄b

1
γ̄b
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● BPSK is 3dB better than
BDPSK/BFSK; 6dB
better than noncoherent
BFSK.
● Pe decreases inversely
proportional with SNR
under fading.

● Pe decreases exponentially
with SNR
when no fading.
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● To achieve Pe = 10−4,
the system must provide
an SNR higher than
35dB, which is
not practically possible!

● So an alternative solution
should be used to
compensate the fading
such as the diversity
technique.
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Nakagami fading

If α ≡ Nakagami-m fading,

Turin et al. (1972) and Suzuki (1977) have shown that the
Nakagami-m distribution is the best-fit for urban radio multipath
channels.

Ô⇒ f (α) = 2
Γ(m)(

m
Ω
)mα2m−1e−mα

2/Ω, where Ω = E[α2].

m < 1: Worse than Rayleigh fading in performance

m = 1: Rayleigh fading

m > 1: Better than Rayleigh fading in performance

Notably, m = E2[α2]
Var[α2] =

Ω2

E[(α2−Ω)2] is called the fading figure.
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Prob density function of Nakagami-m with Ω = 1
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BPSK performance under Nakagami-m fading

Pe,BPSK = ∫
∞

0
Q (

√
2α2E/N0)

2
Γ(m)(

m
Ω
)mα2m−1e−mα

2/Ω

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
f (α)

dα
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In some channel, the system performance may degrade even
worse, such as Rummler’s model in Slide 13-49, where deep
fading occurs at some frequency.

∣C`(f )∣

The lowest is equal to α(1 − β), which is itself a random variable.
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13.4 Diversity techniques for fading
multipath channels
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Solutions to compensate deep fading

Frequency diversity

Separation of carriers ≥ (∆f )c = 1/Tm to obtain
uncorrelation in signal replicas.

Time diversity

Separation of time slots ≥ (∆t)c = 1/Bd to obtain
uncorrelation in signal replicas.

Space diversity (Multiple receiver antennas)

Spaced sufficiently far apart to ensure received signals
faded independently (usually, > 10 wavelengths)

RAKE correlator or RAKE matched filter (Price and
Green 1958)

It is named wideband approach, since it is usually
applied to the situation where signal bandwidth is much
greater than the coherent bandwidth (∆f )c .
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It is clear for the first three diversities, we will have L identical
replicas at the Rx (which are uncorrelated).

The idea is that as long as not all of them are deep-faded, the
demodulation is sufficiently good.

For the last one (i.e., RAKE), where B ≫ (∆f )c , which results
in a frequency selective channel, we have

L = B

(∆f )c
.

Detail will be given in the following.
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13.4-1 Binary signals
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Assumption

1 L identical and independent channels

2 Each channel is frequency-nonselective and slowly
fading with Rayleigh-distributed envelope.

3 Zero-mean additive white Gaussian background noise

4 Assume the phase-shift can be perfectly compensated.

5 Assume the attenuation {αk}Lk=1 can be perfectly
estimated at Rx.

Hence,
rk = αks + nk k = 1,2, . . . ,L

How to combine these L outputs when making decision?
Maximal ratio combiner (Brennan 1959)

r =
L

∑
k=1

αkrk =
L

∑
k=1

α2
ks +

L

∑
k=1

αknk
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Idea behind maximal ratio combiner

Trust more on the strong signals and trust less on the
weak signal.

Advantage of maximal ratio combiner

Theoretically tractable; so we can predict how “good” the
system can achieve without performing simulations.

Maximum-ratio combining is an optimum linear combiner.

Find {wk}Lk=1 for linear combiner

r =
L

∑
k=1

wk rk =
L

∑
k=1

wkαks +
L

∑
k=1

wknk

such that the output SNR

(
L

∑
k=1

wkαk)
2

E[s2]/
L

∑
k=1

w2
kE[n2

k]

is maximized.
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Case 1: Equal-prior BPSK

r = ±α
√
E + n, where α =

√
∑L

k=1 α
2
k and n = 1

α ∑
L
k=1 αknk

The optimal decision is r ≶ 0, regardless of α.
Thus,

Pr{error∣α} = Q
⎛
⎝

√
2α2
E
N0

⎞
⎠

Given that {αk}Lk=1 is i.i.d. Rayleigh distributed, α is Nakagami-L
distributed; hence,

Pe,BPSK = ∫
∞

0
Pr{error∣α} 2

(L−1)!
( L

Ω
)Lα2L−1e−Lα

2/Ωdα

where Ω = E[α2] = L ⋅E[α2
1] = 2Lσ2.

Note {α2
k = X 2

k +Y 2
k }Lk=1 is i.i.d. χ2-distributed with 2 degree of freedom

⇒ α2 = ∑L
k=1 α

2
k = X 2

1 +Y 2
1 +⋯+X 2

L +Y 2
L is χ2-distributed with 2L degree

of freedom, where {Xk}Lk=1 and {Yk}Lk=1 zero-mean i.i.d. Gaussian.
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Pe,BPSK = ∫
∞

0
Q (βα) 2

(L−1)!
( 1

2σ2 )
L
α2L−1e−α

2/(2σ2)dα,

where β =
√

2E/N0

= (1 − µ
2

)
L

⋅
L−1

∑
k=0

(L − 1 + k

k
)(1 + µ

2
)
k

where µ =
√

γ̄c
1+γ̄c and γ̄c = E[α2

k] EN0

( ≈ (2L − 1

L
)( 1

4γ̄c
)
L

when γ̄c large)

where we have 1−µ
2 = 1

2(1+γ̄c+
√
γ̄2
c+γ̄c)

≈ 1
4γ̄c

and 1+µ
2 ≈ 1.
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For your reference: L = 2

Pe,BPSK = ∫
∞

0
Q (β α

σ
)2( 1

2σ2 )
2
α3e−

α2

2σ2 dα, where β2 = 2σ2 E
N0

= ∫
∞

0
Q(βx) 1

2
x3e−

x2

2 dx

= Q(βx) (− (x
2+2)
2

e−
x2

2 )∣
∞

0
− ∫

∞

0
(− β√

2π
e−

β2x2

2 )(− (x
2+2)
2

e−
x2

2 )dx

= 1
2
− ∫

∞

0

β

2
√

2π
(x2 + 2)e−

(1+β2)x2

2 dx

= 1
2
− 1

4

√
β2

1+β2 ∫
∞

−∞
(x2 + 2) 1√

2π 1
(1+β2)

e
− x2

2 1
(1+β2) dx

= 1
2
− 1

4

√
β2

1+β2 [ 1
(1+β2) + 2]

= 1
2
− 1

4
µ((1 − µ2) + 2), where γ̄c = E[α2

k] EN0
= β2 and µ =

√
γ̄c

1+γ̄c

= (1 − µ
2

)
2

⋅ (1 + 2(1 + µ
2

)
1

)
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Case 2: Equal-prior BFSK

Similarly, for BFSK,

r = {[α
√
E

0
] or [ 0

α
√
E]} + n

The optimal decision is r1 ≶ r2, regardless of α.

Pe,BFSK = ∫
∞

0
Q (βα) 2

(L−1)!(
1

2σ2 )
L
α2L−1e−α

2/(2σ2)dα,

where β2 = σ2 E
N0

= (1 − µ
2

)
L

⋅
L−1

∑
k=0

(L − 1 + k

k
)(1 + µ

2
)
k

where µ =
√

γ̄c
2+γ̄c and γ̄c = E[α2

k] EN0

( ≈ ( 1

2γ̄c
)
L

(2L − 1

L
) when γ̄c large)
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Case 3: BDPSK

From Slide 4-175, the two consecutive lowpass equivalent signals are

s(k−1)
` =

√
2Ee ı φ0 and s(k)` =

⎧⎪⎪⎨⎪⎪⎩

√
2Ee ı φ0 , m = 1;

−
√

2Ee ı φ0 , m = 2

The L received signals given s(k−1)
` and s(k)` are

r⃗ j,` =
⎡⎢⎢⎢⎢⎣

r (k−1)
j,`

r (k)j,`

⎤⎥⎥⎥⎥⎦
= αje

ı φj [s
(k−1)
`

s(k)`
] +

⎡⎢⎢⎢⎢⎣

n(k−1)
j,`

n(k)j,`

⎤⎥⎥⎥⎥⎦
= αje

ı φj s⃗` + n⃗j,`

for j = 1, . . . ,L.

Note that it is unnecessary to estimate αj and φj for jth reception as
required by Cases 1 & 2.

⇒ s⃗†
j,`r⃗ j,` = [

√
2Ee− ı φ0 ±

√
2Ee− ı φ0]

⎡⎢⎢⎢⎢⎣

r (k−1)
j,`

r (k)j,`

⎤⎥⎥⎥⎥⎦

=
⎧⎪⎪⎨⎪⎪⎩

√
2Ee− ı φ0(r (k−1)

j,` + r (k)j,` ), m = 1√
2Ee− ı φ0(r (k−1)

j,` − r (k)j,` ), m = 2
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Instead of maximal ratio combining, we do square-law
combining:

m̂ = arg max
1≤m≤2

L

∑
j=1

∣s⃗†
j ,`

⃗r j ,`∣
2

= arg max{
L

∑
j=1

∣r (k−1)
j ,` + r (k)j ,` ∣

2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
m=1

,
L

∑
j=1

∣r (k−1)
j ,` − r (k)j ,` ∣

2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
m=2

}

= arg max{ U`

m̄=1

, −U`
±
m=2

}

where U` = ∑L
j=1 Re{(r (k−1)

j ,` )
∗
r (k)j ,` }.
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The quadratic-form analysis (cf. Slide 4-176) gives

Pe,BDPSK = (1 − µ
2

)
L

⋅
L−1

∑
k=0

(L − 1 + k

k
)(1 + µ

2
)
k

with µ = γ̄c
1 + γ̄c

≈ ( 1

2γ̄c
)
L

(2L − 1

L
) when γ̄c large.
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Case 4: Noncoherent BFSK

Recall from Slide 4-165:

The noncoherent ML computes

m̂ = arg max
1≤m≤2

∣r †
`sm,`∣

s1,` = (
√

2Es 0 )
s2,` = ( 0

√
2Es)

Hence,

m̂ = arg max
1≤m≤2

∣rm,`∣ = arg max
1≤m≤2

∣rm,`∣
2
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Now we have L diversities/channels:

r j ,` = [rj ,1,`
rj ,2,`

] = αje
ı φj sm,` + nj ,` j = 1,2, . . . ,L

Instead of maximal ratio combining, we again do square-law
combining:

m̂ = arg max
1≤m≤2

L

∑
j=1

∣r j ,m,`∣
2
.

Pe,noncoherent BFSK = (1 − µ
2

)
L

⋅
L−1

∑
k=0

(L − 1 + k

k
)(1 + µ

2
)
k

with µ = γ̄c
2 + γ̄c

≈ ( 1

γ̄c
)
L

(2L − 1

L
) when γ̄c large.
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Summary (what the theoretical results indicate?)

With Lth order diversity, the POE decreases inversely with
Lth power of the SNR.
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In Cases 1 & 2, comparing the prob density functions of α for
1-diversity (no diversity) Nakagami fading and L-diversity
Rayleigh fading, we conclude:

L-diversity in Rayleigh fading = 1-diversity in Nakagami-L

or further

mL-diversity in Rayleigh fading = L-diversity in Nakagami-m
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13.4-2 Multiphase signals
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For M-ary phase signal over L Rayleigh fading channels, the
symbol error rate Pe can be derived as (Appendix C)

Pe = (−1)L−1(1 − µ2)L

π(L − 1)!
( ∂L−1

∂bL−1
{ 1

b − µ2
[ π
M

(M − 1)

− µ sin(π/M)√
b − µ2 cos2(π/M)

cot−1( −µ cos(π/M)√
b − µ2 cos2(π/M)

)
⎤⎥⎥⎥⎦

⎫⎪⎪⎬⎪⎪⎭

⎞
⎠
b=1

≈
⎧⎪⎪⎨⎪⎪⎩

M−1
log2(M) sin2(π/M)

1
2Mγb

M-ary PSK & L=1

M−1
log2(M) sin2(π/M)

1
Mγb

M-ary DPSK & L=1

where

µ =
⎧⎪⎪⎨⎪⎪⎩

√
γ̄c

1+γ̄c M-ary PSK
γ̄c

1+γ̄c M-ary DPSK

and in this case, the system SNR γ̄t = γ̄b log2(M) = Lγ̄c .
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PSK is about 3dB
better than DPSK
for all M (L = 1).

Recall Slide 4-180
under AWGN,
BDPSK is 1 dB
inferior than BPSK
and
QDPSK is 2.3 dB
inferior than QPSK.
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DPSK performance
with diversity

● Bit error Pb is
calculated based on
Gray coding.

● Larger M, worse Pb

except for equal Pb

at M = 2,4.
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13.4-3 M-ary orthogonal signals

Digital Communications: Chapter 13 Ver 2018.07.23 Po-Ning Chen 90 / 118



Noncoherent detection

Here, the derivation assumes that both passband and
lowpass equivalent signals are orthogonal; hence, the
frequency separation is 1/T rather than 1/(2T ).

Based on lowpass (baseband) orthogonality, L-diversity
square-law combining gives

Pe = 1

(L − 1)!

M−1

∑
m=1

(−1)m+1(M−1
m

)
(1 +m +mγ̄c)L

m(L−1)

∑
k=0

βk,m(L − 1 + k)!( 1 + γ̄c
1 +m +mγ̄c

)
k

where βk,m is the coefficient of Uk in (∑L−1
k=0

Uk

k! )
m

, i.e.,

(
L−1

∑
k=0

Uk

k!
)
m

=
m(L−1)

∑
k=0

βk,mU
k .
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M = 2 case:

● Let γ̄t = Lγ̄c be
the total system
power.
For fixed γ̄t ,
there is an L
that minimizes Pe .

● This hints that
γ̄c = 3 ≈ 4.77 dB

gives the best
performance.
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M = 4 case:

● Let γ̄t = Lγ̄c be
the total system
power.
For fixed γ̄t ,
there is an L
that minimizes Pe .

● This hints that
γ̄c = 3 ≈ 4.77 dB

gives the best
performance.
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Discussions:
● Larger M, better performance
but larger bandwidth.

● Larger L, better performance.

● An increase in L
is more efficient
in performance gain
than an increase
in M.
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13.5 Digital signaling over a
frequency-selective, slowly fading

channel
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13.5.1 A tapped-delay-line channel
model
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Assumption (Time-invariant channel)

c`(τ ; t) = c`(τ)

Assumption (Bandlimited signal)

s`(t) is band-limited, i.e., ∣s`(f )∣ = 0 for ∣f ∣ >W /2

In such case, we shall add a lowpass filter at the Rx.

where L(f ) =
⎧⎪⎪⎨⎪⎪⎩

1, ∣f ∣ ≤W /2

0 otherwise
.
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r`(t) = ∫
∞

−∞
s`(f )C`(f )e ı2πftdf + zW (t)
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For a bandlimited C`(f ), sampling theorem gives:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c`(t) =
∞
∑

n=−∞
c` (

n

W
) sinc(W (t − n

W
))

C`(f ) = ∫
∞

−∞
c`(t)e− ı2πftdt

=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1

W

∞
∑

n=−∞
c` (

n

W
) e− ı2πfn/W , ∣f ∣ ≤W /2

0, otherwise
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r`(t) = ∫
∞

−∞
s`(f )C`(f )e ı2πftdf + zW (t)

= 1

W

∞
∑

n=−∞
c` (

n

W
)∫

W /2

−W /2
s`(f )e ı2πf (t−n/W )df + zW (t)

= 1

W

∞
∑

n=−∞
c` (

n

W
) s` (t −

n

W
) + zW (t)

=
∞
∑

n=−∞
cn ⋅ s` (t −

n

W
) + zW (t), where cn =

1

W
c` (

n

W
)

For a time-varying channel, we replace c`(τ) and C`(f ) by c`(τ ; t)
and C`(f ; t) and obtain

r`(t) =
∞
∑

n=−∞
cn(t) ⋅ s` (t −

n

W
) + zW (t)

where cn(t) = 1
W c` ( n

W ; t) .
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Statistically, with probability one, c`(τ) = 0 for τ > Tm and τ < 0.
So, c`(τ) is assumed band-limited and is also statistically time-limited!

Hence, cn(t) = 0 for n < 0 and n > TmW (since τ = n/W > Tm).

r`(t) =
⌊TmW ⌋
∑
n=0

cn(t) ⋅ s` (t −
n

W
) + zW (t)

For convenience, the text re-indexes the system as

r`(t) =
L

∑
k=1

ck(t) ⋅ s` (t −
k

W
) + zW (t).
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13.5-2 The RAKE demodulator
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Assumption (Gaussian and US (uncorrelated scattering))

{ck(t)}Lk=1 complex i.i.d. Gaussian and can be perfectly estimated
by Rx.

So the Rx can regard the “transmitted signal” as one of

⎧⎪⎪⎪⎨⎪⎪⎪⎩

v1,`(t) = ∑L
k=1 ck(t) ⋅ s1,` (t − k

W
)

⋮
vM,`(t) = ∑L

k=1 ck(t) ⋅ sM,` (t − k
W

)

So Slide 4-158 said:

Coherent MAP detection

m̂ = arg max
1≤m≤M

Re [r †
`vm,`] = arg max

1≤m≤M
Re [∫

T

0
r`(t)v∗m,`(t)dt]

= arg max
1≤m≤M

Re [
L

∑
k=1
∫

T

0
r`(t)c∗k (t)s

∗
m,` (t −

k

W
)dt]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Um,`
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Discussions on assumptions: We assume:

s`(t) is band-limited to W .

c`(τ) is causal and (statistically) time-limited to Tm and, at
the same time, band-limited to W .

W ≫ (∆f )c = 1
Tm

(i.e., L ≈WTm ≫ 1)

The definition of Um,` requires T ≫ Tm (See page 871 in
textbook) such that the longest delayed version

s`(t − L/W ) = s`(t −WTm/W ) = s`(t −Tm)

is still well-confined within the integration range [0,T ). As a
result, the signal bandwidth is much larger than 1/T ; RAKE
is used in the demodulation of “spread-spectrum” signals!

WT ≫ L ≈WTm ≫ 1 Ô⇒ W ≫ 1
T
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M = 2 case

The receiver collects
the signal energy from
all received paths, which
is somewhat analogous
to the garden rake that
is used to gather leaves,
hays, etc. Consequently,
the name “RAKE re-
ceiver” has been coined
for this receiver struc-
ture by Price and Green
(1958). (I use sm,`, but the text

uses s`,m .)
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An alternative realization of RAKE receiver

The previous structure requires M delay lines.

We can reduce the number of the delay lines to one by the
following derivation.

Let u = t − k
W .

Um,` = Re [
L

∑
k=1
∫

T

0
r`(t)c∗k (t)s∗m,` (t −

k

W
)dt]

= Re [
L

∑
k=1
∫

T−k/W

−k/W
r` (u +

k

W
) c∗k (u + k

W
) s∗m,` (u)du]

≈ Re [
L

∑
k=1
∫

T

0
r` (t +

k

W
) c∗k (t + k

W
) s∗m,` (t)dt]

where the last approximation follows from
∣ k
W

∣ ≤ ∣ L
W

∣ ≈ ∣TmW
W

∣ = Tm ≪ T (See Slide 13-104).
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r` (t + L
W

) r` (t + L−1
W

) ⋯ r` (t + 1
W

)

c∗k (t + k
W

) = 1
W
c∗` (

k
W

; t + k
W

) is abbreviated as c∗k (t) in the above figure.
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Performance of RAKE receiver

Suppose ck(t) = ck and the signal corresponding to m = 1 is
transmitted. Then, letting Ũm,` = 1√

2Es
Um,` and

s̃∗m,` (t −
k
W

) = 1√
2Es

s∗m,` (t −
k
W

) (normalization), we have

Ũm,` = Re [
L

∑
k=1
∫

T

0
r`(t)c∗k s̃

∗
m,` (t −

k

W
)dt]

= Re

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

L

∑
k=1
∫

T

0
(

L

∑
n=1

cns1,` (t −
n

W
) + zW (t))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
m=1

c∗k s̃
∗
m,` (t −

k

W
)dt

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= Re [
L

∑
k=1

L

∑
n=1

cnc
∗
k ∫

T

0
s1,` (t −

n

W
)s̃∗m,` (t −

k

W
)dt]

+Re [
L

∑
k=1

c∗k ∫
T

0
zW (t)s̃∗m,` (t −

k

W
)dt]
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Assumption (Add-and-delay property)

The transmitted signal is orthogonal to the shifted counterparts of
all signals, including itself.

{zk = ∫
T

0 zW (t)s̃∗m,` (t −
k
W

)dt}
L

k=1
complex Gaussian with

E [∣zk ∣2] = 2N0 because {s̃∗m,` (t −
k
W

)}Lk=1 orthonormal.

Hence, with αk = ∣ck ∣,

Ũm,` = Re [
L

∑
k=1

∣ck ∣2∫
T

0
s1,` (t −

k

W
)s̃∗m,` (t −

k

W
)dt] +Re [

L

∑
k=1

c∗k zk]

=
L

∑
k=1

α2
kRe [⟨s1,` (t −

k

W
) , s̃m,` (t −

k

W
)⟩] +

L

∑
k=1

αknk,`,

where {nk,` = Re[e− ı∠ck zk]}Lk=1 i.i.d. Gaussian with E [n2
k,`] = N0.

Under T ≫ Tm, ∫
T

0 s1,` (t − k
W

) s̃∗m,` (t −
k
W

)dt is almost
functionally independent of k ; so,

⟨s1,` (t − k
W

) , s̃m,` (t − k
W

)⟩ ≈ ⟨s1,` (t) , s̃m,` (t)⟩ .
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Therefore, the performance of RAKE is the same as the L-diversity
maximal ratio combiner if {αk}Lk=1 i.i.d.
However, {αk = ∣ck ∣}Lk=1 may not be identically distributed.

In such case, we can still obtain the pdf of
γb = ∑L

k=1 γk = ∑
L
k=1 α

2
kEs/N0 = α2Es/N0 from

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

characteristic function of γk ≡ Ψk( ı ν) =
1

1 − ı νγ̄k
characteristic function of γb =

L

∑
k=1

γk ≡
L

∏
k=1

Ψk( ı ν) =
L

∏
k=1

1

1 − ı νγ̄k

The pdf of γb is then given by the Fourier transform of characteristic
function:

f (γb) =
L

∑
k=1

πk
γ̄k

e−γb/γ̄k

where with γ̄k = E[γk], πk =
L

∏
i=1,i≠k

γ̄k
γ̄k − γ̄i

, provided γ̄k ≠ γ̄i for k ≠ i .
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

BPSK ∶
⎧⎪⎪⎨⎪⎪⎩

U1,` ≈ ∑L
k=1 α

2
kRe [⟨s1,` (t) , s̃1,` (t)⟩] +∑L

k=1 αknk,`

U2,` ≈ ∑L
k=1 α

2
kRe [⟨s1,` (t) , s̃2,` (t)⟩] +∑L

k=1 αknk,`

BFSK ∶
⎧⎪⎪⎨⎪⎪⎩

U1,` ≈ ∑L
k=1 α

2
kRe [⟨s1,` (t) , s̃1,` (t)⟩] +∑L

k=1 αknk,`

U2,` ≈ ∑L
k=1 α

2
kRe [⟨s1,` (t) , s̃2,` (t)⟩] +∑L

k=1 αknk,`

⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

BPSK ∶
⎧⎪⎪⎨⎪⎪⎩

U1,` ≈ ∑L
k=1 α

2
k

√
2Es +∑L

k=1 αknk,`

U2,` ≈ ∑L
k=1 α

2
k(−

√
2Es) +∑L

k=1 αknk,`

BFSK ∶
⎧⎪⎪⎨⎪⎪⎩

U1,` ≈ ∑L
k=1 α

2
k

√
2Es +∑L

k=1 αknk,`

U2,` ≈ ∑L
k=1 α

2
k ⋅ (0) +∑L

k=1 αknk,`

with E [n2
k,`] = N0

Then,

Pe =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
2 ∑

L
k=1 πk (1 −

√
γ̄k

1+γ̄k ) ≈ (2L−1
L

)∏L
k=1

1
4γ̄k
, BPSK, RAKE

1
2 ∑

L
k=1 πk (1 −

√
γ̄k

2+γ̄k ) ≈ (2L−1
L

)∏L
k=1

1
2γ̄k
, BFSK, RAKE
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Estimation of ck

For orthogonal signaling, we can estimate cn via

∫
T

0
r` (t +

n

W
)(s∗1,`(t) +⋯ + s∗M,`(t))dt

=
L

∑
k=1

ck ∫
T

0
sm,` (t +

n

W
− k

W
)(s∗1,`(t) +⋯ + s∗M,`(t))dt

+∫
T

0
z (t + n

W
)(s∗1,`(t) +⋯ + s∗M,`(t))dt

=
L

∑
k=1

ck ∫
T

0
sm,` (t +

n

W
− k

W
) s∗m,`(t)dt

+∫
T

0
z (t + n

W
)(s∗1,`(t) +⋯ + s∗M,`(t))dt (Orthogonality)

= cn ∫
T

0
∣sm,` (t) ∣2dt + noise term (Add-and-delay)
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M = 2 case

Bd = Doppler spread
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Decision-feedback estimator

The previous estimator only works for orthogonal signaling.
For, e.g., PAM signal with

s`(t) = I ⋅ g(t) where I ∈ {±1,±3, . . . ,±(M − 1)},

we can estimate cn via

∫
T

0
r` (t +

n

W
)g∗(t)dt

= ∫
T

0
(

L

∑
k=1

ck ⋅ I ⋅ g (t + n

W
− k

W
) + z (t + n

W
))g∗(t)dt

=
L

∑
k=1

ck ⋅ I ⋅ ∫
T

0
g (t + n

W
− k

W
)g∗(t)dt + noise term

= cn ⋅ I ⋅ ∫
T

0
∣g (t) ∣2dt + noise term (Add-and-delay)
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Final notes

Usually it requires (∆t)c
T > 100 in order to have an accurate

estimate of {cn}Ln=1.

Note that for DPSK and FSK with square-law combiner, it is
unnecessary to estimate {cn}Ln=1.

So, they have no further performance loss (due to an
inaccurate estimate of {cn}Ln=1).
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What you learn from Chapter 13

Statistical model of (WSSUS) (linear) multipath fading
channels:

c`(τ ; t) = c(τ ; t)e− ı2πfcτ and c(τ ; t) = ∣c`(τ ; t)∣
Multipath intensity profile or delay power spectrum

Rc` (τ) = Rc` (τ ; ∆t = 0) .

Multipath delay spread Tm vs coherent bandwidth (∆f )c
Frequency-selective vs frequency-nonselective
Spaced-frequency, spaced-time correlation function

RC`(∆f ; ∆t) = E{C`(f +∆f ; t +∆t)C∗
` (f ; t)}
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Doppler power spectrum

SC`(λ) = ∫
∞

−∞
RC`(∆f = 0; ∆t)e− ı2πλ(∆t)d(∆t)

Doppler spread Bd vs coherent time (∆t)c
Slow fading versus fast fading
Scattering function

S(τ ;λ) = F∆t {Rc`(τ ; ∆t)}

Jakes’ model
Rayleigh, Rice and Nakagami-m, Rummler’s 3-path
model
Deep fading phenomenon
BdTm spread factor: Underspread vs overspread
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Analysis of error rate under frequency-nonselective, slowly
Rayleigh- and Nakagami-m-distributed fading channels
(≡diversity under Rayleigh) with M = 2

(Good to know) Analysis of the error rate ⋯ with M > 2.

Rake receiver under frequency-selective, slowly fading
channels

Assumption: Bandlimited signal with ideal lowpass filter
and perfect channel estimator at the receiver
This assumption results in a (finite-length)
tapped-delay-line channel model under a finite delay
spread.
Error analysis under add-and-delay assumption on the
transmitted signals
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