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12.1 Model of spread spectrum

digital communications system
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What is “spread spectrum communications?”
@ A rough definition: The signal spectrum is wider than
“necessary,” i.e., 1/T.

Recollection: Sampling theorem

@ A signal of (baseband or single-sided) bandwidth Wi, can be
reconstructed from its samples taken at the Nyquist rate (=
2Whase samples/second) using the interpolation formula

o n n
s(t) = s( )sinc(2Wase(t— ))
( ) n:z—:oo 2VVbase i 2VVbase

- Whase Whase Thus, T = 1

base
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However, for a signal that consumes W = W,555 = 2Wh,se Hz band-
width after upconvertion, we should put T = %

1
Thus, T=— or W =
us WOF

~l=
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Since we have spectrum wider than “necessary,” we have
extra spectrum to make the system more “robust.”
(digital information)...0110
{6 =(1100011)
where

1=(0011100) N

Subdivision in time : W = L and ﬂ =17 m
T T

C C

spectrum

Time domain
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Applications of spread spectrum technique

@ Channels with power constraint
e E.g., power constraint on unlicensed frequency band
@ Channels with severe levels of interference

o Interference from other users or applications
o Self-interference due to multi-path propagation

@ Channels with possible interception
e Privacy

Features of spread spectrum technology
@ Redundant codes (anti-interference)

@ Pseudo-randomness (anti-interception from jammers)

e Or anti-interference in the sense of “not to interfere
others”
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Model of spread spectrum digital com system

Information Channel anne
—_— © Modulator  |—»{ Channel |—» Demodulator |—| Channel M»
sequence encoder decoder data
Pseudo-random Pseudo-random
pattern pattern
generator generator

Usage of pseudo-random patterns
@ Synchronization
e Achieved by a fixed pseudo-random bit pattern

@ The interference (from other users) may be characterized
as an equivalent additive white noise.
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Two different interferences (from others)

¢ Narrow-band interference

#® Broadband interference
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Two types of modulations are majorly considered in this
subject.
e PSK
e This is mostly used in direct sequence spread spectrum
(DSSS), abbreviated as DS-PSK.
o Note that some also use MSK in DSSS, abbreviated as
DS-MSK.
e FSK
e This is mostly used in frequency-hopped spread
spectrum (FHSS).
e The FHSS will not be introduced in our lectures.
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12.2 Direct sequence spread

spectrum signals
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A simple spread spectrum system

@ Chip interval: T, = %

@ BPSK is applied for each chip interval.

e Bandwidth expansion factor B, = %( = % = %)

o Number of chips per information bit L. = %

oo
. [ERipmiijmy

w Data signal
+ —‘
‘Ll_l_l_l_l_l_l
fe— T, ——»
77— I
b
Time domain () PN and data sigoals
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In practice, the spread spectrum system often consists of an
encoder and a modulo-2 adder.

@ Encoder : Encode the original information bits (in a
pre-specified block) to channel code bits, say (7, 3) linear
block code.

@ Modulo-2 adder : Directly alter the coded bits by
modulo-2 addition with the PN sequences.
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1) Choose T, =1ms, Tjp=14 ms and T, =7 ms,

T. length of a chip
where { T;, length of an information bit
Te length of a code bit

2) Use (6,3) linear block code (3 information bits — 6 code
bits)

[100] 0]

010

001

100

010

001 e

generator code
matrix bits
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3) Use the repetition code for chip generation:

code bit 0 — 0000000

code bit 1 - 1111111
——

seven
chips

— LC:%:14

4) XOR with the PN sequence:

Information 001 —— Code 001001

0000000,0000000,1111111,0000000,0000000,1111111

: Chips for information messages

PN (chip) sequence
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Example (Revisited)

How about we combine Step 2) and Step 3)?

2&3) Use (n=6x7,k =3x1) linear block code (3 information
bits — 42 code bits)

eeeld J Combine as one encoder

1 0000000,0000000,1111111,0000000,0000000,1111111

i i Chips for information messages

PN (chip) sequence —— @ — True BPSK transmission

____________________________________________________________________________________
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Combined DSSS system

n-bit PN code #-bit channel symbol

PN Mod-2 Balanced
generator adder modulator
T cos 2 f, ¢t
y PSK
Encoder Fgcal Adder Q S
oscillator signal
=
1 sin 2n f,.¢
PN Mod-2 Balanced
generator adder modulator

by,i=0,...;n=1 | g-bit PN code n-bit channel symbol |a,,i=0,...,n-1

ai=b;®c;, i=0,...,n—1 and each a; is BPSK-transmitted.
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Performance analysis

Let g(t) be the baseband pulse shape of duration T.. Notably,
we drop the subscript ¢ for lowpass equivalent signals in this chapter for

convenience.

t_.Tc if i:0 .
gi(t) = & I,) !a fori=0,1,...,n-1
_g(t_’Tc) Ifa,-z]_

Then

gi(t) (1-2a;)g(t-iTc)

[1-2(b & cm)]g(t - iT.)

= [(1=2b)p(t=iTc)] < [(1-2¢cmi)g(t—iTc)]

or [(2b; = 1)p(t - iTc)] x [(2cm,i - 1)g(t = iTc)]
pi(t) x cm,i(t)

where p(t) =rectangular pulse of height 1 and duration T..
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Consequently,

channel symbol g.(t)

ggi(t)
_ Zpimcm,f(r)
= (”ZO Pi(t)) (HZO Cm,i(t))

= ppn(t) xcp(t)  wherem=1,2....M

@ In implementation (e.g., spectrum), the DSSS channel
symbol is the modulo-2 addition between code bits/chips
and the PN chips, followed by a chip-based BPSK
modulation.

@ In analysis, DSSS channel symbol can be conveniently
expressed as a coded BPSK signal ¢,,(t) multiplying a
randomly polarized sequence ppy(t).
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DSSS receiver design

For iTo<t<(i+1)T,

ri(t) = pi(t)cm,i(t) + 2(1)

where z(t) is the interference introduced mainly by other users and
also by background noise.

Since for iTc<t< (i+1)Tg,

pi(t) x pi(t) [(2b; = 1)p(t —iTe)] x [(2b; = 1)p(t —iTc)]
=1

we have ¢, ;(t) [pi(t)cm,i(t)] x pi(t)

[ri(t) = z(£)] x pi(t)

ri(t) x pi(t) - z(t) x pi(t)
Conclusion: The estimator &, i(t) can be obtained from
ri(t) x p;(t) if the channel is interference free.
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r()p(t) = () +z(0)p,

(1)

=(2¢,-1)g(?)+(2b, - 1)z(t)

rr) /

PN signal

g™

v, =Re

e+ =20p 0=’ ]

Te
j’“ ()di

Y

Sampler

v,
F———

Chip-rate

gencrator
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y; = Re [[OTC[(2C,,,,,- - 1D)gi(t) +(2b; - 1)z(t)] x g,-*(t)dt]

(2cmi— 1)Re[(gi(1), gi(1))] + (2bi - 1)Re [(2(1), &i(1))]
(2Cm’,' - 1)255 + (2b, — 1)V,'

where v; = Re [(z(t), gi(t))].
Recall that Slide 2-24 has derived:
(x(1).y(t)) = 3Re{(x(t),ye(t))} .

& = (gpassband(t)agpassband(t)> = %Re{(g(t),g(t))}
= 3(g(t),g(t))
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(combined) &({\ )

0~ 2k -1 (n’k) CiorCn (Vl === Vi Visees Yy ML Els'"’én (I’I,k) 1~M
———

encoder { ((b,(‘_b)ns

yi= (2Cm7,' - 1)2gc + (2b, = 1)1/,'

decision decoder

Assumptions:
@ z(t) is a baseband interference (hence, complex).

@ z(t) is a (WSS) broadband interference, i.e., PSD of z(t)
is

w
S:(f) =24y for|f|< >

e z(t) Gaussian
@ (2b;-1) is known to Rx
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M = arg min |y -2E.(2cm-1)|?
1<m<M
= arg max (y,26.(2¢m—1)) since |2¢, — 1|% constant
1<m<M
n
= 263 (2¢m; — 1)yi
arg 12?"3;}\/1 CZI( Cm,i )y:

= arg max Z(2cm, 1)y;

1<m<M
Suppose

@ linear code is employed, and

@ the transmitted codeword is the all-zero codeword (i.e., ¢ ;).

n
m = arg 1gr1nas);\/l ;(2@",,‘ - 1)[(2C1’,' - 1)25(_- + (2b, - 1)1/,']
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Prlerror] = Pr[m # 1]

[ 2”3(2 C17; —1)[(2 C17,' —1)25‘; + (2b,‘ - l)V,']

o Y
= r = n =
<, max Z(2cm, - 1)[(23;,-—1)2& +(2b; - 1)vj]
! =0
2n5c - Z(Zb,’ - 1)V,'
= Pr =
< max [ 2&. Z(2cm, 1)+Z(2cm, 1)(2b,-—1)y,-]

<_max [28 (- 2Wm)+Zn:(2cm7,-_1)(2b,-—1)y,-]

2<m i1

I
-
-

—

Pr|{ min (2ECWm = > cm,i(2b; - 1)Vi) < 0]

_ZSmSM i

where w,, is the number of 1's in codeword m.
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Let Ry =28 . wp, — Z?:l Cm7,'(2b,' - 1)V,'.
Note that R,, given b is Gaussian with

mean E[Rp|b] = 2E.w,, and variance Var[Rp|b] = wnE[1/7].

m—r)
o

We have the union bound: Pr{/\/(m,az) < r} - Q(
d

fPr[RmomﬁQ(M)

Prlerror|b] = Pr[ min R, <0

2<m<M

IA

Since the upper bound has nothing to do with b, we have

M
Pr[error] Z Pr(b) Prlerrorlb] < > Q (M)

m=2 Wi E[1?]
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Re [(Z(t.)j gi(t))]
Re[ [ zog - iTc)dt]

Re[ATcz(t)g*(t)dt] =Re[v; + 17;]

Vi

where “2" means “equality in distribution.”

Assumption: v; and ©; are zero mean and uncorrelated. J

E[?] - EE[|V,-+m,-|2]:%E[‘foT‘z(t)g*(t)dtﬂ
- 5 [ [ E[2(t)z*(s)]g" (t)g(s)dtds
_ 5[00 [oo R,(t—s)g" (t)g(s)dtds
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foo (/_- g(s)R; (t—S)ds) *(t)dt

[oo (/: G(f)s (f)elzﬂftdf)g (t)dt
G RXGY

E [’I/,' + Zl?,"z]

=E[1}] = %/m|G(f)|2SZ(f)df
w2 )
- JO[W/2IG(f)| df
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M 28 W,
Prlerror] < ZzQ m)
M 28 W,
= 20 Jo )
M
_ S 2(k/nJ)5,,Wm)
m=2 0
M
2,

Q (\/ZRC%Wm)

3
i
N

@ R.=k/n code rate
where o v, = £,/ signal-to-interference ratio
per info bit
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How about z(t) being narrowband interference?

Assumptions:
@ z(t) is a baseband interference (hence, complex).

e z(t) is a (WSS) narrowband interference (around zero
freq), i.e., PSD of z(t) is

S.(F) = {Jav_%( W), forlfl< %

0, otherwise

where J,, = 2WJ,.

2J,
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All the derivations remain unchanged except

22) = 5 [ I6(PS.(F)df

I
= 307 S 160

The value of E[v?] hence depends on the spectra of g(t) and
the location of the narrowband jammer.
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Example 12.2-1

Rectangular pulse and its energy density spectrum.

G(fHP
g1
paT 24T,
0 7, ' IR R S
T, T. T, T, T, T,
J Wi /2 J.E B/2
E[v] = = 1 |G(F)|2df = =¥ Cf sinc?(x)dx
2Wh J-wy /2 Wy J-p)2
Jav€c

IN

= L€ Te =2 €,
m B b

where we use x =fT. and 8= W, T, = % in the derivation.
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1.0
0.8
E
g 06
Z
b=
v 04
=
-
0.2
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How about z(t) being CW jammer?

Assumptions:

@ z(t) is a CW (continuous wave) interference (hence,
complex).

@ z(t) is a (WSS) CW (continuous wave) interference, i.e.,
PSD of z(t) is
S.(f) = J.,0(f)

B7] = 5 [ I6(HPS.()df

= %|G(O)|2 =2Jp€. for Example 12.2-1

where G(0) =+/2E. T, (and J,, =2/W and WT, =1).
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From the above discussion, we learn that

@ Under narrowband jammer, the DSSS performance
depends on the shape of g(t).

@ For example (Example 12.2-2), if g(t) = \/4& sin (2t ) for
0<t< T then G(0) = [ g(t)dt=2/E T, and

2
Q( % c’bem)

Q (\/ (2.4674)Rc%wm)

Prlerror] <

Mz M=

2

3
i

The error bound for one half cycle sinusoidal g(t) is
about 0.9dB better than that of rectangular g(t).
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Alternative union bound

Since | J,, =2,W =24/ T, and P,, =&,/ Ts,

&  PuTy 2L
JO - JavTc/2 - Jav/Pav

b

Pr[error]

IA

M M
> Q(V2Rerswn) z_Q( 47’7—‘:;”’")

m=2 m=2

L. .
(M-1)Q (\/4J3V/Pav UL R“Wm)

J v . . .
7~ Jamming-to-signal power ratio

IN

where { L. Processing gain

Mino<mem Rew,, Coding gain (Recall wy = 0)
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Interpretation

@ Processing gain:

e Theoretically, it is the number of chips per information
bit, which equals the bandwidth expansion factor Be.

e Practically, it is the gain obtained via the uncoded DSSS
system (e.g., uncoded BPSK DSSS) in comparison with
the non-DSSS system (e.g., BPSK Q(1/275)).

e So, it is the advantage gained over the jammer by the
processing of spreading the bandwidth of the

transmitted signal.
No coding here.

Information 001 i Code 001

Combine as one encoder |

‘ Chips for information messages
1 0000000,0000000,1111111

PN (chip) sequence —— %SK transmission

There is still “processing” here.
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e Coding gain
e It is the advantage gained over the jammer by a proper
code design.

Example. Uncoded DSSS: Assume we use (n,1) code.

Then,

1
Re==,M=2"=2 w; =0,w = n.
n

Hence, coding gain = minac ey Rewn, = %n =1=04dB.

e Definition: Jamming margin
e The largest jamming-to-signal power ratio that
achieves the specified performance (i.e., error rate)
under fixed processing gain and coding gain.
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Example 12.2-3

Problem: Find the jamming margin to achieve error rate 10-°
with L. = 1000 and uncoded DSSS.

For M =2 (uncoded DSSS), the union bound is equal to the
exact error. J

Answer:
L. 1
Prlerror] = Q( 4Jav/Pav Rcwz) = Q( 4Jav0/OFE:v) <10°°
where R. =1/n and w, = n.
Then, J,,/P,, =22.5 dB. O
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Example 12.2-3 (revisited)

Problem: Given that v, = 10.5 dB satisfies Q(1/275) = 107°, find
the jamming margin to achieve error rate 10™® with L. = 1000 and
uncoded DSSS.

Answer:

Lc . _
Prlerror] = Q (\/4Jav/Pav ,min_ Rcwm) =107°

Then, .
ol P 2SrPn|SnM R-wy, =10.5 dB

or equivalently,

10log;p(2) dB+ L, dB+2Sr11niSnM RcwWm dB—(J,y/Pay) dB =10.5 dB.
Thus,

3 dB+30 dB+0 dB—(Js,/P,y) dB =10.5 dB = (J,,/Pa., ) dB =225 dB

O
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Spectrum analysis

We now demonstrate why it is named spread spectrum system!
Assume the uncoded DSSS system, where all-zero and all-one
codes are used.

Then

channel symbol gs(t) = ppn(t) x c(t) + z(t) J

where

c(t) = i Ins(t = nTy) with s(t) = {i(t mod Tc) 0<t<Tp

n=—oo

otherwise

and
{Ih e {£1}} 72 _. zero-mean i.i.d.

From Slide 3-117,
5e(f) = ESIOIS(OR = LIS(F)P

where S;(f) = X2 Ri(k)e v2mkfTs = 1,
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Assume g(t) rectangular pulse of height 1/\/ Tp and duration T,
(hence, [,/ s?(t)dt =1). Then (cf. Slide 12-31 by replacing T
with T. and letting £ = 1/2),

§C(f) = Tl (Tb5|nc2(be)) = S|nc2(be)

Similarly,

S @by~ 1)p(t = iTe)lyms(t i) T)

i=—o00

H ; (2b; - \/Tp(t_iTc)

where here {2b; —1}72, and {(2b; - 1)/j/n|} 2, actually have the
same distribution. Then from Slide 3-117,

pen(t)c(t)

e

Gl ==

P(f)| Tsmc2(T f))=—5|nc2(T f)
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Se(f) =sinc®(Tyf)

Spwc(F) =+

-1/Te -1/Tb 0 1/Th 1/Te
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Recovered symbol at the receiver end:

pen()gs(t) = pRy(t) x c(t) + pen(t)2(t)
c(t) + pen()z(2)

This indicates that for WSS z(t), the PSD of the new noise
pen(t)z(t) is:

Spxz(f)

gp(f) * S, (f)
[wgp(s)sz(f_s)dS:ZJo [wgp(s)ds

[es) 1 e}
2J0[ ?|P(s)|2ds=2J0/ T.sinc®(T.s)ds
= 2Jy

where for simplicity we let S,(f) = 2J, for f e R.

Digital Communications: Chapter 12 Ver 2018.12.11 Po-Ning Chen



Se(f) =sinc®(Tpf)

210

Spwc(f) = Licsincz(

-1/Te -1/Tb 4] 1/Th 1/Te

Digital Communications: Chapter 12 Ver 2018.12.11 Po-Ning Chen



Multiplication of ppn(t) = spreading the power over the
bandwidth of ppy(t) (so that the transmitted signal could
be “hidden” under the broadband interference.)

Multiplication twice of ppn(t) recovers the original signal.

The spreading fraction is approximately equal to the
processing gain.

Modulator: Transmit ppn(t)c(t)
@ Demodulator: Based on r(t)ppn(t) = c(t) + z(t)pen(t)
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Further performance enhancement by coding

Coding gain = mina<m<m Rewm(Recall wy = 0) J

Use (ny, k) code as the outer code, and (n,,1) repetition code
as the inner code, where n = nyn,.

Then
Coding gain = min R.w,,
2<m<M
. (out)
= min —nmw,
2<m<M nqno
. t t
= min Réou)w,(no”)
2<m<M

The use of the inner code here is to align the length of the outer
code n;y to the length of the PN sequence n.
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Since the inner code is the binary repetition code, the bit error rate
p of the outer code is the symbol error rate of the inner code,
where under broadband interference,

p Q (\/2R£in)’y[()in) Wz(in)) For M =2, we have “equality”, not “<."

Q( oL méc )Q(\/2LM)
n» Jo n» Jo

Q(\/2~/bR§°”t))=Q(\/2 2Le R("”t)). (cf. Slide 12-35)

av/Pav

Then the symbol error rate of the entire system satisfies

ni n m 2k w
Pe< ). ( 1)p’"(l—p)’” < Y [4p(1-p)]*m/?
m=t+1 \M m=2

Chernoff bound

where t = | (dmin —1)/2]| and dpin is the minimum Hamming
distance among outer codeword pairs.
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Golay (24,12) (outer) code

Example. Use Golay (24,12) outer code and set L. = 100.

@ We need to first determine ny based on ny = 24.

12Tb = nTc =niny Tc = 24-[72 Tc

127, 1. 1
= Np 24Tc 2 c 2
@ Then p= Q( 2&}%&%) = Q(\/ Jj?g.gv)'
°
24
24 -
Pe < ) ( )p"’(l—P)24 "
m=4 \M

IN

759[4p(1 - p)]* +2576[4p(1 - p)1° + 759[4p(1 - p)1®
+[4p(1 - p)]*.
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Golay (24,12) code

Weight | number of codewords
0 1

8 759

12 2576

16 759

24 1
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Appendix: Hard-decision versus soft-decision

Real-valued
demodulation
output is observed.

Real-valued
demodulation
output is observed.

Soft-decision
for each
inner-code bit

E diamming (T €)

7 {0 1}"m

Quantization
for inter-code
observation

Hard-decision
for each
outer-code symbol

Ee(niny k)

> g —2E.(2¢ - 1))

combined code

Soft-decision
for each
outer-code symbol

{1,2,--, M}

The performance usually improves 3 dB by using soft-decision.
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1
0 G(24,12)

PG=20dB

[

v
N
AR
Gi24.11) ‘.
PG =204d8B |‘ N
'

E’ "I T e ...Shift-10dB due to

T VAN " processing gain

R

R - U T Shift-10dB due to
UL processing gain

Jemming margin J_JP,,
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12.2-2 Some applications of DS

spread spectrum signals
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Code division multiple access (CDMA)

If each user has its own PN sequence (with good properties), then
many DSSS signals are allowed to occupy the same channel
bandwidth.

r(t) = PP ()P (1) + pP ()@ (t) + -+ pM) (1) N (1) + 2(t)
Z(t)

= pD() () = cD(e) +pV (1) (1)
How to determine the number of users (capacity)?

@ Each user is a broadband interference with power P,,
(cf. Slide 12-8)

Pay _ Pay _ 1

Jav B (Nu_l)Pav - Nu_l.
By this, we can obtain for L. = 100 and Golay (24,12) outer
code and P, < 10_6, Ny =41, (For details, see (12.2-48) in text.)
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12.2-3 Effect of pulsed interference

on DS spread spectrum systems
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Types of interferences

e CW jammer S,(f) = J,,0(f)
@ Broadband interference S,(f) = 2J, for |f| < W/2

@ Pulsed interference

zp(t) = Z'()(1)

where z/(t) is a broadband interference with

S, (f)=5,(f)/c for some 0 < aw< 1 and £(t) is a
0-1-valued random pulse of duration T}, which equals 1
with probability «.
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—_— o =—

r 330

‘o [T

Hence, for uncoded DSSS (no coding gain),
@ when /(t) =0, the system is error free,

@ when /(t) =1, the system suffers broadband interference
with

L.
Prlerror] = Q( 4m)

(W/R) )_ £
¢ (\l Nex: W/a)/(ebm) ) Q( 2“70)
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The system error under pulsed interference is

Pe(a)z(l—a)-OJraQ( 2aJ—O)=OéQ( 204_/—0)-

What is the o that maximizes P, from an attacker’s
standpoint?

dPe(a) _ 00 o &5 if Eb/Jo>0.71 ~» ~1.49dB
do 1 if £,/Jy <0.71

and

& gb(}?/‘:’ if Eb/Jo >0.71

P.(a*) :Q(\/%) if £/Jo < 0.71
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- R

“._ Worst-case pulse jamming (¢t = oc*)

N

103

Probability of a bit error, P.

104

&1, (dB)

Worst-case pulse jamming: o = o*; hence it is not a constant
on the dotted line.
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@ The DSSS system performs poor under burst-in-time
jammer, not under burst-in-frequency jammer (CW
jammer).

@ For example, by comparing the error rate for continuous
Gaussian noise jamming with worst-case pulse jamming,
the performance difference at P, = 1079 is as large as 40
dB.
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Cutoff rate (Omura and Levitt, 1982)

Performance index

@ Usual measure: The required SNR for a specified error
rate

@ Analytically convenient measure: Cutoff rate

Definition 1 (Cutoff rate)
The maximum Ry that satisfies

Pe(R.) <27"Ro=Re) je Ry < R.+(-1log, Pe(R:))

is called the cutoff rate, where R, is the code rate and n is the
blocklength.

v

Interpretation: If R. < Ry, then P, - 0 as n — oo.
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Sample derivation of cutoff rate

Give

Channel symbol 1:s1 =[s11,512,...,51.n]
Channel symbol 2: 55 = [s21,5., .-, 52,n]

where s, ; = £1/&.
From Slide 4-44,
P _ Q d122
2=V oan |-

Now suppose we randomly assign each of s, ; independently
(random coding) with

Prlsmy = V&) = Prlsm; = —V/E] =

Digital Communications: Chapter 12 Ver 2018.12.11 Po-Ning Chen



Then Pr[d2, = 4d&.] = ([})2" for integer 0 < d < n.

Using Q(x) < Se/2 < e*/2 yields:

5 (oo V)
i(g) ~n g-dEe/No

= 277 (1+ e E/M)"
27n(17|og2(1+e_5C/N0 ))

[
NIE

E[P2]

IN

The union bound for M-ary random code gives
E[PM] (M _ 1)E[P2] < ME[Pz] — 2nRC27n(17|og2(1+e—5c/N0))
= 27n(R-Re) \yhere Ry=1- log, (1 + e‘gC/NO) .

IN

ME[P;] ~ 27Re2-nRo = 2-n(Ro=R) |
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Since E[Py] < 2-"(Ro-Re) | there must exist a code with
PM < 27n(l':\’07Rc)

and hence _
Ro>Ro=1-log, (1 + e‘gC/N") .

As it turns out, this lower bound of cutoff rate is tight! So,
Ro = R)().
O

R. = % (information) bits/chip; So Ry is measured in bits/chip.J
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Ry is usually in the shape of 1 —log,(1+ A,), where

e=Ec/No soft-decision decoding (as just derived)
A, =1v/4p(1-p) hard-decision decoding
given p = Q(\/2E/No)
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For worst-case pulsed interference, Omura and Levitt
(1982) derived

e~/ No

soft-decision with knowledge of jammer state
Minso {e‘z/\gc [1 —a+ ae’\zgc/’\’o/a]}

soft-decision with no knowledge of jammer state

an/4p(1-p)

hard-decision with knowledge of jammer state

V4ap(l-ap)

hard-decision with no knowledge of jammer state

where p = Q(\/2a€c/No) (and Np = Jp).

The receiver may know the jammer state (side information) by
measuring the noise power level in adjacent frequency band.
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Cut-off rate

Cutoff rate R, (bits/chip)
o
i
T

// R, of (3)=0.

(3)
20 -6 <12 -8 4 0 2345 81012 16 20
# INg (dB)

Key

(0) Soft-decision decoding in AWGN (e =1)

(1) Soft-decision with jammer state information

(2) Hard-decision with jammer state information
(3) Soft-decision with no jammer state information
(4) Hard-decision with no jammer state information

Cutoff rate for coded DS binary PSK modulation. [From Omura and Levitt (1982). © 1982 IEEE.]
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Observations from Omura and Levitt's results

@ When Ry < 0.7 bits/chip, soft-decision in AWGN (curve
(0)) performs the same as soft-decision with jammer
state information (curve (1)).

When jammer state is known under Ry < 0.7, the
worse-case pulsed jammer has no effect on soft-decision
system performance.

@ When Ry < 0.4 bits/chip, hard-decision with jammer state
information (curve (2)) performs the same as
hard-decision with no jammer state information (curve

(4))-

Under Ry < 0.4, knowing the jammer state information does
not help improving the hard-decision system performance.

Digital Communications: Chapter 12 Ver 2018.12.11 Po-Ning Chen



Big question: Why (3) performs worse than (4)?

@ Without jammer state information, the reception y is
“untrustworthy.”
@ The soft-decision based on

ly —2&.(2cm ~ 1)H2 = Z(Yi - 256(2Cm,i - 1))2

i-1
may eliminate the correct codeword at the time when a
wrong codeword gives a slightly larger
ly —2&.(2¢c,y —1)||? due to one very dominant
(_y,' - 25c(2cm,i - 1))2
@ However, the hard-decision based on

dHamming(r> C) = Z(ri ©® Ci)

i-1
can limit the “dominant affection” from any single bit,
and makes the decision based more on the entire
receptions.
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@ One can use a quantizer (or a limiter) to achieve the same
goal and improves the performance of the soft-decision
decoding without jammer state information.

@ The limiting action from quantizers or limiters ensures
that any single bit does not heavily (and dominantly) bias
the corresponding decision metric.
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12.2-5 Generation of PN sequences
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Properties of (deterministic) PN sequences

@ Rule 1: Balanced property
o Relative frequencies of 0 and 1 are each (nearly) 1/2.

@ Rule 2: Run length property
o Run length (of 0's and 1's) are as expected close to a
fair-coin flipping.
e 1/2 of run lengths are 1; 1/4 of run lengths are 2; 1/8 of
run lengths are 3 ... etc.

@ Rule 3: Delay and add property
o If the sequence is shifted by any non-zero number of
elements, the resulting sequence will have an equal
number of agreements and disagreements with the
original sequence.
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Example of PN sequences

Maximum-length shift-register sequences (n=2m -1k = m)
code

@ Also named m-sequences.

- m stages >

Output
-— | 2 3 4 m-1| m

General m-stage shift register with linear feedback.
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Maximum-length shift-register sequence

(n,k)=(2m-1,m)

By its name, the codewords are
the sequential output of m-stage
shift-register with feedback.

The maximum length of codewords
is 2™ — 1 because the register
contents can only have 2™ -1
possibilities.
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MAXIMUM-LENGTH SHIFT-REGISTER CODE FOR m =3

Information bits Code words
0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 1 1 1 0 1
0 1 0 0 1 0 0 1 1 1
0 1 1 0 1 1 1 0 1 0
1 0 0 1 0 0 1 1 1 0
1 0 1 1 0 1 0 0 1 1
1 1 0 1 1 0 1 0 0 1
1 1 1 1 1 1 0 1 0 0
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Polynomial representation of m-sequences

The code can be specified by

based on its structure.

an—m Han—nwl an—m+2
| I
o o

1 2

n-1

a,=a + alan—m+l + a2an—m+2 oot am—la -

n n-m
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Vulnerability of m-sequences

Suppose the enemy knows the number of shift registers, m.

Then (2m — 1) observations are sufficient to determine

a1,02, ..., &m-1.
dm+1 = a1 tQiaxt+--+Qm-1dm
dmi2 = dxtraz+ -+ Omo1dmyl
am-1 = dm-1toamt-tQom_1d2m-2

Possible solutions:
@ Frequent change of (a1, az,...,am1).

@ Combination of several m-sequences in a nonlinear way
(without changing the necessary properties).
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Periodic autocorrelation and crosscorrelation

function

Periodic autocorrelation function

Ro(j) = 3(2b; - 1)(2bys; - 1)

i=1

Periodic crosscorrelation function

Rys() = Y.(2b,~1)(2b.; ~1)

For m-sequences:

: n ;=0 _
Ry(j) = {_1 l<j<n but R,;(j) may be large !
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PEAK CROSS-CORRELATION OF m SEQUENCES AND GOLD SEQUENCES

Peak
Number of cross-correlation
m n=2"-1 m sequences @ max :i)m%l\tb(ﬂ) t{m) t(m)]H(0)
3 7 2 5 0.71 5 0.71
4 15 2 9 0.60 9 0.60
5 31 6 11 0.35 9 0.29
6 63 6 23 0.36 17 0.27
7 127 18 41 0.32 17 0.13
8 255 16 95 0.37 33 .13
9 511 48 113 0.22 33 0.06
10 1023 60 383 0.37 65 0.06
11 2047 176 287 0.14 65 0.03
12 4095 144 1407 0.34 129 0.03

Digital Communications: Chapter 12
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Although it is possible to select a small subset of m-sequences
that have relatively smaller cross-correlation peak values, the
number of sequences in the set is usually too small for CDMA
applications.

PEAK CROSS-CORRELATION OF m SEQUENCES AND GOLD SEQUENCES

Peak
Number of cross-correlation
m n=2"-1 m uences Drnax D and B (0) t{m) H{m)/ ()
3 7 2 5 0.71 5 0.71
4 15 2 9 0.60 9 0.60
5 31 [ 11 0.35 9 0.29
6 63 (] 23 0.36 17 0.27
7 127 18 41 0.32 17 0.13
8 255 16 95 0.37 33 0.13
9 511 48 113 0.22 33 0.06
10 1023 60 383 0.37 65 0.06
11 2047 176 287 0.14 65 0.03
12 4095 144 1407 0.34 129 0.03
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Gold sequences (Gold 1967-1968)

Gold and Kasami proved that there exist certain pairs of

m-sequences with crosscorrelation function taking values in
{-1,-t(m), t(m) -2}, where

2(m+1)/2 L 1 m odd
t(m) =
2(m+2)/2 L 1 m even
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Example. Gold sequence with m = 10.
@ Periodic crosscorrelation function values

{~1,-2(m)/2 _ 1 o(m2)/2_ 11 = {_1 _65 63}

PEAK CROSS-CORRELATION OF m SEQUENCES AND GOLD SEQUENCES

Peak
Number of cross-correlation
m n=2"-1 m sequences P ran D D(0) t(m) t(m)fH(0)
3 7 2 5 0.71 5 0.71
4 15 2 9 0.60 9 0.60
5 31 6 11 0.35 9 0.29
6 63 6 23 0.36 17 0.27
7 127 18 41 0.32 17 0.13
8 255 16 95 0.37 33 0.13
9 511 48 113 0.22 33 0.06
10 1023 60 i 383 0.37 65 0.06:
11 2047 176 287 0.14 65 0.03
12 4095 144 1407 034 129 0.03
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Generation of Gold sequences

@ Two m-sequences with periodic crosscorrelation function in
{-1,-t(m), t(m) — 2} are called preferred sequences.

o Existence of two preferred sequences has been proved by
Gold and Kasami.

@ Let [a1,a2,...,an] and [by, by, ..., b,] be the selected
preferred sequences. Then

[31,32,...,3,,]
[b1,b2,. .., bn]
[31 @ b1,82 @ b2,. -eydn-19® bn—laan @ bn]

Gold sequences =
[al @ b27‘32 @ b37 . -7an—1 @ bn;an @ bl]

[31 ® bp,a2®b1,...,an- 10 by 2,2, ® bn—l]

This gives (n+2) Gold sequences in which some of them are
no longer maximal length sequences. The autocorrelation
function values are also in {-1,-t(m), t(m) - 2}.
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Construct n =31 Gold sequences.
@ Select two preferred sequences:

gi(p) =1+p*+p°
g(p)=1+p+p*>+p*+p°

(+)

Al :

h(p)=p*+ P41

<+ Gold
sequence

h(p)=p*+pt+pr+p+1
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Welch bound

Theorem 1

Give a set of M binary sequences of length n. Then the peak
crosscorrelation function value among them is lower-bounded
by

@ When M > 1,

M-1 M
”\/Mn_1~” wn =V
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@ For Gold sequences (n=2m-1),

peak cross = t(m)

2(m+1)/2 L 1 m odd
2(m+2)/2 L 1 m even

V22" +1 modd
2./2m+1 m even

~ V2v/n+1+1 modd
2:-v/n+1+1 meven

Therefore, Gold sequences do not achieve the Welch
bound.
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Kasami sequences

@ A set of M = 2™/2 sequences of length n=2™ -1 for any m
even.

@ It is formed by the following procedure.

© Pick an m-sequence a = [a1,a2,...,an].
@ Since n=2"-1=(2™2_-1)(2™? +1), we can
fragament a into (2™/2 + 1)-bit blocks.

(a1, -y @pm/2 15 omiz 0+ - do(om/241)5 92.0m/2435 - - y
[ —
block 1 block 2
© Let
b= [ak7 ks a(2m/2_1)k7 ks A2hcy - - -y a(2m/2_1)k7 . :|

where k =2m/2 4 1.
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[a1,32,...,an]
[aleabl,ag@bz,...,a,,@b,,]
Kasami sequences = [a1® by, 2@ b3, ..., 3, b;]

[31 [$) b2m/2,1, dan ® b2m/27 ceey dn ® b2m/2,2:|

The off-peak autocorrelation and crosscorrelation function
values are in {-1,—(2m2 +1),2m/2 — 1} and the Welch bound
is achieved (at a price of much less number of sequences, i.e.,
Vn+1=2m72 can be used!)
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What you learn from Chapter 12

e Fundamental of spread spectrum technology
e broadband interference versus narrowband interference
e CW jammer
@ Direct sequence spread spectrum
e Basic structure with encoder and modulo-2 adder
e Performance analysis under broadband interference,
narrowband interference and CW jammer
e Union bound (definitions of jamming margin, processing
gain and coding gain)
@ Performance enhancement from coding gain
e Soft decision versus hard decision

@ Pulsed interference — worst case pulse jammer

Digital Communications: Chapter 12 Ver 2018.12.11 Po-Ning Chen



What you learn from Chapter 12

@ Cut-off rate and its operational meaning and implication
(for soft decision without jammer state info)
@ Generation of PN sequences

e m sequence, Gold sequence, Kasami sequences, Welch
bound
o Periodic autocorrelation and crosscorrelation function
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