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12.1 Model of spread spectrum
digital communications system
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What is “spread spectrum communications?”
A rough definition: The signal spectrum is wider than
“necessary,” i.e., 1/T .

Recollection: Sampling theorem

A signal of (baseband or single-sided) bandwidth Wbase can be
reconstructed from its samples taken at the Nyquist rate (=
2Wbase samples/second) using the interpolation formula

s(t) =
∞
∑

n=−∞
s (

n

2Wbase
) sinc(2Wbase (t −

n

2Wbase
))

Thus, T =
1

2Wbase
.
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However, for a signal that consumes W =Wpass = 2Wbase Hz band-
width after upconvertion, we should put T = 1

W .

Thus, T =
1

W
or W =

1

T
.
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Since we have spectrum wider than “necessary,” we have
extra spectrum to make the system more “robust.”
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Applications of spread spectrum technique

Channels with power constraint

E.g., power constraint on unlicensed frequency band

Channels with severe levels of interference

Interference from other users or applications
Self-interference due to multi-path propagation

Channels with possible interception

Privacy

Features of spread spectrum technology

Redundant codes (anti-interference)

Pseudo-randomness (anti-interception from jammers)

Or anti-interference in the sense of “not to interfere
others”
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Model of spread spectrum digital com system

Usage of pseudo-random patterns

Synchronization

Achieved by a fixed pseudo-random bit pattern

The interference (from other users) may be characterized
as an equivalent additive white noise.
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Two different interferences (from others)
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Two types of modulations are majorly considered in this
subject.

PSK

This is mostly used in direct sequence spread spectrum
(DSSS), abbreviated as DS-PSK.
Note that some also use MSK in DSSS, abbreviated as
DS-MSK.

FSK

This is mostly used in frequency-hopped spread
spectrum (FHSS).
The FHSS will not be introduced in our lectures.
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12.2 Direct sequence spread
spectrum signals
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A simple spread spectrum system

Chip interval: Tc =
1
W

BPSK is applied for each chip interval.

Bandwidth expansion factor Be =
W
R ( =

1/Tc

1/Tb
=

Tb
Tc

)

Number of chips per information bit Lc =
Tb
Tc
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In practice, the spread spectrum system often consists of an
encoder and a modulo-2 adder.

Encoder : Encode the original information bits (in a
pre-specified block) to channel code bits, say (7, 3) linear
block code.

Modulo-2 adder : Directly alter the coded bits by
modulo-2 addition with the PN sequences.
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Example

1) Choose Tc = 1 ms, Tib = 14 ms and Tcb = 7 ms,

where

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Tc length of a chip

Tib length of an information bit

Tcb length of a code bit

2) Use (6,3) linear block code (3 information bits → 6 code
bits)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

100
010
001
100
010
001

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
²
generator

matrix

⎡⎢⎢⎢⎢⎢⎣

0
0
1

⎤⎥⎥⎥⎥⎥⎦
°

info
bits

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
1
0
0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
°

code
bits
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3) Use the repetition code for chip generation:

⎧⎪⎪⎨⎪⎪⎩

code bit 0→ 0000000
code bit 1→ 1111111

´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
seven
chips

Ô⇒ Lc = Tib

Tc
= 14

4) XOR with the PN sequence:
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Example (Revisited)

How about we combine Step 2) and Step 3)?

2&3) Use (n = 6 × 7, k = 3 × 1) linear block code (3 information
bits → 42 code bits)
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Combined DSSS system

ai = bi ⊕ ci , i = 0, . . . ,n − 1 and each ai is BPSK-transmitted.
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Performance analysis

Let g(t) be the baseband pulse shape of duration Tc . Notably,

we drop the subscript ` for lowpass equivalent signals in this chapter for

convenience.

gi(t) =
⎧⎪⎪⎨⎪⎪⎩

g(t − iTc) if ai = 0

−g(t − iTc) if ai = 1
for i = 0,1, . . . ,n − 1

Then

gi(t) = (1 − 2ai)g(t − iTc)
= [1 − 2(bi ⊕ cm,i)]g(t − iTc)
= [(1 − 2bi)p(t − iTc)] × [(1 − 2cm,i)g(t − iTc)]

or [(2bi − 1)p(t − iTc)] × [(2cm,i − 1)g(t − iTc)]
= pi(t) × cm,i(t)

where p(t) =rectangular pulse of height 1 and duration Tc .
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Consequently,

channel symbol gs(t) =
n−1

∑
i=0

gi(t)

=
n−1

∑
i=0

pi(t)cm,i(t)

= (
n−1

∑
i=0

pi(t))(
n−1

∑
i=0

cm,i(t))

= pPN(t) × cm(t) where m = 1,2, . . . ,M

In implementation (e.g., spectrum), the DSSS channel
symbol is the modulo-2 addition between code bits/chips
and the PN chips, followed by a chip-based BPSK
modulation.
In analysis, DSSS channel symbol can be conveniently
expressed as a coded BPSK signal cm(t) multiplying a
randomly polarized sequence pPN(t).
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DSSS receiver design

For iTc ≤ t < (i + 1)Tc ,

ri(t) = pi(t)cm,i(t) + z(t)

where z(t) is the interference introduced mainly by other users and
also by background noise.

Since for iTc ≤ t < (i + 1)Tc ,

pi(t) × pi(t) = [(2bi − 1)p(t − iTc)] × [(2bi − 1)p(t − iTc)]

= 1

we have cm,i(t) = [pi(t)cm,i(t)] × pi(t)

= [ri(t) − z(t)] × pi(t)

= ri(t) × pi(t) − z(t) × pi(t)

Conclusion: The estimator ĉm,i(t) can be obtained from

ri(t) × pi(t) if the channel is interference free.
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DSSS demodulator
In this figure, we drop subscript m for cm,i for convenience.
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yi = Re [∫
Tc

0
[(2cm,i − 1)gi(t) + (2bi − 1)z(t)] × g∗i (t)dt]

= (2cm,i − 1)Re [⟨gi(t),gi(t)⟩] + (2bi − 1)Re [⟨z(t),gi(t)⟩]
= (2cm,i − 1)2Ec + (2bi − 1)νi

where νi = Re [⟨z(t),gi(t)⟩].

Recall that Slide 2-24 has derived:

⟨x(t), y(t)⟩ = 1
2Re{⟨x`(t), y`(t)⟩} .

or

Ec = ⟨gpassband(t),gpassband(t)⟩ = 1
2Re{⟨g(t),g(t)⟩}

= 1
2⟨g(t),g(t)⟩
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yi = (2cm,i − 1)2Ec + (2bi − 1)νi

Assumptions:

z(t) is a baseband interference (hence, complex).

z(t) is a (WSS) broadband interference, i.e., PSD of z(t)
is

Sz(f ) = 2J0 for ∣f ∣ ≤ W

2
.

z(t) Gaussian

(2bi − 1) is known to Rx
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ML decision

m̂ = arg min
1≤m≤M

∥y − 2Ec(2cm − 1)∥2

= arg max
1≤m≤M

⟨y ,2Ec(2cm − 1)⟩ since ∥2cm − 1∥2 constant

= arg max
1≤m≤M

2Ec
n

∑
i=1

(2cm,i − 1)yi

= arg max
1≤m≤M

n

∑
i=1

(2cm,i − 1)yi

Suppose

linear code is employed, and

the transmitted codeword is the all-zero codeword (i.e., c1,i ).

m̂ = arg max
1≤m≤M

n

∑
i=1

(2cm,i − 1)[(2c1,i − 1)2Ec + (2bi − 1)νi ]

Digital Communications: Chapter 12 Ver 2018.12.11 Po-Ning Chen 23 / 89



Pr[error] = Pr[m̂ ≠ 1]

= Pr

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

n

∑
i=1

(2 c1,i
°
=0

−1)[(2 c1,i
°
=0

−1)2Ec + (2bi − 1)νi ]

< max
2≤m≤M

n

∑
i=1

(2cm,i − 1)[(2 c1,i
°
=0

−1)2Ec + (2bi − 1)νi ]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= Pr

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2nEc −
n

∑
i=1

(2bi − 1)νi

< max
2≤m≤M

[−2Ec
n

∑
i=1

(2cm,i − 1) +
n

∑
i=1

(2cm,i − 1)(2bi − 1)νi]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= Pr

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

�
��2nEc −

���
����n

∑
i=1

(2bi − 1)νi

< max
2≤m≤M

[2Ec (�n − 2wm) +
n

∑
i=1

(2cm,i − �1)(2bi − 1)νi]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= Pr [ min
2≤m≤M

(2Ecwm −
n

∑
i=1

cm,i(2bi − 1)νi) < 0]

where wm is the number of 1’s in codeword m.
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Let Rm = 2Ecwm −∑
n
i=1 cm,i(2bi − 1)νi .

Note that Rm given b is Gaussian with

mean E[Rm∣b] = 2Ecwm and variance Var[Rm∣b] = wmE[ν2
i ].

We have the union bound: Pr {N (m, σ2) < r} = Q (m−r
σ

)

Pr[error∣b] = Pr [ min
2≤m≤M

Rm < 0∣b]

≤
M

∑
m=2

Pr [Rm < 0∣b] =
M

∑
m=2

Q
⎛
⎜
⎝

2Ecwm
√

wmE[ν2
i ]

⎞
⎟
⎠

Since the upper bound has nothing to do with b, we have

Pr[error] = ∑
b

Pr(b)Pr[error∣b] ≤
M

∑
m=2

Q
⎛
⎜
⎝

2Ecwm
√

wmE [ν2
i ]

⎞
⎟
⎠
.
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νi = Re [⟨z(t),gi(t)⟩]

= Re [∫

(i+1)Tc

iTc

z(t)g∗(t − iTc)dt]

d
= Re [∫

Tc

0
z(t)g∗(t)dt] = Re [νi + ı ν̂i ]

where “
d
=” means “equality in distribution.”

Assumption: νi and ν̂i are zero mean and uncorrelated.

E[ν2
i ] =

1

2
E [∣νi + ı ν̂i ∣

2] =
1

2
E [∣∫

Tc

0
z(t)g∗(t)dt∣

2

]

=
1

2 ∫
Tc

0
∫

Tc

0
E[z(t)z∗(s)]g∗(t)g(s)dtds

=
1

2 ∫
∞

−∞
∫

∞

−∞
Rz(t − s)g∗(t)g(s)dtds
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E [∣νi + ı ν̂i ∣
2] = ∫

∞

−∞
(∫

∞

−∞
g(s)Rz(t − s)ds)g∗(t)dt

= ∫

∞

−∞
(∫

∞

−∞
G(f )Sz(f )e

ı2πftdf )g∗(t)dt

= ∫

∞

−∞
∣G(f )∣2Sz(f )df

⇒ E[ν2
i ] =

1

2 ∫
∞

−∞
∣G(f )∣2Sz(f )df

= J0∫

W /2

−W /2
∣G(f )∣2df

≈ 2J0Ec
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Pr[error] ≤
M

∑
m=2

Q ( 2Ecwm√
2wmEcJ0

)

=
M

∑
m=2

Q
⎛
⎝

√
2Ecwm

J0

⎞
⎠

=
M

∑
m=2

Q
⎛
⎝

√
2(k/n)Ebwm

J0

⎞
⎠

=
M

∑
m=2

Q (
√

2Rcγbwm)

where

Rc = k/n code rate

γb = Eb/J0 signal-to-interference ratio
per info bit
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How about z(t) being narrowband interference?

Assumptions:
z(t) is a baseband interference (hence, complex).
z(t) is a (WSS) narrowband interference (around zero
freq), i.e., PSD of z(t) is

Sz(f ) =
⎧⎪⎪⎨⎪⎪⎩

Jav
W1

= 2J0 ( W
W1

) , for ∣f ∣ ≤ W1

2

0, otherwise

where Jav = 2WJ0.
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All the derivations remain unchanged except

E[ν2
i ] = 1

2 ∫
∞

−∞
∣G(f )∣2Sz(f )df

= Jav
2W1

∫
W1/2

−W1/2
∣G(f )∣2df

The value of E[ν2
i ] hence depends on the spectra of g(t) and

the location of the narrowband jammer.
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Example 12.2-1

E[ν2
i ] =

Jav
2W1

∫

W1/2

−W1/2
∣G(f )∣2df =

JavEc
W1

∫

β/2

−β/2
sinc2

(x)dx

≤
JavEc
W1

β = JavEcTc = 2J0Ec

where we use x = fTc and β =W1Tc =
W1
W in the derivation.
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How about z(t) being CW jammer?

Assumptions:

z(t) is a CW (continuous wave) interference (hence,
complex).

z(t) is a (WSS) CW (continuous wave) interference, i.e.,
PSD of z(t) is

Sz(f ) = Javδ(f )

E[ν2
i ] = 1

2 ∫
∞

−∞
∣G(f )∣2Sz(f )df

= Jav
2

∣G(0)∣2 = 2J0Ec for Example 12.2-1

where G(0) =
√

2EcTc (and Jav = 2J0W and WTc = 1).
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From the above discussion, we learn that

Under narrowband jammer, the DSSS performance
depends on the shape of g(t).

For example (Example 12.2-2), if g(t) =
√

4Ec
Tc

sin ( πt
Tc

) for

0 ≤ t < Tc , then G(0) = ∫
∞
−∞ g(t)dt = 4

π

√
EcTc and

Pr[error] ≤
M

∑
m=2

Q
⎛
⎝

√
π2

4
Rcγbwm

⎞
⎠

=
M

∑
m=2

Q (
√

(2.4674)Rcγbwm)

The error bound for one half cycle sinusoidal g(t) is
about 0.9dB better than that of rectangular g(t).
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Alternative union bound

Since Jav = 2J0W = 2J0/Tc and Pav = Eb/Tb ,

γb = Eb
J0

= PavTb

JavTc/2
= 2Lc
Jav/Pav

Pr[error] ≤
M

∑
m=2

Q (
√

2Rcγbwm) =
M

∑
m=2

Q
⎛
⎝

√
4
LcRcwm

Jav/Pav

⎞
⎠

≤ (M − 1)Q
⎛
⎝

√
4

Lc
Jav/Pav

min
2≤m≤M

Rcwm

⎞
⎠

where

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Jav
Pav

Jamming-to-signal power ratio

Lc Processing gain

min2≤m≤M Rcwm Coding gain (Recall w1 = 0)
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Interpretation

Processing gain:
Theoretically, it is the number of chips per information
bit, which equals the bandwidth expansion factor Be .
Practically, it is the gain obtained via the uncoded DSSS
system (e.g., uncoded BPSK DSSS) in comparison with
the non-DSSS system (e.g., BPSK Q(

√
2γb)).

So, it is the advantage gained over the jammer by the
processing of spreading the bandwidth of the
transmitted signal.
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Coding gain

It is the advantage gained over the jammer by a proper
code design.

Example. Uncoded DSSS: Assume we use (n,1) code.
Then,

Rc =
1

n
,M = 21

= 2,w1 = 0,w2 = n.

Hence, coding gain = min2≤m≤M Rcwm = 1
nn = 1 = 0 dB.

Definition: Jamming margin

The largest jamming-to-signal power ratio that
achieves the specified performance (i.e., error rate)
under fixed processing gain and coding gain.
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Example 12.2-3

Problem: Find the jamming margin to achieve error rate 10−6

with Lc = 1000 and uncoded DSSS.

For M = 2 (uncoded DSSS), the union bound is equal to the
exact error.

Answer:

Pr[error] = Q
⎛
⎝

√
4

Lc
Jav/Pav

Rcw2

⎞
⎠
= Q (

√
4

1000

Jav/Pav

) ≤ 10−6

where Rc = 1/n and w2 = n.

Then, Jav/Pav = 22.5 dB. ◻
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Example 12.2-3 (revisited)

Problem: Given that γb = 10.5 dB satisfies Q(
√

2γb) = 10−6, find
the jamming margin to achieve error rate 10−6 with Lc = 1000 and
uncoded DSSS.
Answer:

Pr[error] = Q (

√

4
Lc

Jav /Pav
min

2≤m≤M
Rcwm) = 10−6

Then,

2
Lc

Jav /Pav
min

2≤m≤M
Rcwm = 10.5 dB

or equivalently,

10 log10(2) dB+Lc dB+ min
2≤m≤M

Rcwm dB−(Jav /Pav) dB = 10.5 dB.

Thus,

3 dB+30 dB+0 dB−(Jav /Pav) dB = 10.5 dB⇒ (Jav /Pav) dB = 22.5 dB

◻
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Spectrum analysis

We now demonstrate why it is named spread spectrum system!
Assume the uncoded DSSS system, where all-zero and all-one
codes are used.
Then

channel symbol gs(t) = pPN(t) × c(t) + z(t)

where

c(t) =
∞
∑

n=−∞
Ins(t − nTb) with s(t) =

⎧⎪⎪
⎨
⎪⎪⎩

g(t mod Tc) 0 ≤ t < Tb

0 otherwise

and
{In ∈ {±1}}∞n=−∞zero-mean i.i.d.

From Slide 3-117,

S̄c(f ) =
1
Tb

SI (f )∣S(f )∣
2 = 1

Tb
∣S(f )∣2

where SI (f ) = ∑
∞
k=−∞ RI (k)e

− ı2πkfTb = 1.
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Assume g(t) rectangular pulse of height 1/
√
Tb and duration Tc

(hence, ∫
Tb

0 s2(t)dt = 1). Then (cf. Slide 12-31 by replacing Tb

with Tc and letting E = 1/2),

S̄c(f ) =
1
Tb

(Tbsinc2(Tbf )) = sinc2(Tbf )

Similarly,

pPN(t)c(t) =
∞
∑

i=−∞
(2bi − 1)p(t − iTc)I⌊i/n⌋s(t − ⌊i/n⌋Tb)

d
=

√
Tc

Tb

∞
∑

i=−∞
(2bi − 1)

1
√
Tc

p(t − iTc)

where here {2bi − 1}∞i=1 and {(2bi − 1)I⌊i/n⌋}
∞
i=1 actually have the

same distribution. Then from Slide 3-117,

S̄p×c(f ) =
1
Tc

∣
√

Tc
Tb

∣
2
∣ 1√

Tc
P(f )∣

2
= 1

Tb
(Tcsinc2(Tc f )) =

1
Lc

sinc2(Tc f )
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S̄c(f ) = sinc2(Tbf )

S̄p×c(f ) = 1
Lc

sinc2(Tc f )
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Recovered symbol at the receiver end:

pPN(t)gs(t) = p2
PN(t) × c(t) + pPN(t)z(t)

= c(t) + pPN(t)z(t)

This indicates that for WSS z(t), the PSD of the new noise
pPN(t)z(t) is:

S̄p×z(f ) = S̄p(f ) ⋆ Sz(f )

= ∫
∞

−∞
S̄p(s)Sz(f − s)ds = 2J0∫

∞

−∞
S̄p(s)ds

= 2J0∫
∞

−∞

1

Tc

∣P(s)∣2ds = 2J0∫
∞

−∞
Tcsinc2(Tcs)ds

= 2J0

where for simplicity we let Sz(f ) = 2J0 for f ∈ R.
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S̄c(f ) = sinc2(Tbf )

S̄p×c(f ) = 1
Lc

sinc2(Tc f )
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Summary

Multiplication of pPN(t) = spreading the power over the
bandwidth of pPN(t) (so that the transmitted signal could

be “hidden” under the broadband interference.)

Multiplication twice of pPN(t) recovers the original signal.

The spreading fraction is approximately equal to the
processing gain.

Modulator: Transmit pPN(t)c(t)
Demodulator: Based on r(t)pPN(t) = c(t) + z(t)pPN(t)
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Further performance enhancement by coding

Coding gain = min2≤m≤M Rcwm(Recall w1 = 0)

Use (n1, k) code as the outer code, and (n2,1) repetition code
as the inner code, where n = n1n2.

Then

Coding gain = min
2≤m≤M

Rcwm

= min
2≤m≤M

k

n1n2

n2w
(out)
m

= min
2≤m≤M

R
(out)
c w

(out)
m

The use of the inner code here is to align the length of the outer
code n1 to the length of the PN sequence n.
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Since the inner code is the binary repetition code, the bit error rate
p of the outer code is the symbol error rate of the inner code,
where under broadband interference,

p = Q (

√

2R
(in)
c γ

(in)
b w

(in)
2 ) For M = 2, we have “equality”, not “≤.”

= Q
⎛

⎝

√

2
1

n2

n2Ec

J0
n2

⎞

⎠
= Q

⎛

⎝

√

2
1

n2

n2(k/n)Eb
J0

n2
⎞

⎠

= Q (

√

2γbR
(out)
c ) = Q (

√

2
2Lc

Jav /Pav
R

(out)
c ) . (cf. Slide 12-35)

Then the symbol error rate of the entire system satisfies

Pe ≤
n1

∑
m=t+1

(
n1

m
)pm(1 − p)n1−m ≤

2k

∑
m=2

[4p(1 − p)]wm/2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Chernoff bound

where t = ⌊(dmin − 1)/2⌋ and dmin is the minimum Hamming

distance among outer codeword pairs.
Digital Communications: Chapter 12 Ver 2018.12.11 Po-Ning Chen 47 / 89



Golay (24, 12) (outer) code

Example. Use Golay (24,12) outer code and set Lc = 100.

We need to first determine n2 based on n1 = 24.

12Tb = nTc = n1n2Tc = 24n2Tc

⇒ n2 =
12Tb

24Tc
=

1

2
Lc =

1

2
100 = 50.

Then p = Q (
√

2 2⋅100
Jav /Pav

12
24) = Q (

√
200

Jav /Pav
) .

Pe ≤
24

∑
m=4

(
24

m
)pm(1 − p)24−m

≤ 759[4p(1 − p)]4
+ 2576[4p(1 − p)]6

+ 759[4p(1 − p)]8

+[4p(1 − p)]12.

◻
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Golay (24,12) code
Weight number of codewords

0 1
8 759

12 2576
16 759
24 1

Digital Communications: Chapter 12 Ver 2018.12.11 Po-Ning Chen 49 / 89



Appendix: Hard-decision versus soft-decision

The performance usually improves 3 dB by using soft-decision.
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12.2-2 Some applications of DS
spread spectrum signals
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Code division multiple access (CDMA)

If each user has its own PN sequence (with good properties), then
many DSSS signals are allowed to occupy the same channel
bandwidth.

r(t) = p(1)
(t)c(1)

(t) + p(2)
(t)c(2)

(t) +⋯ + p(Nu)(t)c(Nu)(t) + z(t)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

z̃(t)

⇒ p(1)
(t) ⋅ r(t) = c(1)

(t) + p(1)
(t) ⋅ z̃(t)

How to determine the number of users (capacity)?

Each user is a broadband interference with power Pav

(cf. Slide 12-8)

Pav

Jav
=

Pav

(Nu − 1)Pav
=

1

Nu − 1
.

By this, we can obtain for Lc = 100 and Golay (24,12) outer

code and Pe ≤ 10−6, Nu = 41 . (For details, see (12.2-48) in text.)
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12.2-3 Effect of pulsed interference
on DS spread spectrum systems
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Types of interferences

CW jammer Sz(f ) = Javδ(f )

Broadband interference Sz(f ) = 2J0 for ∣f ∣ ≤W /2

Pulsed interference

zp(t) = z ′(t)`(t)

where z ′(t) is a broadband interference with
Sz ′(f ) = Sz(f )/α for some 0 < α ≤ 1 and `(t) is a
0-1-valued random pulse of duration Tb, which equals 1
with probability α.
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Hence, for uncoded DSSS (no coding gain),

when `(t) = 0, the system is error free,

when `(t) = 1, the system suffers broadband interference
with

Pr[error] = Q
⎛
⎝

√
4

Lc
(Jav/α)/Pav

⎞
⎠

= Q
⎛
⎜
⎝

¿
ÁÁÀ4

(W /R)
(2J0W /α)/(EbR)

⎞
⎟
⎠
= Q

⎛
⎝

√
2α
Eb
J0

⎞
⎠
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The system error under pulsed interference is

Pe(α) = (1 − α) ⋅ 0 + αQ
⎛
⎝

√
2α
Eb
J0

⎞
⎠
= αQ

⎛
⎝

√
2α
Eb
J0

⎞
⎠
.

What is the α that maximizes Pe from an attacker’s
standpoint?

dPe(α)
dα

= 0⇒ α∗ =
⎧⎪⎪⎨⎪⎪⎩

0.71
Eb/J0

if Eb/J0 ≥ 0.71 ≈ −1.49dB

1 if Eb/J0 < 0.71

and

Pe(α∗)
⎧⎪⎪⎪⎨⎪⎪⎪⎩

≈ 0.083
Eb/J0

if Eb/J0 ≥ 0.71

= Q (
√

2EbJ0
) if Eb/J0 < 0.71
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Worst-case pulse jamming: α = α∗; hence it is not a constant
on the dotted line.
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Summary

The DSSS system performs poor under burst-in-time
jammer, not under burst-in-frequency jammer (CW
jammer).

For example, by comparing the error rate for continuous
Gaussian noise jamming with worst-case pulse jamming,
the performance difference at Pe = 10−6 is as large as 40
dB.
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Cutoff rate (Omura and Levitt, 1982)

Performance index

Usual measure: The required SNR for a specified error
rate

Analytically convenient measure: Cutoff rate

Definition 1 (Cutoff rate)

The maximum R0 that satisfies

Pe(Rc) ≤ 2−n(R0−Rc) i.e., R0 ≤ Rc + ( − 1
n log2 Pe(Rc))

is called the cutoff rate, where Rc is the code rate and n is the
blocklength.

Interpretation: If Rc < R0, then Pe → 0 as n →∞.
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Sample derivation of cutoff rate

Give

⎧⎪⎪⎨⎪⎪⎩

Channel symbol 1 ∶ s1 = [s1,1, s1,2, . . . , s1,n]
Channel symbol 2 ∶ s2 = [s2,1, s2,2, . . . , s2,n]

where sm,j = ±
√
Ec .

From Slide 4-44,

P2 = Q
⎛
⎝

√
d2

12

2N0

⎞
⎠
.

Now suppose we randomly assign each of sm,j independently
(random coding) with

Pr[sm,j =
√
Ec] = Pr[sm,j = −

√
Ec] =

1

2
.
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Then Pr[d2
12 = 4dEc] = (n

d
)2−n for integer 0 ≤ d ≤ n.

Using Q(x) ≤ 1
2e

−x2/2 ≤ e−x
2/2 yields:

E[P2] =
n

∑
d=0

(n
d
)2−nQ

⎛
⎝

√
2dEc
N0

⎞
⎠

≤
n

∑
d=0

(n
d
)2−ne−dEc/N0

= 2−n (1 + e−Ec/N0)n

= 2−n(1−log2(1+e−Ec /N0))

The union bound for M-ary random code gives

E[PM] ≤ (M − 1)E[P2] ≤ME[P2] = 2nRc 2−n(1−log2(1+e−Ec /N0))

= 2−n(R̄0−Rc) where R̄0 = 1 − log2 (1 + e−Ec/N0) .

M E[P2] ≈ 2nRc 2−nR0 = 2−n(R0−Rc)
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Since E[PM] ≤ 2−n(R̄0−Rc), there must exist a code with

PM ≤ 2−n(R̄0−Rc)

and hence
R0 ≥ R̄0 = 1 − log2 (1 + e−Ec/N0) .

As it turns out, this lower bound of cutoff rate is tight! So,

R0 = R̄0.

◻

Rc = k
n (information) bits/chip; So R0 is measured in bits/chip.
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R0 is usually in the shape of 1 − log2(1 +∆α), where

∆α =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

e−Ec/N0 soft-decision decoding (as just derived)√
4p(1 − p) hard-decision decoding

given p = Q(
√

2Ec/N0)
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For worst-case pulsed interference, Omura and Levitt
(1982) derived

∆α =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

αe−αEc/N0

soft-decision with knowledge of jammer state

minλ≥0 {e−2λEc [1 − α + αeλ2Ec/N0/α]}
soft-decision with no knowledge of jammer state

α
√

4p(1 − p)
hard-decision with knowledge of jammer state√

4αp(1 − αp)
hard-decision with no knowledge of jammer state

where p = Q (
√

2αEc/N0) (and N0 = J0).

The receiver may know the jammer state (side information) by
measuring the noise power level in adjacent frequency band.
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Observations from Omura and Levitt’s results

When R0 < 0.7 bits/chip, soft-decision in AWGN (curve
(0)) performs the same as soft-decision with jammer
state information (curve (1)).

When jammer state is known under R0 < 0.7, the
worse-case pulsed jammer has no effect on soft-decision
system performance.

When R0 < 0.4 bits/chip, hard-decision with jammer state
information (curve (2)) performs the same as
hard-decision with no jammer state information (curve
(4)).

Under R0 < 0.4, knowing the jammer state information does
not help improving the hard-decision system performance.
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Big question: Why (3) performs worse than (4)?

Without jammer state information, the reception y is
“untrustworthy.”
The soft-decision based on

∥y − 2Ec(2cm − 1)∥2 =
n

∑
i=1

(yi − 2Ec(2cm,i − 1))2

may eliminate the correct codeword at the time when a
wrong codeword gives a slightly larger
∥y − 2Ec(2cm′ − 1)∥2 due to one very dominant
(yi − 2Ec(2cm,i − 1))2.
However, the hard-decision based on

dHamming(r ,c) =
n

∑
i=1

(ri ⊕ ci)

can limit the “dominant affection” from any single bit,
and makes the decision based more on the entire
receptions.
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One can use a quantizer (or a limiter) to achieve the same
goal and improves the performance of the soft-decision
decoding without jammer state information.

The limiting action from quantizers or limiters ensures
that any single bit does not heavily (and dominantly) bias
the corresponding decision metric.
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12.2-5 Generation of PN sequences
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Properties of (deterministic) PN sequences

Rule 1: Balanced property

Relative frequencies of 0 and 1 are each (nearly) 1/2.

Rule 2: Run length property

Run length (of 0’s and 1’s) are as expected close to a
fair-coin flipping.
1/2 of run lengths are 1; 1/4 of run lengths are 2; 1/8 of
run lengths are 3 . . . etc.

Rule 3: Delay and add property

If the sequence is shifted by any non-zero number of
elements, the resulting sequence will have an equal
number of agreements and disagreements with the
original sequence.
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Example of PN sequences

Maximum-length shift-register sequences (n = 2m − 1, k = m)
code

Also named m-sequences.
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Maximum-length shift-register sequence

(n, k) = (2m − 1,m)

By its name, the codewords are
the sequential output of m-stage
shift-register with feedback.

The maximum length of codewords
is 2m − 1 because the register
contents can only have 2m − 1
possibilities.
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Polynomial representation of m-sequences

The code can be specified by

g(p) = 1 + α1p + α2p
2 +⋯ + αm−1p

m−1 + pm

based on its structure.
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Vulnerability of m-sequences

Suppose the enemy knows the number of shift registers, m.

Then (2m − 1) observations are sufficient to determine
α1, α2, . . . , αm−1.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

am+1 = a1 + α1a2 +⋯ + αm−1am
am+2 = a2 + α1a3 +⋯ + αm−1am+1

⋮
a2m−1 = am−1 + α1am +⋯ + αm−1a2m−2

Possible solutions:

Frequent change of (α1, α2, . . . , αm−1).

Combination of several m-sequences in a nonlinear way
(without changing the necessary properties).
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Periodic autocorrelation and crosscorrelation

function

Periodic autocorrelation function

Rb(j) =
n

∑
i=1

(2bi − 1)(2bi+j − 1)

Periodic crosscorrelation function

Rbb̂(j) =
n

∑
i=1

(2bi − 1)(2b̂i+j − 1)

For m-sequences:

Rb(j) =
⎧⎪⎪⎨⎪⎪⎩

n j = 0

−1 1 ≤ j < n
but Rbb̂(j) may be large !
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Although it is possible to select a small subset of m-sequences
that have relatively smaller cross-correlation peak values, the
number of sequences in the set is usually too small for CDMA
applications.
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Gold sequences (Gold 1967-1968)

Gold and Kasami proved that there exist certain pairs of
m-sequences with crosscorrelation function taking values in
{−1,−t(m), t(m) − 2}, where

t(m) =
⎧⎪⎪⎨⎪⎪⎩

2(m+1)/2 + 1 m odd

2(m+2)/2 + 1 m even
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Example. Gold sequence with m = 10.

Periodic crosscorrelation function values

{−1,−2(m+2)/2 − 1,2(m+2)/2 − 1} = {−1,−65,63}
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Generation of Gold sequences

Two m-sequences with periodic crosscorrelation function in
{−1,−t(m), t(m) − 2} are called preferred sequences.

Existence of two preferred sequences has been proved by
Gold and Kasami.

Let [a1, a2, . . . , an] and [b1,b2, . . . ,bn] be the selected
preferred sequences. Then

Gold sequences =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[a1, a2, . . . , an]
[b1,b2, . . . ,bn]

[a1 ⊕ b1, a2 ⊕ b2, . . . , an−1 ⊕ bn−1, an ⊕ bn]
[a1 ⊕ b2, a2 ⊕ b3, . . . , an−1 ⊕ bn, an ⊕ b1]

⋮

[a1 ⊕ bn, a2 ⊕ b1, . . . , an−1 ⊕ bn−2, an ⊕ bn−1]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

This gives (n + 2) Gold sequences in which some of them are
no longer maximal length sequences. The autocorrelation
function values are also in {−1,−t(m), t(m) − 2}.
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Example.

Construct n = 31 Gold sequences.

Select two preferred sequences:

⎧⎪⎪⎨⎪⎪⎩

g1(p) = 1 + p2 + p5

g2(p) = 1 + p + p2 + p4 + p5
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Welch bound

Theorem 1

Give a set of M binary sequences of length n. Then the peak
crosscorrelation function value among them is lower-bounded
by

n

√
M − 1

Mn − 1

When M ≫ 1,

n

√
M − 1

Mn − 1
≈ n

√
M

Mn
=
√
n.
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For Gold sequences (n = 2m − 1),

peak cross = t(m) =
⎧⎪⎪⎨⎪⎪⎩

2(m+1)/2 + 1 m odd

2(m+2)/2 + 1 m even

=
⎧⎪⎪⎨⎪⎪⎩

√
2 ⋅

√
2m + 1 m odd

2 ⋅
√

2m + 1 m even

=
⎧⎪⎪⎨⎪⎪⎩

√
2
√
n + 1 + 1 m odd

2 ⋅
√
n + 1 + 1 m even

Therefore, Gold sequences do not achieve the Welch
bound.
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Kasami sequences

A set of M = 2m/2 sequences of length n = 2m − 1 for any m
even.

It is formed by the following procedure.

1 Pick an m-sequence a = [a1, a2, . . . , an].
2 Since n = 2m − 1 = (2m/2 − 1)(2m/2 + 1), we can

fragament a into (2m/2 + 1)-bit blocks.

[a1, . . . , a2m/2+1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

block 1

, a2m/2+2, . . . , a2(2m/2+1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

block 2

, a2⋅2m/2+3, . . .]

3 Let

b = [ak , a2k , . . . , a(2m/2−1)k , ak , a2k , . . . , a(2m/2−1)k , . . .]

where k = 2m/2 + 1.
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Kasami sequences =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

[a1, a2, . . . , an]
[a1 ⊕ b1, a2 ⊕ b2, . . . , an ⊕ bn]
[a1 ⊕ b2, a2 ⊕ b3, . . . , an ⊕ b1]

⋮
[a1 ⊕ b2m/2−1, a2 ⊕ b2m/2 , . . . , an ⊕ b2m/2−2]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

The off-peak autocorrelation and crosscorrelation function
values are in {−1,−(2m/2 + 1),2m/2 − 1} and the Welch bound
is achieved (at a price of much less number of sequences, i.e.,√
n + 1 = 2m/2, can be used!)
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What you learn from Chapter 12

Fundamental of spread spectrum technology
broadband interference versus narrowband interference
CW jammer

Direct sequence spread spectrum
Basic structure with encoder and modulo-2 adder
Performance analysis under broadband interference,
narrowband interference and CW jammer
Union bound (definitions of jamming margin, processing
gain and coding gain)

Performance enhancement from coding gain
Soft decision versus hard decision

Pulsed interference – worst case pulse jammer
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What you learn from Chapter 12

Cut-off rate and its operational meaning and implication
(for soft decision without jammer state info)

Generation of PN sequences

m sequence, Gold sequence, Kasami sequences, Welch
bound
Periodic autocorrelation and crosscorrelation function
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