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Motivation

In Chapter 9: Communications Through Band-Limited
Channels, we have seen that

When channel is band-limited to [−W ,W ], without extra
care, the received signal at matched-filter output is

yk =
∞
∑

n=−∞
Inxk−n + zk

where

Ik is the information symbol,

xk is the overall discrete impulse response,

zk is the additive noise

This gives an intersymbol interference (ISI) channel.
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Motivation

yk = ∑∞
n=−∞ Inxk−n + zk

With Nyquist pulse, it is possible to create an ISI-free channel

xk−n = δk−n and yk = Ik + zk .

However, due to

mis-synchronization

imperfect channel estimation, etc

ISI is sometimes inevitable.
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Motivation

yk = ∑∞
n=−∞ Inxk−n + zk

There is another simple solution to the ISI problem. The main
idea is the following:

Given the discrete channel impulse response xk , we see

yk = Ik ⋆ xk + zk

By Fourier duality, taking discrete Fourier transform
(DFT) at both sides gives

Yk = IkXk + Zk

This transforms “convolution” to “multiplication.”
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So, if we set, for example, {Ik} ∈ {−1,1} and transmit its
IDFT {Ik}. Then, the ISI problem can be solved
straightforwardly.

Note that Yk is only a function of Ik and does not
depend on . . . ,Ik−2,Ik−1,Ik+1,Ik+2, . . ..

This idea has been employed in many modern techniques
such as Orthogonal Frequency Division Multiplexing
(OFDM).

-IN , . . . ,I1
IDFT -IN , . . . , I1 Discrete

channel
xk

-yN , . . . , y1
DFT -YN , . . . ,Y1
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11.2 Multicarrier communications:
11.2-3 Orthogonal frequency division multiplexing (OFDM)

11.2-4 Modulation and demodulation in an OFDM system
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Let T be the symbol duration; then we know the set of
waveforms

{κe ı2π k
T
t ∶ t ∈ [0,T ), k = 0,1, . . . ,Q − 1}

is a set of orthonormal functions, where

κ =
√

1

T
.

⟨κe ı2π k
T
t , κe ı2π

j
T
t⟩ = ∫

T

0
κ2e ı2π

k
T
te− ı2π

j
T
tdt

= 1

T ∫
T

0
e ı2π

(k−j)
T

tdt

= δk−j
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Let

Xk,n = Ik,n + ıQk,n

be the QAM symbol at the kth subcarrier and at the nth
symbol period; then the multicarrier waveform is given by

s`(t) = κ
∞
∑

n=−∞
(
Q−1
∑
k=0

Xk,ne
ı2π k

T
t)g(t − nT )

where g(t) is the pulse shaping function.

Hence,

s(t) = Re{s`(t)e ı2πfc t}

At the first glance, it seems to be a single-carrier fc system;
but, it is actually a multi-carrier system with single-carrier
implementation.
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s(t) = Re{s`(t)e ı2πfc t}

= Re{κ
∞
∑

n=−∞
(
Q−1
∑
k=0

Xk,ne
ı2π k

T
t)g(t − nT )e ı2πfc t}

=
Q−1
∑
k=0

Re{(κ
∞
∑

n=−∞
Xk,ng(t − nT )) e ı2πfk t}

where fk = fc + k
T is the kth carrier.
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11.2-6 Spectral characteristics of
multicarrier signals
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Clearly, s`(t) is a random process.

For simplicity, we may assume Ik,n and Qk,n are i.i.d., zero mean,
and variance 1

2σ
2.

With κ = 1/
√
T , the autocorrelation function of s`(t) is

Rs`(t + τ, t) = 1

T
E [(

∞
∑

n=−∞

Q−1
∑
k=0

Xk,ng(t + τ − nT )e ı2π
k
T
(t+τ))

⎛
⎝

∞
∑

m=−∞

Q−1
∑
j=0

X ∗
j ,mg

∗(t −mT )e− ı2π
j
T
t⎞
⎠

⎤⎥⎥⎥⎥⎦

= 1

T
σ2

Q−1
∑
k=0

e ı2π
k
T
τ

∞
∑

n=−∞
g(t + τ − nT )g∗(t − nT )
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It is clear that

Rs`(t + τ, t) = Rs`(t + τ +mT , t +mT )

for any integer m; hence s`(t) is a cyclostationary random
process with period T .

The average autocorrelation function is thus given by

R̄s`(τ) = 1

T ∫
T

0
Rs`(t + τ, t)dt

= σ2

T 2

Q−1
∑
k=0

e ı2π
k
T
τ

∞
∑

n=−∞
∫

T

0
g(t + τ − nT )g∗(t − nT )dt

= σ2

T 2

Q−1
∑
k=0

e ı2π
k
T
τ

∞
∑

n=−∞
∫

−(n−1)T

−nT
g(u + τ)g∗(u)du

= σ2

T 2

Q−1
∑
k=0

e ı2π
k
T
τ ∫

∞

−∞
g(t + τ)g∗(t)dt
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Power spectral density

The time-average power spectral density of s`(t) is

S̄s`(f ) = ∫
∞

−∞
R̄s`(τ)e− ı2πf τ dτ

= σ2

T 2

Q−1
∑
k=0
∫

∞

−∞
g∗(t) (∫

∞

−∞
g(t + τ)e− ı2π(f −

k
T
)τ dτ) dt

= σ2

T 2

Q−1
∑
k=0
∫

∞

−∞
g∗(t) (∫

∞

−∞
g(u)e− ı2π(f −

k
T
)u du) e ı2π(f −

k
T
)tdt

= σ2

T 2

Q−1
∑
k=0

G (f − k

T
)(∫

∞

−∞
g(t)e− ı2π(f −

k
T
)t dt)

∗

= σ2

T 2

Q−1
∑
k=0

∣G (f − k

T
)∣

2

.
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Theorem 1

The time-average power spectral density of s`(t) is

S̄s`(f ) = σ2

T 2

Q−1
∑
k=0

∣G (f − k

T
)∣

2

where Q is the number of subcarriers.
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Example

Let g(t) be the rectangular pulse shape of height 1 and
duration T ; then

G(f ) = e− ı πfTT sinc (fT ) .

Hence

S̄s`(f ) = σ2
Q−1
∑
k=0

∣sinc((f − k

T
)T)∣

2

.

In particular,

S̄s` (
m

T
) = σ2

Q−1
∑
k=0

∣sinc (m − k)∣2 = { σ2, if 0 ≤ m < Q
0, otherwise.

Digital Communications: Chapter 11 Ver 2018.07.25 Po-Ning Chen 15 / 47



Example: T = 1 and Q = 5

Figure: ∣G (f − k
T
)∣2 for k = 0,1,2,3,4
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Example: T = 1 and Q = 5

Figure: Ss`(f )
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S̄s`(f ) = σ2
Q−1
∑
k=0

∣sinc((f − k

T
)T)∣

2

The PSD S̄s`(f ) decays very slow at high frequencies at
rate approximately

S̄s`(f ) ≈
1

f 2
.

Out of band power leakage is severe and the resulting
spectrum may not meet the FCC requirement.

One can add a bandpass filter afterwards to remove the
out-of-band signals, for example, using the root raised
cosine filters.
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11.2-5 An FFT algorithm
implementation of an OFDM

system
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For simplicity, we again assume g(t) is the rectangular pulse
shape of height 1 and duration T such that for 0 ≤ t < T ,

s`(t) = κ
Q−1
∑
k=0

Xke
ı2π k

T
t

and zero, otherwise, where we drop the subscript n for symbol
period for notational convenience.

Then, we will introduce an efficient way to generate the
following waveform:

s`(t) = κ
Q−1
∑
k=0

Xke
ı2π k

T
t , t ∈ [0,T )
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Generating s`(t) using iFFT + DAC

Consider an N-point iFFT with N ≥ Q. (Usually, N is equal
to the power of two.)

Set X̂k = { Xk , if 0 ≤ k < Q
0, if Q ≤ k < N

The iFFT of X̂k is given by

x̂m = 1

N

N−1
∑
k=0

X̂ke
ı2πmk

N = 1

N

Q−1
∑
k=0

Xke
ı2πmk

N

Feeding Nx̂m to a digital-analog-converter (DAC) at rate N
T

gives

ŝ`(t) = (κN)
N−1
∑
m=0

x̂m gDAC (t − m

N
T)

where gDAC(t) is the rectangular pulse of height 1 and
duration T

N .

Digital Communications: Chapter 11 Ver 2018.07.25 Po-Ning Chen 21 / 47



-X̂N−1, . . . , X̂0

(0, . . . , 0,XQ−1, . . . ,X0)
iFFT -x̂N−1, . . . , x̂0 Discrete

channel
-yN , . . . , y1

FFT -YN , . . . ,Y1

Note that for n = 0,1, . . . ,N − 1,

ŝ` (
n

N
T) = κN

N−1
∑
m=0

x̂m gDAC ( n

N
T − m

N
T)

= κNx̂n

= κ
Q−1
∑
k=0

Xke
ı2π kn

N = s` (
n

N
T) (See Slide 11-20.)

We see

ŝ`(t) = s`(t) for t = nT /N and n = 0,1, . . . ,N − 1.

The technique we had used is called Zero Padding in DSP.
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Example: Q = 16 and T = 1

Xk = Ik + ıQk for 0 ≤ k < Q = 16
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Example: Q = 16 and T = 1

Figure: s`(t) = I (t) + ıQ(t) = κ∑Q−1
k=0 Xke

ı2π k
T
t , t ∈ [0,T )
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Example: Q = 16 and T = 1 and N = 16

s`(t) ŝ`(t)

s`(t) = ŝ`(t) at t = 0,
1

16
,

2

16
, . . . ,

15

16
(sec)
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Example: Q = 16 and T = 1 and N = 128

s`(t) ŝ`(t)

s`(t) = ŝ`(t) at t = 0,
1

128
,

2

128
, . . . ,

127

128
(sec)

Digital Communications: Chapter 11 Ver 2018.07.25 Po-Ning Chen 26 / 47



Example: Q = 16 and T = 1 and N = 256

s`(t) ŝ`(t)

s`(t) = ŝ`(t) at t = 1

256
,

2

256
, . . . ,

255

256
(sec)
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Example: Q = 16 and T = 1

s`(t) = κ
Q−1
∑
k=0

Xke
ı2π k

T
tg(t), t ∈ [0,T )

S`(f ) = F {s`(t)} = I (f ) + ıQ(f ) = κ∑Q−1
k=0 XkG (f − k

T
)

Out-of-band leakage due to rectangular pulse shape g(t)
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Example: Q = 16 and T = 1

S` (f =
k

T
) = Xk = Ik+ ıQk for k = 0,1, . . . ,Q = 15 and κ = 1

T
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Transmission of multicarrier signal
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ŝ`(t) = (κN)
∞
∑

n=−∞
(
N−1
∑
m=0

x̂m,n gDAC (t − m

N
T))g(t − nT )

= κ
∞
∑

n=−∞
(
N−1
∑
m=0

(
Q−1
∑
k=0

Xk,ne
ı2πmk

N ) gDAC (t − m

N
T))g(t − nT )

= κ
∞
∑

n=−∞
(
Q−1
∑
k=0

Xk,n (
N−1
∑
m=0

e ı2π
mk
N gDAC (t − m

N
T)))g(t − nT )

= κ
∞
∑

n=−∞
(
Q−1
∑
k=0

Xk,ne
ı2π k

T
⌊t(N/T)⌋

(N/T) )g(t − nT )

s`(t) = κ
∞
∑

n=−∞
(
Q−1
∑
k=0

Xk,ne
ı2π k

T
t)g(t − nT )

The difference between ideal s`(t) and physically realizable
ŝ`(t) is that the latter uses a “digitized” time scale.
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Denote a = ⌊t(N/T)⌋
t(N/T) , which is approximately 1 when N large.

Then the transmitted signal is given by

ŝ(t) = Re{ŝ`(t)e ı2πfc t}

= κ
∞
∑

n=−∞
Re{(

Q−1
∑
k=0

Xk,ne
ı2π k

T
⌊t(N/T)⌋

(N/T) ) e ı2πfc t}g(t − nT )

= κ
∞
∑

n=−∞

Q−1
∑
k=0

{Ik,n cos [2π (fc + a
k

T
) t]

−Qk,n sin [2π (fc + a
k

T
) t]}g(t − nT )

Digital Communications: Chapter 11 Ver 2018.07.25 Po-Ning Chen 32 / 47



Transmission of multicarrier signal
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OFDM = Multicarrier + Cyclic prefix

Why adding cyclic prefix?
To combat the channel effect due to c`(t).

We can virtually think that

s`(t) =
⎧⎪⎪⎨⎪⎪⎩

κ∑Q−1
k=0 Xke

ı2π k
T
t , t ∈ [0,T )

0, otherwise

or more physically

ŝ`(t) =
⎧⎪⎪⎨⎪⎪⎩

κ∑Q−1
k=0 Xke

ı2π k
T
at , t ∈ [0,T )

0, otherwise

Virtually extend s`(t) to make it periodic

s̃`(t) =
∞
∑

n=−∞
s`(t − nT ) = κ

Q−1
∑
k=0

Xke
ı2π k

T
t for t ∈ R
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We will transmit s̃`(t) (of duration P +T ) instead of s`(t) (of
duration T ) for OFDM, where P is the length of c`(t).

In other words, we essentially assume that

c`(t) = 0 for t < 0 and t ≥ P .

The extra periodic part P is called cyclic prefix in OFDM.

Usually, T should be made much larger than P in order to
reduce the loss in transmission time and to save extra
transmission power. For example, T = 3.2µs and P = 0.8µs for
IEEE 802.11.

The necessity of adding CP will be clear in the analysis of Rx.
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Receiver for multicarrier signal
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Receiver for multicarrier signal

Oversampling

While there are only Q tones transmitted, oversampling is
required to avoid aliasing caused by out-of-band signals from
other users.
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Assuming the channel has a lowpass equivalent impulse
response c`(t), the received noise-free received signal is

r`(t) = s̃`(t) ⋆ c`(t) = ∫
P

0
c`(τ)s̃`(t − τ)dτ,

where s̃`(t) periodic with period T .

Since all we need is r`(t) for t ∈ [0,T ), it is clear from the
above formula that we only need s̃`(t) for t ∈ [−P ,T ).

By this CP technique, the received signal is simplified to:

r`(t) = s̃`(t) ⋆ c`(t)

= κ(
Q−1
∑
k=0

Xke
ı2π k

T
t) ⋆ c`(t)

= κ
Q−1
∑
k=0

Xk ∫
∞

−∞
c`(τ)e ı2π

k
T
(t−τ) dτ

Digital Communications: Chapter 11 Ver 2018.07.25 Po-Ning Chen 38 / 47



r`(t) = κ
Q−1
∑
k=0

Xke
ı2π k

T
t ∫

∞

−∞
c`(τ)e− ı2π

k
T
τ dτ

= κ
Q−1
∑
k=0

Xke
ı2π k

T
tC` (

k

T
) .

Note r`(t) is actually periodic with period T .

Sample r`(t) at rate Ñ
T , where Ñ is not necessarily equal to N .

rm = r` (
m

Ñ
T) = κ

Q−1
∑
k=0

C` (
k

T
)Xke

ı2π km
Ñ

∗ The extra receptions for m = −1,−2, . . . ,−P
T Ñ due to CP are unused.
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When using the physical ŝ`(t) instead of ideal s`(t),

r̂m = r̂` (
m

Ñ
T) = κ

Q−1
∑
k=0

C` (
k

T
)Xke

ı2π k
T
( ⌊m(N/Ñ)⌋

m(N/Ñ)
)m
Ñ
T

= κ
Q−1
∑
k=0

C` (
k

T
)Xke

ı2πk
⌊m(N/Ñ)⌋

N for 0 ≤ m ≤ Ñ − 1

So, if N = Ñ or N is a multiple of Ñ (i.e., the sampling
rate at Tx is higher), then r̂m = rm.
However, if Ñ is a multiple of N , say, Ñ = uN , then

r̂m = κ
Q−1
∑
k=0

C` (
k

T
)Xke

ı2πk
⌊m/u⌋

N = ru⌊m/u⌋.

In other words, we only have N different samples at Rx
since Tx only transmits N samples.

Digital Communications: Chapter 11 Ver 2018.07.25 Po-Ning Chen 40 / 47



FFT/iFFT duality

The FFT/iFFT duality we adopt here is:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

FFT X̂k =
N−1
∑
m=0

x̂me
− ı2πmk

N

iFFT x̂m = 1

N

N−1
∑
k=0

X̂ke
ı2πmk

N
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Channel equalization

Given the received signal vector r = [r0,⋯, rÑ−1], the receiver
applies FFT to r (Implicitly, N is a multiple of Ñ with Ñ > Q.)

Rn =
Ñ−1
∑
m=0

rme
− ı2πmn

Ñ

=
Ñ−1
∑
m=0

(κ
Q−1
∑
k=0

C` (
k

T
)Xke

ı2π km
Ñ ) e− ı2π

mn
Ñ

= κ
Q−1
∑
k=0

C` (
k

T
)Xk

Ñ−1
∑
m=0

e− ı2π
m(n−k)

Ñ

= κ
Q−1
∑
k=0

C` (
k

T
)Xk ⋅ Ñδn−k

=
⎧⎪⎪⎨⎪⎪⎩

κÑC` ( n
T
)Xn, 0 ≤ n < Q

0, Q ≤ n < Ñ
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When oversampling occurs

When Ñ = uN,

Rn =
Ñ−1
∑
m=0

r̂me
− ı2πmn

Ñ

=
Ñ−1
∑
m=0

(κ
Q−1
∑
k=0

C` (
k

T
)Xke

ı2π km
Ñ

⌊m/u⌋
m/u ) e− ı2π

mn
Ñ (m = ui + j)

= κ
Q−1
∑
k=0

C` (
k

T
)Xk

⎛
⎝
u−1
∑
j=0

e− ı2π
nj

Ñ

N−1
∑
i=0

e− ı2π
i(n−k)

N
⎞
⎠

=
⎧⎪⎪⎨⎪⎪⎩

κ (∑u−1
j=0 e− ı2π

nj
uN )NC` (nmodN

T
)XnmodN , 0 ≤ nmodN < Q

0, Q ≤ nmodN < N

=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

κ
e− ıπ

(u−1)n
uN sin(πn

N
)

sin( πn
uN

) NC` (nmodN
T

)XnmodN , 0 ≤ nmodN < Q

0, Q ≤ nmodN < N
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Example. N = 16 and Ñ = 64

∣ sin(
πn
N

)
sin( πn

uN
) ∣

n
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Channel equalization

With noise present, we have

Rk = κÑC` (
k

T
)Xk + Zk

Only one-tap equalization (i.e., κÑC` ( k
T
)) is needed.
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Disadvantages of OFDM

While OFDM allows for simple equalization, it also introduces
other problems such as:

High peak-to-average power ratio (PAPR) at s`(t)
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What you learn from Chapter 11

Spectral characteristics of multicarrier signals

An FFT implementation of an OFDM system with DAC
consideration

Physical transmission of multicarrier signal over digitized
time scale

Multicarrier + Cyclic prefix

Oversampling and undersampling at RX
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