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9.2 Signal design for band-limited
channels
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Motivation

For the baseband waveform

s`(t) =
∞
∑

n=−∞
Ing(t − nT )

Channel is band-limited to [−W ,W ].

Transmitted signals outside [−W ,W ] will be truncated.

How to design g(t) to yield optimal performance?

1 Here we use s`(t) instead of v(t) as being used in text to clearly

indicate that s`(t) is the lowpass equivalent signal of s(t).
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Recall that

s`(t) =
∞
∑

n=−∞
Ing(t − nT )

is a cyclostationary random process with i.i.d. discrete random
process {In}.

Autocorrelation function of s`(t) is

Rs`(t + τ, t) = E[s`(t + τ)s
∗
` (t)]

is periodic with period T .

The time-average autocorrelation function

R̄s`(τ) =
1

T ∫

T
2

−T
2

Rs`(t + τ, t)dt

=
1

T

∞
∑

n=−∞
RI(n)∫

∞

−∞
g(t + τ − nT )g∗(t)dt
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R̄s`(τ) =
1
T ∑n RI(n) ∫

∞
−∞ g(t + τ − nT )g∗(t)dt

The time-average power spectral density of s`(t) is

S̄s`(f ) = ∫

∞

−∞
R̄s`(τ)e

− ı2πf τ dτ

=
1

T
[

∞
∑

n=−∞
RI(n)e

− ı2πfnT] ∣G(f )∣
2

Assuming In is zero mean and i.i.d., RI(n) = σ2δn, hence

S̄s`(f ) =
σ2

T
∣G(f )∣

2
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For static channel with impulse response c`(t), band-limited to
[−W ,W ], i.e.

C`(f ) = 0 for ∣f ∣ >W

The received signal is

r`(t) = c`(t) ⋆ s`(t) + n`(t)

= ∫

∞

−∞
c`(τ)(

∞
∑

n=−∞
Ing(t − τ − nT ))dτ + n`(t)

=
∞
∑

n=−∞
In ∫

∞

−∞
g(t − nT − τ)c`(τ)dτ + n`(t)

whose time-average power spectral density is

S̄r`(f ) =
σ2

T
∣G(f )∣

2
∣C`(f )∣

2
+ 2N0 rect(

f

2W
)

Note that n`(t) is a band-limited white noise process.
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r`(t) = ∑
∞
n=−∞ Inh`(t − nT ) + n`(t) with h`(t) = g(t) ⋆ c`(t)

Assume channel Impulse response c`(t) known to Rx.

The match-filtered received signal is

y`(t) = r`(t) ⋆ h
∗
` (T − t) = ∑

n

Inx`(t − nT ) + z`(t)

where x`(t) = h`(t) ⋆ h∗` (T − t) and
z`(t) = n`(t) ⋆ h∗` (T − t).

For simplicity, one may use h∗` (−t) instead of h∗` (T − t).

Sampling at t = kT , k ∈ Z, we get

yk = y`(kT ) =
∞
∑

n=−∞
Inx`(kT −nT )+z`(kT ) =∑

n

Inxk−n+zk

where xk−n = x`(kT − nT ).
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Quick summary

-Input data
Transmitting

filter
g(t)

-s`(t)

Channel

Channel
filter
c`(t)

-⊕

6
n`(t)

-r`(t)
Receiving

filter

h∗` (−t)

-y`(t) Sampler -yk

Transmitted signal s`(t) = ∑
∞
n=−∞ Ing(t − nT )

Received signal r`(t) = ∑
∞
n=−∞ Inh`(t − nT ) + n`(t) with

h`(t) = g(t) ⋆ c`(t).

Matched filter output y`(t) = ∑
∞
n=−∞ Inx`(t − nT ) + z`(t) with

x`(t) = h`(t) ⋆ h
∗
` (−t) or equivalently

X`(f ) = ∣H`(f )∣
2
= ∣G(f )∣2 ∣C`(f )∣

2 .

Sampling at t = kT and yk = ∑
∞
n=−∞ Inxk−n + zk .

The transmission power is not ∥g(t)⋆c`(t)∥2, which the receiver filter is to match! The additive
interference to the transmitted information Ik is not just zk but includes ∑∞n=−∞,n≠k Inxk−n. So
match filter is good for single transmission but may not be proper for consecutive transmissions!
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Eye pattern

A good tool to examine inter-symbol interference is the eye pattern.
Eye pattern: The synchronized superposition of all possible
realizations of the signal of interest viewed within a particular
signaling interval.

t/Tb

BPSK signals
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Perfect eye pattern (at Tx)

Eye pattern for r`(t) for g(t) being half-cycle sine wave with

duration Tb, c`(t) = δ(t) and error-free BPSK transmission.

t/Tb
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Now with c`(t) = δ(t), we have, for example,

g(t) =

⎧⎪⎪
⎨
⎪⎪⎩

1√
T
, 0 ≤ t < T

0, otherwise
(Time-limited; hence, band-unlimited!)

h`(t) = g(t) ⋆ c`(t) = g(t)

x`(t) = h`(t) ⋆ h
∗
` (−t) = ∫

∞

−∞
h`(τ)h

∗
` (−(t − τ))dτ

= ∫

∞

−∞
g(τ)g(τ − t)dτ =

⎧⎪⎪
⎨
⎪⎪⎩

T−∣t ∣
T , ∣t ∣ ≤ T

0, otherwise

From here, you shall know the difference of using h∗` (T − t) and
h∗` (−t), where the former samples at t = T , while the latter
samples at t = 0.
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Perfect eye pattern (at Rx)

y`(t) = ∑
∞
n=−∞ Inx`(t − nT ) for all possible {In ∈ {±1}}∞n=−∞.

(yk = y`(kT ) = ∑
∞
n=−∞ Inx`(kT − nT ) = Ik ; so no ISI!)
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Example: BPSK with 1/T = 1K and W = 3K

Output y`(t) with c`(t) being ideal lowpass filter of
bandwidth W .
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Example: BPSK with 1/T = 1K and W = 1K

Output y`(t) with c`(t) being ideal lowpass filter of
bandwidth W .
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Example: BPSK with 1/T = 1K and W = 0.9K

Output y`(t) with c`(t) being ideal lowpass filter of
bandwidth W .
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Example: BPSK with 1/T = 1K and W = 0.8K

Output y`(t) with c`(t) being ideal lowpass filter of
bandwidth W .
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Example: BPSK with 1/T = 1K and W = 0.7K

Output y`(t) with c`(t) being ideal lowpass filter of
bandwidth W .
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Example: BPSK with 1/T = 1K and W = 0.6K

Output y`(t) with c`(t) being ideal lowpass filter of
bandwidth W .
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Example: 4PAM with 1/T = 1K and W = 1K

Output y`(t) with c`(t) being ideal lowpass filter of
bandwidth W .
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Conclusion: The smaller W

Horizontal: Decision is more sensible to timing error.

Vertical: Decision is more sensible to noise.
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Example (revisited)

Now changing to c`(t) = δ(t) + δ(t −T ), we have, for example,

g(t) =

⎧⎪⎪
⎨
⎪⎪⎩

1√
T
, 0 ≤ t < T

0, otherwise
(Time-limited; hence, band-unlimited!)

h`(t) = g(t) ⋆ c`(t) = g(t) + g(t −T ) = g(t/2)

x`(t) = h`(t) ⋆ h
∗
` (2T − t)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
causal

= ∫

∞

−∞
h`(τ)h

∗
` (2T − (t − τ))dτ

= ∫

∞

−∞
g(τ/2)g((2T + τ − t)/2)dτ

=

⎧⎪⎪
⎨
⎪⎪⎩

2T−∣t−2T ∣
T , ∣t − 2T ∣ ≤ 2T

0, otherwise

yk = y`(kT ) =
∞
∑

n=−∞
Inx`(kT − nT ) + z`(kT ) = 2Ik−2 + Ik−1 + Ik−3

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ISI

+zk

The question next to be asked is that how to remove the ISI?
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9.2-1 Design of band-limited signals
for no intersymbol interference -

The Nyquist criterion
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Intersymbol interference channel

yk = ∑
∞
n=−∞ Inxk−n + zk

Design goal

Given W , T and c`(t), we would like to design g(t) such that

xk−n = δk−n

and that

yk =
∞
∑

n=−∞
Inxk−n + zk = Ik + zk

Here, δk is the Kronecker delta function, defined as

δk =

⎧⎪⎪
⎨
⎪⎪⎩

1 k = 0

0 k ≠ 0
.
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Nyquist rate

Theorem 1 (Nyquist criterion)

Let x`(t) be a band-limited signal with band [−W ,W ] and
x`(0) = 1. Sample at rate 1

T such that

xk = x`(kT ) = ∫

∞

−∞
x`(t)δ(t − kT )dt = δk

if and only if
∞
∑

m=−∞
X` (f −

m

T
) = T

where X`(f ) = F{x`(t)}.
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Proof:
The condition of xk = x`(kT ) = δk is equivalent to

x`(t)
∞
∑

k=−∞
δ(t − kT ) =

∞
∑

k=−∞
x`(kT )δ(t − kT ) = δ(t). (1)

We however have (from Lemma 2 in the next slide)

F {
∞
∑

k=−∞
δ(t − kT )} =

1

T

∞
∑

m=−∞
δ (f −

m

T
) and F{δ(t)} = 1.

Taking Fourier transform on both sides of (1) gives

X`(f ) ⋆ [
1

T

∞
∑

m=−∞
δ (f −

m

T
)] =

1

T

∞
∑

m=−∞
X` (f −

m

T
) = 1,

and proves the theorem.
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Proof of key lemma

Lemma 2

F {
∞
∑

k=−∞
δ(t − kT )} =

1

T

∞
∑

m=−∞
δ (f −

m

T
)

Proof: Consider the function

α(f ) =
1

T

∞
∑

m=−∞
δ (f −

m

T
)

which is periodic with period 1
T . From Fourier series, we have

α(f ) =
1

1/T

∞
∑

n=−∞
cne

− ı2πnf /(1/T)
=

∞
∑

n=−∞
e− ı2πnfT

where

cn = ∫

1
2T

− 1
2T

α(f )e ı2πnf /(1/T)df = ∫

1
2T

− 1
2T

1

T
δ(f )e ı2πnf /(1/T)df =

1

T

by following the replication property of δ(f ).
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Next by linearity of Fourier transform, we have

F {
∞
∑

k=−∞
δ(t − kT )} = ∫

∞

−∞

∞
∑

k=−∞
δ(t − kT )e− ı2πft dt

=
∞
∑

k=−∞
e− ı2πfkT .
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Implication of Nyquist criterion

xk = δk iff
∞
∑

m=−∞
X` (f −

m

T
) = T (2)

1 2W < 1
T :

X` (f −
m
T
) and X` (f −

m′

T
) do not overlap for m ≠ m′.

Hence (2) is impossible!

2 2W = 1
T :

This means X`(f ) = T rect (Tf ), hence x`(t) = sinc ( t
T
).

Theoretically ok but physically impossible!

3 So we need 2W > 1
T

Channel bandwidth must be larger than sampling rate.
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xk = δk iff
∞
∑

m=−∞
X` (f −

m

T
) = T

2W >
1

T
(from W >

1

T
−W )
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Raised cosine pulse

Definition 1

Xrc(f ) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

T , 0 ≤ ∣f ∣ ≤ 1−β
2T

T
2 {1 + cos [πTβ (∣f ∣ − 1−β

2T
)]} , 1−β

2T ≤ ∣f ∣ ≤ 1+β
2T

0, otherwise

where 0 ≤ β ≤ 1 is the roll-off factor.

xrc(t) = sinc(
t

T
)

cos (πβt/T )

1 − 4β2t2/T 2
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Xrc (f ) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

T , 0 ≤ ∣f ∣ ≤ 1−β
2T

T
2 {1 + cos [πTβ (∣f ∣ − 1−β

2T
)]} , 1−β

2T ≤ ∣f ∣ ≤ 1+β
2T

0, otherwise
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Xrc (f −
m

T
) with m = −1,0,1
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xrc(t) = sinc(
t

T
)

cos (πβt/T )

1 − 4β2t2/T 2
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Example.

Assuming
C`(f ) = 1

Let GT (f ) = F{g(t)}.

Let GR(f ) = F{h∗` (−t)}, where h`(t) = g(t) ⋆ c`(t) = g(t).

This gives
GR(f ) = F{g∗(−t)} = G∗

T (f )

and

Xrc(f ) = GT (f )C`(f )GR(f ) = GT (f )GR(f ) = ∣GT (f )∣2.
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Note ∣xrc(t)∣ ≈
1
t3 for large ∣t ∣. So it can be truncated at

±t0 for some t0 large.

xrc(t) = sinc(
t

T
)

cos (πβt/T )

1 − 4β2t2/T 2

So we can set

GT(f ) =
√
Xrc(f )e

− ı2πft0 and GR(f ) = G ∗
T(f ).
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9.2-2 Design of band-limited signals
with controlled ISI: Partial response

signals
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Duobinary pulse

We relax the no-ISI condition so that

xk = δk + δk−1 Ô⇒ yk = Ik + Ik−1 + zk

Following similar arguments (see the next slide), it shows

1

T

∞
∑

m=−∞
X` (f −

m

T
) = 1 + e− ı2πfT .

Setting 2W = 1
T (with W being the bandwidth of X`(f )), we

have

X`(f ) = T (1 + e− ı2πfT) rect(
f

2W
)

x`(t) = sinc (2Wt) + sinc [2(Wt −
1

2
)]

This is called duobinary pulse.
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Proof: The condition of xk = δk + δk−1 is equivalent to

x`(t)
∞
∑

k=−∞
δ(t−kT ) =

∞
∑

k=−∞
x`(kT )δ(t−kT ) = δ(t)+δ(t−T ). (3)

We however have

F {
∞
∑

k=−∞
δ(t − kT )} =

1

T

∞
∑

m=−∞
δ (f −

m

T
) and F{δ(t)} = 1.

Taking Fourier transform on both sides of (3) gives

X`(f )⋆[
1

T

∞
∑

m=−∞
δ (f −

m

T
)] =

1

T

∞
∑

m=−∞
X` (f −

m

T
) = 1+e− ı2πfT ,

and proves the theorem.
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When W = 1
2T ,

X`(f ) =

⎧⎪⎪
⎨
⎪⎪⎩

T (1 + e− ı2πfT) rect ( f
2W

) , with controlled ISI

T rect ( f
2W

) , without controlled ISI

X`(f ) with controlled ISI

The duobinary filter is apparently more physically realizable!

Recall that with no controlled ISI, we require W > 1
2T

because channel

bandwidth W = 1
2T

is not physically realizable. But now with controlled

ISI, W = 1
2T

becomes physically realizable.
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9.2-3 Data detection for controlled
ISI
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Precoding for duobinary pulses

Received signal for duobinary shaping is

yk = Ik + Ik−1 + zk .

We could precode the sequence {Ik} to simplify detection.

Example 1 (Binary case - Differential encoding)

Given the binary bit (information) stream {bk}

Define Pk = bk ⊕ Pk−1 ∈ {0,1}.

Set Ik = 2Pk − 1 ∈ {±1}.

Receive yk = Ik + Ik−1 + zk .

Ik + Ik−1 = {
±2, if bk = 0
0, if bk = 1.

b̂k = 0 if ∣yk ∣ > 1 and b̂k = 1 if ∣yk ∣ ≤ 1
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Summary of precoding system

Compare

⎧⎪⎪
⎨
⎪⎪⎩

1
T ∑

∞
m=−∞X` (f −

m
T
) = 1

1
T ∑

∞
m=−∞X

(p)
` (f − m

T
) = 1 + e− ı2πfT .

We can say X
(p)
` (f ) = X`(f ) (1 + e− ı2πfT ) and

⎧⎪⎪
⎨
⎪⎪⎩

y`(t) = ∑
∞
n=−∞ Inx`(t − nT ) + z`(t)

y
(p)
` (t) = ∑∞n=−∞ Inx

(p)
` (t − nT ) + z`(t)

and
⎧⎪⎪
⎨
⎪⎪⎩

yk = Ik + zk

y
(p)
k = Ik + Ik−1 + zk

⇒

⎧⎪⎪
⎨
⎪⎪⎩

yk ≶ 0

∣y
(p)
k ∣ ≶ 1

Note that ∥x`(t)∥
2 does not decide the transmission energy!
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Summary of precoding system

⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pe = Q (

√
1

E[z2
k
]) = Q (

√
Eb,`/∥gT (t)∥2

N0∥gR(t)∥2 ) , error rate for Ik

= Q (
√

2Eb
N0

1
∥gT (t)∥2∥gR(t)∥2 ) = Q(

√
2aγb)

P
(p)
e = 3

2Q(
√

2aγb) −
1
2Q(3

√
2aγb), error rate for bk

where
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ik ∈ {±1}

the (lowpass) transmission energy per bit Eb,` = ∥gT (t)∥2 = 2Eb

the lowpass noise E[z2
k ] = σ

2
` ∥gR(t)∥

2

with n`(t) having two-sided PSD σ2
` = N0

a = 1
∥gT (t)∥2∥gR(t)∥2 (subject to gT (t) ⋆ c`(t) ⋆ gR(t) = x`(t))

Hence, pre-coding technique provides a better spectrum efficiency
at the price of performance degradation.
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9.2-4 Signal design for channel with
distortion
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In general, we have C`(f ) ≠ rect ( f
2W

), and in this case

s`(t) =
∞
∑

n=−∞
IngT(t − nT )

r`(t) = c`(t) ⋆ s`(t) + n`(t)

y`(t) = r`(t) ⋆ gR(t) = s`(t) ⋆ c`(t) ⋆ gR(t) + z`(t)

yk = y`(kT ) = Ik + zk (We hope there is no ISI!)

where

gT(t) transmit filter

c`(t) channel impulse response

gR(t) receive filter
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Hence

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

xrc(t) = gT(t) ⋆ c`(t) ⋆ gR(t)

Xrc(f ) = GT(f )C`(f )GR(f )

Sz`(f ) = N0 ∣GR(f )∣
2

because we assume {Ik} real

If c`(t) is known to Tx, then we may choose to “pre-equalize”
the channel effect at Tx:

∣GT(f )∣ =

√
Xrc(f )

∣C`(f )∣
and ∣GR(f )∣ =

√
Xrc(f )

Then, ISI is avoided; also, the noise power remains

E[z2
k ] = ∫

∞

−∞
Sz`(f )
´¹¹¹¹¸¹¹¹¹¹¶
=N0∣GR(f )∣2

df = N0∫

∞

−∞
Xrc(f )df = N0xrc(0) = N0.
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In ∈ {±d} and Xrc(f ) = GT(f )C`(f )GR(f )

Signal power

Pav ,` =
d2 ∥gT(t)∥

2

T
=

d2

T ∫
∞

−∞

Xrc(f )

∣C`(f )∣
2
df

Error probability

Pb = Q
⎛
⎜
⎝

¿
Á
ÁÀ d2

12

4E[z2
k ]

⎞
⎟
⎠

= Q
⎛

⎝

d
√
E[z2

k ]

⎞

⎠
= Q

⎛
⎜
⎜
⎝

¿
Á
Á
ÁÀ

Pav ,`T

N0 [∫
∞
−∞

Xrc(f )
∣C`(f )∣2

df ]

⎞
⎟
⎟
⎠
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If c`(t) only known to Rx

We can only equalize the “channel effect” at Rx:

∣GT(f )∣ =
√
Xrc(f ) and ∣GR(f )∣ =

√
Xrc(f )

∣C`(f )∣
.

Signal power

Pav ,` =
d2

T
∥gT(t)∥2

=
d2

T ∫
∞

−∞
Xrc(f )df =

d2

T
Noise power

E[z2
k ] = ∫

∞

−∞
Sz`(f )df = N0∫

∞

−∞

Xrc(f )

∣C`(f )∣
2
df

Error probability

Pb = Q
⎛

⎝

d
√
E[z2

k ]

⎞

⎠
= Q

⎛
⎜
⎜
⎝

¿
Á
Á
ÁÀ

Pav ,`T

N0 [∫
∞
−∞

Xrc(f )
∣C`(f )∣2

df ]

⎞
⎟
⎟
⎠
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If however c`(t) known to both Tx and Rx

We may design:

∣GT(f )∣ =

¿
Á
ÁÀXrc(f )

∣C`(f )∣
and ∣GR(f )∣ =

¿
Á
ÁÀXrc(f )

∣C`(f )∣

Signal power

Pav ,` =
d2

T
∥gT(t)∥

2
=

d2

T ∫
∞

−∞

Xrc(f )

∣C`(f )∣
df

Noise power

E[z2
k ] = ∫

∞

−∞
Sz`(f )df = N0∫

∞

−∞

Xrc(f )

∣C`(f )∣
df

Error probability

Pb = Q
⎛

⎝

d
√
E[z2

k ]

⎞

⎠
= Q

⎛
⎜
⎜
⎝

¿
Á
Á
ÁÀ

Pav ,`T

N0 [∫
∞
−∞

Xrc(f )
∣C`(f )∣ df ]

2

⎞
⎟
⎟
⎠

Digital Communications: Chapter 09 Ver 2018.07.25 Po-Ning Chen 49 / 51



Either Tx or Rx knows c`(t)

Pb,T = Pb,R = Q

⎛
⎜
⎜
⎜
⎝

¿
Á
Á
Á
ÁÀ

Pav ,`T

N0 [∫
∞
−∞

Xrc(f )
∣C`(f )∣2

df ]

⎞
⎟
⎟
⎟
⎠

Both Tx and Rx know c`(t)

Pb,TR = Q

⎛
⎜
⎜
⎝

¿
Á
Á
ÁÀ

Pav ,`T

N0 [∫
∞
−∞

Xrc(f )
∣C`(f )∣ df ]

2

⎞
⎟
⎟
⎠

Note from Cauchy-Schwartz inequality

[∫

∞

−∞

Xrc(f )

∣C`(f )∣
df ]

2

=

RRRRRRRRRRR

⟨
√
Xrc(f ),

√
Xrc(f )

∣C`(f )∣
⟩

RRRRRRRRRRR

2

≤ ∥
√
Xrc(f )∥

2
XXXXXXXXXXX

√
Xrc(f )

∣C`(f )∣

XXXXXXXXXXX

2

= ∫

∞

−∞

Xrc(f )

∣C`(f )∣
2
df

This shows Pb,TR ≤ Pb,T = Pb,R . “=” holds iff ∣C`(f )∣ = 1.
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What you learn from Chapter 9

Match filter to input pulse shaping and channel impulse
response

(Good to know) Eye pattern to examine ISI

Nyquist criterion

Sampling rate < channel bandwidth for no ISI (I.e.,

increasing sampling rate will give more samples for perhaps

better performance, but adjacent samples will be eventually

“interfered” to each other)

Since ISI is unavoidable for high sampling rate, let’s
accept and face it, and just use controlled ISI.

A better performance is resulted when both Tx and Rx
know the channel.
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