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5.1 Signal parameters estimation
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Models

Channel delay τ exists between Tx and Rx.

For AWGN + channel delay τ + carrier phase mismatch φ0,
given s(t) transmitted, one receives

r(t) = s(t − τ) + n(t).

As lowpass equivalent

s(t) = Re [s`(t)e
ı2πfc t] but r(t) = Re [r`(t)e

ı2πfc t+ ı φ0]

we have

r(t) = Re [r`(t)e
ı2πfc t+ ı φ0]

= Re [s`(t − τ)e
ı2πfc(t−τ)] +Re [n`(t)e

ı2πfc t+ ı φ0]

= Re{[s`(t − τ)e
ı φ + n`(t)] e

ı2πfc t+ ı φ0}

where φ = −2πfcτ − φ0.
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φ = −2πfcτ − φ0

In general, τ ≪ T , but

∣−2πfcτ ∣ mod 2π

is far from 0 since fc is large.

So, we should treat τ and φ as different random variables

r`(t) = s`(t;φ, τ) + n`(t).

Notably, since the passband signal s(t − τ) is “real”, it does
not appear a phase mismatch φ for the real passband signals.

In other words, φ appears due to the imperfect
down-conversion at the receiver.
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r`(t) = s`(t;φ, τ) + n`(t)

Let Θ = (φ, τ), and set

r`(t) = s`(t; Θ) + n`(t).

Let {φn,`(t),1 ≤ n ≤ N} be a set of orthonormal functions over
[0,T0), where T0 ≥ T , such that rj ,` = ⟨r`(t), φn,`(t)⟩ and we
have a vector representation

r ` = s`(Θ) + n`.

Digital Communications Ver 2018.12.31 Po-Ning Chen 5 / 69



Assuming Θ has a joint pdf f (Θ), the MAP estimate of Θ is

Θ̂ = arg max
Θ

f (Θ∣r `)

= arg max
Θ

f (r `∣Θ)
f (Θ)

f (r `)
= arg max

Θ
f (r `∣Θ) f (Θ).

Assume Θ is uniform and holds constant for an observation
period of T0 ≥ T (slow variation),

Θ̂ = arg max
Θ

f (r `∣Θ) f (Θ) = arg max
Θ

f (r `∣Θ)

The latter is the ML estimate of Θ.

Note that f (r `∣Θ) is the likelihood function.
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r ` = s`(Θ) + n` and Θ̂ = arg maxΘ f (r `∣Θ)

For a fixed {φj ,`(t)}Nj=1 and E [∣nj ,`∣2] = σ2
` = 2N0,

f (r `∣Θ) = (
1

πσ2
`

)

N

exp{−
N

∑
n=1

∣rn,` − sn,`(Θ)∣
2

σ2
`

} .

Text (5.1-5) uses bandpass analysis and yields

f (r ∣Θ) = ( 1√
2πσ2

)
N

exp{−∑N
n=1

∣rn−sn(Θ)∣2
2σ2 } with σ2 = N0

2 .

We will show later that both analyses yield identical result!

Assume that {φn,`(t)}Nj=1 is a complete orthonormal basis.
Then

N

∑
n=1

∣rn,` − sn,`(Θ)∣
2
= ∫

T0

0
∣r`(t) − s`(t; Θ)∣

2
dt.
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The likelihood function

Given s`(t) known to both Tx and Rx, the ML estimate of Θ is

Θ̂ = arg max
Θ

Λ(Θ)

and the term

Λ(Θ) = exp{−
1

σ2
`
∫

T0

0
∣r`(t) − s`(t; Θ)∣

2
dt}

will be referred to as the likelihood function.
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Exemplified block diagrams
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Exemplified block diagrams
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5.2 Carrier phase estimation
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Example 1 (DSB-SC signal where τ = 0 and φ0 = φ̃ − φ)

Assume the transmitted signal is

s(t) = A(t) cos (2πfct + φ)

Rx uses c(t) with carrier reference φ̃ to demodulate

c(t) = cos (2πfct + φ̃)

So even n`(t) = 0, the down-covertion Rx gives

LPF{s(t)c(t)} = 1

2
A(t) cos (φ − φ̃)

Performance is severely degraded due to phase error (φ − φ̃).

Hence, signal power is reduced by a factor cos2(φ − φ̃):

A phase error of 10○ leads to 0.13 dB of signal power loss.

A phase error of 30○ leads to 1.25 dB of signal power loss.
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Example 2 (QAM or PSK where τ = 0 and φ0 = φ̃ − φ)

For QAM or PSK signals, Tx sends

s(t) = x(t) cos (2πfct + φ) − y(t) sin (2πfct + φ)

and Rx uses the cI(t) and cQ(t) to demodulate

cI(t) = cos (2πfct + φ̃) cQ(t) = sin (2πfct + φ̃)

Hence

rI(t) = LPF{s(t)cI(t)} =
x(t) cos(φ − φ̃) − y(t) sin(φ − φ̃)

2

rQ(t) = LPF{s(t)cQ(t)} =
x(t) sin(φ − φ̃) + y(t) cos(φ − φ̃)

2

Even worse, both power degradation and crosstalk occur.
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5.2-1 ML carrier phase estimation
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Assume τ = 0 (or τ has been perfectly compensated) & estimate φ.

So Θ = φ. The likelihood function is

Λ(φ) = exp{− 1

σ2
`
∫

T0

0
∣r`(t) − s`(t;φ)∣2 dt}

= exp(− 1

σ2
`
∫

T0

0
[∣r`(t)∣2 − 2Re{r`(t)s∗` (t;φ)} + ∣s`(t;φ)∣2]dt)

∣r`(t)∣2 is irrelevant to the maximization over φ.
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For the term ∣s`(t;φ)∣2, we have

s`(t;φ) = s`(t)e
ı φ.

So,
∣s(t, φ)∣

2
= ∣s(t)∣

2

Thus

φ̂ = arg max
φ

exp{
2

σ2
`
∫

T0

0
Re{r`(t)s

∗
` (t;φ)} dt}

= arg max
φ

exp{
4

σ2
`
∫

T0

0
r(t)s(t;φ)dt}

(With σ2
` = 2N0, this formula

is the same as (5.2-8) obtained

based on bandpass analysis!)

Note that from Slide 2-24,

⟨x(t), y(t)⟩ = 1
2Re{⟨x`(t), y`(t)⟩} .

We will use one of the two above criterions (i.e., baseband or
passband) to derive φ̂, depending on whichever is convenient.
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Example

Assume

s(t) = A cos(2πfct) and r(t) = A cos (2πfct + φ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

s(t;φ)

+n(t)

where φ is the unknown phase here.

φ̂ = arg max
φ

exp{
4

σ2
`
∫

T0

0
r(t)s(t;φ)dt}

= arg max
φ
∫

T0

0
r(t)s(t;φ)dt
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So we seek φ̂ that minimizes

ΛL(φ) = A ∫
T0

0 r(t) cos (2πfct + φ) dt

Since φ is continuous, a necessary condition for a minimum is
that

dΛL(φ)

dφ

RRRRRRRRRRRφ=φ̂

= 0

It yields

∫

T0

0
r(t) sin(2πfct + φ̂)dt = 0

= cos(φ̂)∫
T0

0
r(t) sin(2πfct)dt + sin(φ̂)∫

T0

0
r(t) cos(2πfct)dt

φ̂ = − tan−1 ∫
T0

0 r(t) sin(2πfct)dt

∫
T0

0 r(t) cos(2πfct)dt
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Performance check

Recall
r(t) = A cos (2πfct + φ) + n(t)

with unknown phase φ.

E [∫

T0

0
r(t) sin(2πfct)dt] = −

1

2
AT0 sin(φ)

E [∫

T0

0
r(t) cos(2πfct)dt] =

1

2
AT0 cos(φ)

Then on the average

φ̂ = − tan−1
E [∫

T0

0 r(t) sin(2πfct)dt]

E [∫
T0

0 r(t) cos(2πfct)dt]
= φ

which is the true phase.
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A one-shot ML phase estimator
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5.2-2 The phase-locked loops
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Instead of one-shot estimate, a phase-locked loop continuously
adjusts φ to achieve

∫

T0

0
r(t) sin(2πfct + φ̂)dt = 0

We can then change the sign of sine function to facilitate the
follow-up analysis.

∫

T0

0
r(t) (− sin(2πfct + φ̂)) dt = 0
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The analysis of the PLL can be visioned in a simplified basic
diagram:
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If T0 is a multiple of 1/(2fc), then

∫

T0

0
e(t)dt

=
A

2 ∫
T0

0
sin(φ − φ̂ML)dt −

A

2 ∫
T0

0
sin(4πfct + φ + φ̂ML)dt

=
AT0

2
sin(φ − φ̂ML) − 0

The effect of integration is similar to a lowpass filter.
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Effective VCO output φ̂(t) can be modeled as

φ̂(t) = K ∫
t

−∞
v(τ)dτ

where v(⋅) is the input of the VCO.
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The nonlinear sin(⋅) causes difficulty in analysis. Hence, we
may simplify it using sin(x) ≈ x .

In terms of Laplacian transform technique, we then derive the
close-loop system transfer function.

H(s) =
φ̂(s)

φ(s)
=

φ̂(s)

[φ(s) − φ̂(s)] + φ̂(s)

=
(KG(s)/s)[φ(s) − φ̂(s)]

[φ(s) − φ̂(s)] + (KG(s)/s)[φ(s) − φ̂(s)]

=
KG(s)/s

1 +KG(s)/s
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Second-order loop transfer function

G(s) =
1 + τ2s

1 + τ1s
, where τ1 ≫ τ2 for a lowpass filter.

Ô⇒ H(s) =

=τ2ωn

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(2ζ − ωn/K)(s/ωn) + 1

(s/ωn)
2 + 2ζ(s/ωn) + 1

where

⎧⎪⎪
⎨
⎪⎪⎩

ωn =
√
K/τ1 natural frequency of the loop

ζ = ωn(τ2 + 1/K)/2 loop damping factor
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Assume 2ζ − ωn
K ≈ 2ζ (i.e., ωn/K

2ζ = 1
Kτ2+1 ≪ 1). Hence,

H(s) ≈ 2ζ(s/ωn) + 1

(s/ωn)2 + 2ζ(s/ωn) + 1
.

Damping factor=response speed (for changes)
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Noise-equivalent bandwidth of H(f )

Definition: One-sided noise-equivalent bandwidth of H(f )

Beq =
1

maxf ∣H(f )∣2 ∫
∞

0
∣H(f )∣2df = 1 + (τ2ωn)2

8ζ/ωn
≈ 1 + 4ζ2

8ζ
ωn

where we use τ2ωn = 2ζ − ωn
K ≈ 2ζ.

Tradeoff in parameter selection in PLL

It is desirable to have a larger PLL bandwidth ωn in
order to track any time variation in the phase of the
received carrier.
However, with a larger PLL bandwidth, more noise will
be passed into the loop; hence, the phase estimate is less
accurate.

Digital Communications Ver 2018.12.31 Po-Ning Chen 30 / 69



5.2-3 Effect of additive noise on the
phase estimate
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Assume that

r(t) = Ac cos(2πfct + φ(t)) + n(t)

where

n(t) = nc(t) cos(2πfct + φ(t)) − ns(t) sin(2πfct + φ(t))

and nc(t) and ns(t) are independent Gaussian random
processes.
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For convenience, we abbre-
viate φ(t) and φ̂(t) as φ
and φML in the derivation.
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As a result,

φ̂(s)

φ(s) + n2(s)

=
φ̂(s)

[φ(s) − φ̂(s) + n2(s)] + φ̂(s)

=
(KG(s)/s)[(φ(s) − φ̂(s)) + n2(s)]

[φ(s) − φ̂(s) + n2(s)] + (KG(s)/s)[(φ(s) − φ̂(s)) + n2(s)]

=
KG(s)/s

1 +KG(s)/s
= H(s)

⇒ φ̂(s) = [φ(s) + n2(s)]H(s)

⇒ φ̂(t) = [φ(t) + n2(t)] ⋆ h(t) = φ(t) ⋆ h(t) + n2(t) ⋆ h(t)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

noise
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Let’s calculate noise variance:

σ2
φ̂

= ∫

∞

−∞
Φn2(f )∣H(f )∣2df

= ∫

∞

−∞

N0

2

1

A2
c

∣H(f )∣2df

=
N0Beq

A2
c

max
f

∣H(f )∣2

σ2
φ̂

is proportional to Beq; since the signal power is fixed as

1/2, SNR is inversely proportional to Beq.

Subject to that the bandwidth Beq of the “equivalent (ideal)
filter” is large enough to pass all the input power, the “sig-
nal power” is equal to ∫ ∞−∞ Sφ(f )∣H(f )∣2df = maxf ∣H(f )∣2 ⋅
∫ ∞−∞ Sφ(f )df ; hence, SNR γL is proportional to

A2
c

N0Beq
.
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Exact PLL model versus linearlized PLL model
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It turns out that when G(s) = 1, the σ2
φ̂

of the exact PLL model is

tractable (Vitebi 1966). The linear model gives σ2
φ̂
= 1/γL = N0Beq

A2
c

.

The linear model well approximates the exact model when
γL = A2

c/(N0Beq) > 3 ≈ 4.77 dB.
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5.2-4 Decision directed loops
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For general modulation scheme, let

s`(t) =
∞
∑

n=−∞
Ing(t − nT );

then
s(t;φ) = Re{s`(t)e

ı φe ı2πfc t}

Hence, by letting T0 = KT ,

ΛL(φ) = ∫

T0

0
r(t)s(t;φ)dt

= ∫

T0

0
r(t)Re{

∞
∑

n=−∞
Ing(t − nT )e ı φe ı2πfc t} dt

= ∫

T0

0
r(t)Re{

K−1

∑
n=0

Ing(t − nT )e ı φe ı2πfc t} dt
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ΛL(φ) = ∫
T0

0 r(t)Re{∑
K−1
n=0 Ing(t − nT )e ı φe ı2πfc t} dt

ΛL(φ) = Re
⎧⎪⎪
⎨
⎪⎪⎩

e ı φ
K−1

∑
n=0

In ∫
T0

0
r(t)g(t − nT )e ı2πfc t dt

⎫⎪⎪
⎬
⎪⎪⎭

= Re
⎧⎪⎪
⎨
⎪⎪⎩

e ı φ
K−1

∑
n=0

In ∫
(n+1)T

nT
r(t)g(t − nT )e ı2πfc t dt

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
yn

⎫⎪⎪
⎬
⎪⎪⎭

= Re{e ı φ
K−1

∑
n=0

Inyn}

= Re{
K−1

∑
n=0

Inyn} cos(φ) − Im{
K−1

∑
n=0

Inyn} sin(φ)
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ΛL(φ) = Re{∑
K−1
n=0 Inyn} cos(φ) − Im{∑

K−1
n=0 Inyn} sin(φ)

Now

dΛL(φ)

dφ
= −Re{

K−1

∑
n=0

Inyn} sin(φ) − Im{
K−1

∑
n=0

Inyn} cos(φ)

and the optimal estimate φ̂ is given by

φ̂ = − tan−1
⎛

⎝

Im{∑
K−1
n=0 Inyn}

Re{∑
K−1
n=0 Inyn}

⎞

⎠

This is called decision directed estimation of φ.
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Note that from Slide 2-24,

⟨x(t), y(t)⟩ = 1
2Re{⟨x`(t), y`(t)⟩} .

Hence,

Re{Inyn} = ∫
(n+1)T

nT
r(t) ⋅Re{Ing(t − nT )e ı2πfc t} dt

= 1

2
Re{∫

(n+1)T

nT
r`(t)I ∗n g∗(t − nT )dt}

= 1

2
Re{I ∗n ∫

(n+1)T

nT
r`(t)g∗(t − nT )dt

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
yn,`

}

= 1

2
Re{I ∗n yn,`}
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Im{Inyn} = ∫
(n+1)T

nT
r(t) ⋅ Im{Ing(t − nT )e ı2πfc t} dt

= ∫
(n+1)T

nT
r(t) ⋅Re{(− ı )Ing(t − nT )e ı2πfc t} dt

= 1

2
Re{∫

(n+1)T

nT
r`(t) ⋅ ı I ∗n g∗(t − nT )dt}

= −1

2
Im{I ∗n yn,`}

φ̂ = tan−1 ⎛
⎝
Im{∑K−1

n=0 I ∗n yn,`}
Re{∑K−1

n=0 I ∗n yn,`}
⎞
⎠

Final note: The formula (5.2-38) in text has an extra “−” sign
because the text (inconsistently to (5.1-2)) assumes
s(t;φ) = Re{s`(t)e− ı φe ı2πfc t}; but we assume

s(t;φ) = Re{s`(t)e+ ı φe ı2πfc t} as (5.1-2) did.
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5.2-5 Non-decision-directed loops
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For carrier phase estimation with σ2
` = 2N0, we have shown that

φ̂ = arg max
φ

exp{ 2

N0
∫

T0

0
r(t)s(t;φ)dt}

= − tan−1 ⎛
⎝
Im{∑K−1

n=0 Inyn}
Re{∑K−1

n=0 Inyn}
⎞
⎠

When {In}K−1
n=0 is unavailable, we take the expectation with respect

to {In}K−1
n=0 instead:

φ̂ = arg max
φ

E [exp{ 2

N0
∫

T0

0
r(t)s(t;φ)dt}]

= arg max
φ

E [exp{ 2

N0
∫

T0

0
r(t)Re{

K−1

∑
n=0

Ing(t − nT )e ı φe ı2πfc t} dt}]

= arg max
φ

E [exp{ 2

N0

K−1

∑
n=0

Inyn(φ)}]

where we assume both {In} and g(t) are real and

yn(φ) = ∫
(n+1)T
nT r(t)g(t − nT ) cos(2πfct + φ)dt.
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If {In} i.i.d. and equal-probable over {−1,1},

φ̂ = arg max
φ

K−1

∏
n=0

E [exp{ 2

N0
Inyn(φ)}]

= arg max
φ

K−1

∏
n=0

(exp{− 2

N0
yn(φ)} + exp{ 2

N0
yn(φ)})

= arg max
φ

K−1

∏
n=0

cosh( 2

N0
yn(φ))

= arg max
φ

K−1

∑
n=0

log cosh( 2

N0
yn(φ))

We may then determine the optimal φ̂ by deriving

∂∑K−1
n=0 log cosh ( 2

N0
yn(φ))

∂φ
= 0.
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For ∣x ∣ ≪ 1 (low SNR), log cosh(x) ≈ x2

2 (By Taylor
exaponsion).

For ∣x ∣ ≫ 1 (high SNR), log cosh(x) ≈ ∣x ∣.

φ̂ = arg max
φ

K−1

∑
n=0

log cosh(
2

N0

yn(φ))

≈

⎧⎪⎪
⎨
⎪⎪⎩

arg maxφ∑
K−1
n=0

2
N2

0
y 2
n (φ) N0 large

arg maxφ∑
K−1
n=0

2
N0

∣yn(φ)∣ N0 small

=

⎧⎪⎪
⎨
⎪⎪⎩

arg maxφ∑
K−1
n=0 y 2

n (φ) N0 large

arg maxφ∑
K−1
n=0 ∣yn(φ)∣ N0 small
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When x small,

log(cosh(x)) = log
e−x + ex

2

= log
[1 − x + 1

2x
2 − 1

6x
3 +O(x4)] + [1 + x + 1

2x
2 + 1

6x
3 +O(x4)]

2

= log (1 + 1

2
x2 +O(x4))

= 1

2
x2 +O(x4)

and

lim
x→∞

log(cosh(x))
x

= lim
x→∞

tanh(x) = lim
x→∞

ex − e−x

ex + e−x
= 1.
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When K = 1, which covers the case of Example 5.2-2 (p. 308) in
text, the optimal decision becomes irrelevant to N0:

φ̂ =
⎧⎪⎪⎨⎪⎪⎩

arg maxφ y
2
0 (φ) N0 large

arg maxφ ∣y0(φ)∣ N0 small

= arg max
φ

∣∫
T

0
r(t)g(t) cos(2πfct + φ)dt∣

= arg max
φ

∣cos(φ)∫
T

0
r(t)g(t) cos(2πfct)dt

− sin(φ)∫
T

0
r(t)g(t) sin(2πfct)dt∣

= arg max
φ

∣cos(φ) cos(θ) − sin(φ) sin(θ)∣ = arg max
φ

∣cos(φ + θ)∣

where tan(θ) = ∫
T

0 r(t)g(t) sin(2πfc t)dt
∫ T

0 r(t)g(t) cos(2πfc t)dt
. So the optimal φ̂ should

make

φ̂ = −θ = − tan−1 ∫
T

0 r(t)g(t) sin(2πfct)dt

∫ T
0 r(t)g(t) cos(2πfct)dt

.
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5.3 Symbol timing estimation
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Assume φ = 0 (or φ has been perfectly compensated) & estimate τ .

In such case,

r`(t) = s`(t; τ) + n`(t) = s`(t − τ) + n`(t).
We could rewrite the likelihood function (cf. Slide 5-8 with
σ2
` = 2N0) as

Λ(τ) = exp{− 1

2N0
∫

T0

0
∣r`(t) − s`(t; τ)∣2 dt}

= exp(− 1

2N0
∫

T0

0
[∣r`(t)∣2 − 2Re{r`(t)s∗` (t; τ)} + ∣s`(t; τ)∣2]dt)

Same as before, the 1st term is independent of τ and can be
ignored. But

∫
T0

0
∣s`(t; τ)∣2dt = ∫

T0

0
∣s`(t − τ)∣2dt

could be a function of τ .

So, we would “say” when τ ≪ T , the 3rd term is nearly

independent of τ and can also be ignored.
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This gives:

ΛL(τ) = Re{∫

T0

0
r`(t)s

∗
` (t; τ)dt}

Assume

s`(t) =
∞
∑

n=−∞
Ing(t − nT )

Then as τ ≪ T ,

ΛL(τ) ≈ Re{
K−1

∑
n=0

I ∗n ∫
T0

0
r`(t)g

∗(t − nT − τ)dt}

= Re{
K−1

∑
n=0

I ∗n ỹn,`(τ)}

where

ỹn,`(τ) = ∫

T0

0
r`(t)g

∗(t − nT − τ)dt
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Decision directed estimation

The text assumes that both {In} and g(t) are real; hence
r`(t) can be made real by eliminating the complex part,
and

ΛL(τ) =
K−1

∑
n=0

Inyn,`(τ)

where

yn,`(τ) = ∫

T0

0
Re{r`(t)}g(t − nT − τ)dt.

Then the optimal decision is the τ̂ such that

dΛL(τ)

dτ
=

K−1

∑
n=0

In
dyn,`(τ)

dτ
= 0

Likewise, it is called decision directed estimation.
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Non-decision directed estimation

Consider again the case of BPSK, i.e. In = ±1 equal-probable;
then because the complex noise can be excluded, we have

Λ(τ) = exp(
1

N0
∫

T0

0
Re{r`(t)}s`(t; τ)dt)

= exp(
1

N0

K−1

∑
n=0

In ∫
T0

0
Re{r`(t)}g(t − nT − τ)dt)

=
K−1

∏
n=0

exp(
1

N0

Inyn,`(τ))

Λ̄(τ) = E [Λ(τ)] =
K−1

∏
n=0

cosh(
1

N0

yn,`(τ))
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Thus

log Λ̄(τ) =
K−1

∑
n=0

log cosh(
1

N0

yn,`(τ))

For low to moderate SNR, people simplify log cosh(x) to 1
2x

2,

log Λ̄(τ) ≈
1

2N2
0

K−1

∑
n=0

y 2
n,`(τ).

Taking derivative, we see a necessary condition for τ̂ is

N2
0

d log Λ̄(τ)

dτ
∣
τ=τ̂

=
K−1

∑
n=0

yn,`(τ̂) y ′n,`(τ̂) =
K−1

∑
n=0

y 2
n,`(τ̂)

y ′n,`(τ̂)

yn,`(τ̂)
= 0
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For high SNR, people simplify log cosh(x) to ∣x ∣,

log Λ̄(τ) ≈
1

N0

K−1

∑
n=0

∣yn,`(τ)∣.

Taking derivative, we see a necessary condition for τ̂ is

N0
d log Λ̄(τ)

dτ
∣
τ=τ̂

=
K−1

∑
n=0

sgn(yn,`(τ̂)) y ′n,`(τ̂) =
K−1

∑
n=0

∣yn,`(τ̂)∣
y ′n,`(τ̂)
yn,`(τ̂)

= 0

Note that here, we use

∂∣f (x)∣
∂x

=
⎧⎪⎪⎨⎪⎪⎩

f ′(x), f (x) > 0

−f ′(x), f (x) < 0
} = sgn(f (x))f ′(x).
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5.4 Joint estimation of carrier
phase and symbol timing

Digital Communications Ver 2018.12.31 Po-Ning Chen 60 / 69



The likelihood function is

Λ(φ, τ) = exp{− 1

2N0
∫

T0

0
∣r`(t) − s`(t; τ, φ)∣2 dt}

Assuming

s`(t) =
∞
∑

n=−∞
(Ing(t − nT − τ) + ı Jnw(t − nT − τ))

we have

s`(t;φ, τ) =
∞
∑

n=−∞
(Ing(t − nT − τ) + ı Jnw(t − nT − τ)) e− ı φ

Here, I use e− ı φ in order to “synchronize” with the textbook.

PAM: In real and Jn = 0

QAM and PSK: In complex and Jn = 0

OQPSK: w(t) = g(t −T /2)
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Along similar technique used before, we rewrite Λ(φ, τ) as

log Λ(φ, τ)

= Re{∫
T0

0
r`(t)s∗` (t;φ, τ)dt}

= Re{e ı φ
K−1

∑
n=0
∫

T0

0
r`(t) (I ∗n g∗(t − nT − τ) − ı J∗nw∗(t − nT − τ)) dt}

= Re{e ı φ
K−1

∑
n=0

(I ∗n yn,`(τ) − ı J∗n xn,`(τ))}

= Re{e ı φ (A(τ) + ıB(τ))} = A(τ) cos(φ) −B(τ) sin(φ)

where

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

yn,`(τ) = ∫ T0

0 r`(t)g∗(t − nT − τ)dt
xn,`(τ) = ∫ T0

0 r`(t)w∗(t − nT − τ)dt
A(τ) + ıB(τ) = ∑K−1

n=0 (I ∗n yn,`(τ) − ı J∗n xn,`(τ))
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The necessary conditions for φ̂ and τ̂ are

∂ log Λ(φ, τ)

∂τ
∣
τ=τ̂

= 0 and
∂ log Λ(φ, τ)

∂φ
∣
φ=φ̂

= 0

Finally solving jointly the above two equations, we have the
optimal estimates given by

τ̂ satisfies A(τ)
∂A(τ)

∂τ
+B(τ)

∂B(τ)

∂τ
= 0

φ̂ = − tan−1 B(τ̂)

A(τ̂)
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5.5 Performance characteristics of
ML estimators
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Comparison between decision-directed (DD) and

non-decision-directed (NDD) estimators

Comparison between
symbol timing (i.e., τ)
DD and NDD
estimates with raised-
cosine(-spectrum) pulse
shape.

● β is a parameter
of the raised-cosine
pulse
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Raise-cosine spectrum

Xrc(f ) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

T , 0 ≤ ∣f ∣ ≤ 1−β
2T ;

T
2 {1 + cos [πTβ (∣f ∣ − 1−β

2T
)]} , 1−β

2T ≤ ∣f ∣ ≤ 1+β
2T ;

0, otherwise

β ∈ [0,1] roll-off factor

β/(2T ) bandwidth beyond the Nyquist bandwidth
1/(2T ) is called the excess bandwidth.
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Raise-cosine spectrum
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Comparison between
symbol timing (i.e., τ)
DD and NDD
estimates with raised-
cosine(-spectrum) pulse
shape.

● The larger the excess
bandwidth, the better
the estimate.

● NDD variance may
go without bound
when β small.
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What you learn from Chapter 5

MAP/ML estimate of τ and φ based on likelihood ratio
function and known signals

Phase lock loop

Linear model analysis and its transfer function with and
without additive noise

Decision-directed (or decision-feedback) loop

Non-decision-directed loop

Take expectation on a quantity, proportional to
probability.
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