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2.1 Bandpass and lowpass signal representation
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2.1 Bandpass and lowpass signal representation

Definition (Bandpass signal)

A bandpass signal x(t) is a real signal whose frequency
content is located around central frequency f0, i.e.

X(f ) = 0 for all ∣f ± f0∣ >W

�

�X(f )

�
�
�
�

f0f0 −W f0 +W

�
�

�
�

−f0 −f0 +W−f0 −W

f0 may not be the
carrier frequency fc !

The spectrum of a bandpass signal is Hermitian symmetric,

i.e., X (−f ) = X ∗(f ). (Why? Hint: Fourier transform.)
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2.1 Bandpass and lowpass signal representation

Since the spectrum is Hermitian symmetric, we only need
to retain half of the spectrum X+(f ) = X(f )u−1(f )
(named analytic signal or pre-envelope) in order to
analyze it,

where u−1(f ) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 f > 0
1
2 f = 0

0 f < 0

Note: X(f ) = X+(f ) +X ∗+ (−f )

A bandpass signal is very “real,” but may contain
“unnecessary” content such as the carrier frequency fc
that has nothing to do with the “digital information”
transmitted.
So, it is more convenient to remove this carrier frequency
and transform x(t) into its lowpass equivalent signal
x�(t) before “analyzing” the digital content.
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2.1 Bandpass and lowpass signal representation -

Baseband and bandpass signals

Definition (Baseband signal)

A lowpass or baseband (equivalent) signal x�(t) is a complex
signal (because it is not necessarily Hermitian symmetric!) whose
spectrum is located around zero frequency, i.e.

X�(f ) = 0 for all ∣f ∣ >W

It is generally written as

x�(t) = xi(t) + ı xq(t)

where

xi(t) is called the in-phase signal

xq(t) is called the quadrature signal
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Baseband signal

Our goal is to relate x�(t) to x(t) and vice versa
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Bandwidths of x�(t) and x(t)

Definition of bandwidth. The bandwidth of a signal is one
half of the entire range of frequencies over which the spectrum
is essentially nonzero. Hence, W is the bandwidth in the
lowpass signal we just defined, while 2W is the bandwidth of
the bandpass signal by our definition.
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Analytic signal

Let’s start from the analytic signal x+(t).

x+(t) = ∫
∞
−∞

X+(f )e ı2πftdf

= ∫
∞

−∞
X(f )u−1(f )e ı2πftdf

= F−1 {X(f )u−1(f )} F−1 Inverse Fourier transform
= F−1 {X(f )} ⋆ F−1 {u−1(f )}

= x(t) ⋆ (1
2
δ(t) + ı

1

2πt
)

= 1

2
x(t) + ı

1

2
x̂(t),

where x̂(t) = x(t) ⋆ 1
πt = ∫

∞
−∞

x(τ)
π(t−τ)dτ is a real-valued signal.
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Appendix: Extended Fourier transform

F−1 {2u−1(f )} = F−1 {1 + sgn(f )}

= F−1 {1} + F−1 {sgn(f )} = δ(t) + ı
1

πt

Since ∫
∞
−∞ ∣sgn(f )∣ = ∞, the inverse Fourier transform of sgn(f )

does not exist in the standard sense! We therefore have to
derive its inverse Fourier transform in the extended sense!

(∀ f )S(f ) = lim
n→∞Sn(f ) and (∀ n)∫

∞
−∞

∣Sn(f )∣df < ∞

⇒ F−1{S(f )} = lim
n→∞F

−1{Sn(f )}.
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Appendix: Extended Fourier transform

Since lima↓0 e−a∣f ∣sgn(f ) = sgn(f ),

lim
a↓0 ∫

∞
−∞

e−a∣f ∣sgn(f )e ı2πftdf

= lim
a↓0 [−∫

0

−∞
e f (a+ ı2πt)df + ∫

∞
0

e f (−a+ ı2πt)df ]

= lim
a↓0 [−

1

a + ı2πt
+ 1

a − ı2πt
]

= lim
a↓0 [

ı4πt

a2 + 4π2t2
] =

⎧⎪⎪⎨⎪⎪⎩

0 t = 0

ı 1
πt t ≠ 0

Hence, F−1 {2u−1(f )} = F−1 {1} +F−1 {sgn(f )} = δ(t) + ı 1
πt .
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x�(t) ↔ x+(t) ↔ x(t)

�

�X(f )

�
�

f0f0 −W f0 +W
�

�

−f0 −f0 +W−f0 −W �⇒
�

�
X�(f )

�
�
�
�

0−W W

We then observe

X�(f ) = 2X+(f + f0).

This implies

x�(t) = F−1{X�(f )}
= F−1{2X+(f + f0)}
= 2x+(t)e− ı2πf0t

= (x(t) + ı x̂(t))e− ı2πf0t
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As a result,

x(t) + ı x̂(t) = x�(t)e ı2πf0t

which gives:

x(t) ( = Re {x(t) + ı x̂(t)} ) = Re{x�(t)e ı2πf0t}

By x�(t) = xi(t) + ı xq(t),

x(t) ( = Re{(xi(t) + ı xq(t))e ı2πf0t})
= ×i(t) cos(2πf0t) − xq(t) sin(2πf0t)
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X�(f ) ↔ X (f )
From x(t) = Re{x�(t)e ı2πf0t}, we obtain

X(f ) = ∫
∞
−∞

x(t)e− ı2πftdt

= ∫
∞

−∞
Re{x�(t)e ı2πf0t} e− ı2πftdt

= ∫
∞
−∞

1

2
[x�(t)e ı2πf0t + (x�(t)e ı2πf0t)∗] e− ı2πftdt

= 1

2 ∫
∞

−∞
x�(t)e− ı2π(f −f0)tdt

+1
2 ∫

∞
−∞

x∗� (t)e− ı2π(f +f0)tdt

= 1

2
[X�(f − f0) +X ∗� (−f − f0)]

X ∗� (−f ) = ∫
∞
−∞ (x�(t)e− ı2π(−f )t)

∗
dt = ∫

∞
−∞ x∗� (f )e− ı2πftdt
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Summary

Terminologies & relations

Bandpass signal

⎧⎪⎪⎨⎪⎪⎩

x(t) = Re{x�(t)e ı2πf0t}
X(f ) = 1

2
[X�(f − f0) +X ∗� (−f − f0)]

Analytic signal or pre-envelope x+(t) and X+(f )
Lowpass equivalent signal or complex envelope

⎧⎪⎪⎨⎪⎪⎩

x�(t) = (x(t) + ı x̂(t))e− ı2πf0t
X�(f ) = 2X(f + f0)u−1(f + f0)
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Useful to know

Terminologies & relations

From x�(t) = xi(t) + ı xq(t) = (x(t) + ı x̂(t))e− ı2πf0t ,

⎧⎪⎪⎨⎪⎪⎩

xi(t) = Re{ (x(t) + ı x̂(t)) e− ı2πf0t}
xq(t) = Im{ (x(t) + ı x̂(t)) e− ı2πf0t}

Also from x�(t) = (x(t) + ı x̂(t))e− ı2πf0t ,

⎧⎪⎪⎨⎪⎪⎩

x(t) = Re{ x�(t) e ı2πf0t}
x̂(t) = Im{ x�(t) e ı2πf0t}
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Useful to know

Terminologies & relations

From x�(t) = xi(t) + ı xq(t) = (x(t) + ı x̂(t))e− ı2πf0t ,

⎧⎪⎪⎨⎪⎪⎩

xi(t) = Re{ (x(t) + ı x̂(t)) e− ı2πf0t}
xq(t) = Im{ (x(t) + ı x̂(t)) e− ı2πf0t}

Also from x�(t) = (x(t) + ı x̂(t))e− ı2πf0t ,

⎧⎪⎪⎨⎪⎪⎩

x(t) = Re{ (xi(t) + ı xq(t)) e ı2πf0t}
x̂(t) = Im{ (xi(t) + ı xq(t)) e ı2πf0t}
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Useful to know

Terminologies & relations

pre-envelope x+(t)
complex envelope x�(t)
envelope ∣ ×� (t)∣ =

√
x2
i (t) + x2

q(t) = r�(t)

phase θ�(t) = arctan[xq(t)/xi(t)]
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Modulator/demodulator and Hilbert transformer

Usually, we will modulate and demodulate with respect to
carrier frequency fc , which may not be equal to the center
frequency f0.

x�(t) → x(t) = Re{x�(t)e ı2πfc t} ⇒ modulation

x(t) → x�(t) = (x(t) + ı x̂(t))e− ı2πfc t ⇒ demodulation

The demodulation requires to generate x̂(t), a Hilbert
transform of x(t)
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Hilbert transform is basically a 90-degree phase shifter.

H(f ) = F { 1

πt
} = − ı sgn(f ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

− ı , f > 0
0, f = 0
ı , f < 0

Recall that on page 10, we have shown

F−1 {sgn(f )} = ı
1

πt
1{t ≠ 0};

hence

F { 1

πt
} = 1

ı
sgn(f ) = − ı sgn(f ).
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Energy considerations

Definition (Energy of a signal)

The energy Es of a (complex) signal s(t) is

Es = ∫
∞
−∞

∣s(t)∣2 dt

Hence, the energies of x(t), x+(t) and x�(t) are

Ex = ∫
∞
−∞

∣x(t)∣2 dt

Ex+ = ∫
∞
−∞

∣x+(t)∣2 dt

Ex� = ∫
∞
−∞

∣x�(t)∣2 dt

We are interested in the connection among Ex , Ex+ , and Ex� .
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First, from Parseval’s Theorem, we see

Ex = ∫
∞
−∞

∣x(t)∣2 dt = ∫
∞
−∞

∣X(f )∣2 df

Parseval’s theorem ∫ ∞−∞ x(t)y∗(t)dt = ∫ ∞−∞ X(f )Y ∗(f )df
(Rayleigh’s theorem) ∫ ∞−∞ ∣x(t)∣2dt = ∫ ∞−∞ ∣X(f )∣2dfSecond

X(f ) = 1

2
X�(f − fc)

!""""""""""""""""""""""""#""""""""""""""""""""""""$
=X+(f )

+ 1

2
X ∗� (−f − fc)

!"""""""""""""""""""""""""""""""#""""""""""""""""""""""""""""""""$
=X∗
+
(−f )

Third, fc ≫W and

X�(f − fc)X ∗� (−f − fc) = 4X+(f )X ∗+ (−f ) = 0 for all f
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It then shows

Ex = ∫
∞
−∞

∣1
2
X�(f − fc) +

1

2
X ∗� (−f − fc)∣

2

df

= 1

4
Ex� +

1

4
Ex� =

1

2
Ex�

and

Ex = ∫
∞
−∞

∣X+(f ) +X ∗+ (−f )∣
2
df

= Ex+ + Ex+ = 2Ex+

Theorem (Energy considerations)

Ex� = 2Ex = 4Ex+
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Extension of energy considerations

Definition (Inner product)

We define the inner product of two (complex) signals x(t) and
y(t) as

⟨x(t), y(t)⟩ = ∫
∞

−∞
x(t)y∗(t)dt.

Parseval’s relation immediately gives

⟨x(t), y(t)⟩ = ⟨X(f ),Y (f )⟩.

Ex = ⟨x(t), x(t)⟩ = ⟨X(f ),X(f )⟩
Ex� = ⟨x�(t), x�(t)⟩ = ⟨X�(f ),X�(f )⟩
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We can similarly prove that

⟨x(t), y(t)⟩
= ⟨X(f ),Y (f )⟩

= ⟨1
2
X�(f − fc) +

1

2
X ∗� (−f − fc),

1

2
Y�(f − fc) +

1

2
Y ∗� (−f − fc)⟩

= 1

4
⟨X�(f − fc),Y�(f − fc)⟩ +

1

4
⟨X�(f − fc),Y ∗� (−f − fc)⟩
!"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""#""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""$=0

+1
4
⟨X ∗� (−f − fc),Y�(f − fc)⟩
!"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""#"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""$=0

+1
4
⟨X ∗� (−f − fc),Y ∗� (−f − fc)⟩

= 1

4
⟨x�(t), y�(t)⟩ +

1

4
(⟨x�(t), y�(t)⟩)∗ = 1

2Re{⟨x�(t), y�(t)⟩} .
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Corss-correlation of two signals

Definition (Cross-correlation)

The cross-correlation of two signals x(t) and y(t) is defined as

ρx ,y =
⟨x(t), y(t)⟩√

⟨x(t), x(t)⟩
√
⟨y(t), y(t)⟩

= ⟨x(t), y(t)⟩√
ExEy

.

Definition (Orthogonality)

Two signals x(t) and y(t) are said to be orthogonal if ρx ,y = 0.

The previous slide then shows ρx ,y = Re{ρx�,y�}.
ρx�,y� = 0⇒ ρx ,y = 0 but ρx ,y = 0 /⇒ ρx�,y� = 0
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2.1-4 Lowpass equivalence of a bandpass system

Definition (Bandpass system)

A bandpass system is an LTI system with real impulse
response h(t) whose transfer function is located around a
frequency fc .

Using a similar concept, we set the lowpass equivalent
impulse response as

h(t) = Re{h�(t)e ı2πfc t}

and

H(f ) = 1

2
[H�(f − fc) +H∗� (−f − fc)]
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Baseband input-output relation

Let x(t) be a bandpass input signal and let

y(t) = h(t)⋆x(t) or equivalently Y (f ) = H(f )X(f )
Then, we know

x(t) = Re{x�(t)e ı2πfc t}
h(t) = Re{h�(t)e ı2πfc t}
y(t) = Re{y�(t)e ı2πfc t}

and

Theorem (Baseband input-output relation)

y(t) = h(t) ⋆ x(t) ⇐⇒ y�(t) =
1

2
h�(t) ⋆ x�(t)
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Proof:
For f ≠ −fc (or specifically, for u−1(f + fc) = u2−1(f + fc)),
Note 1

2 = u−1(0) ≠ u2−1(0) = 1
4 .

Y�(f ) = 2Y (f + fc)u−1(f + fc)
= 2H(f + fc)X(f + fc)u−1(f + fc)

= 1

2
[2H(f + fc)u−1(f + fc)] ⋅ [2X(f + fc)u−1(f + fc)]

= 1

2
H�(f ) ⋅X�(f )

The case for f = −fc is valid since Y�(−fc) = X�(−fc) = 0.
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The above theorem applies to a deterministic system.
How about a stochastic system?

x(t) y(t)� h(t) �

⇓

X(t) Y (t)� h(t) �

The text abuses the notation by using X(f ) as the spectrum
of x(t) but using X(t) as the stochastic counterpart of x(t).
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2.7 Random processes
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Random Process

Definition

A random process is a set of indexed random variables
{X(t), t ∈ T }, where T is often called the index set.

Classification

1 If T is a finite set ⇒ Random Vector

2 If T = Z or Z+ ⇒ Discrete Random Process

3 If T = R or R+ ⇒ Continuous Random Process

4 If T = R2,Z2,⋯,Rn,Zn ⇒ Random Field
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Examples of random process

Example

Let U be a random variable uniformly distributed over
[−π,π). Then

X(t) = cos (2πfct +U)
is a continuous random process.

Example

Let B be a random variable taking values in {−1,1}. Then

X(t) = { cos(2πfct) if B = −1
sin(2πfct) if B = +1 = cos(2πfct −

π

4
(B + 1))

is a continuous random process.
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Statistical properties of random process

For any integer k > 0 and any t1, t2,⋯, tk ∈ T , the
finite-dimensional cumulative distribution function (cdf) for
X(t) is given by:

FX (t1,⋯, tk ; x1,⋯, xk) = Pr {X (t1) ≤ x1,⋯,X (tk) ≤ xk}

As event [X(t) < ∞] (resp. [X (t) ≤ −∞]) is always regarded

as true (resp. false),

lim
xs→∞FX (t1,⋯, tk ; x1,⋯, xk)

= FX (t1,⋯, ts−1, ts+1, tk ; x1,⋯, xs−1, xs+1,⋯, xk)

and

lim
xs→−∞FX (t1,⋯, tk ; x1,⋯, xk) = 0
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Definition

Let X(t) be a random process; then the mean function is

mX(t) = E[X(t)],

the (auto)correlation function is

RX(t1, t2) = E [X(t1)X ∗(t2)] ,

and the (auto)covariance function is

KX (t1, t2) = E [ (X(t1) −mX (t1)) (X(t2) −mX(t2))∗ ]
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Definition

Let X(t) and Y (t) be two random processes; then the
cross-correlation function is

RX ,Y (t1, t2) = E [X(t1)Y ∗(t2)] ,

and cross-covariance function is

KX ,Y (t1, t2) = E [ (X(t1) −mX (t1)) (Y (t2) −mY (t2))∗ ]

Proposition

RX ,Y (t1, t2) = KX ,Y (t1, t2) +mX(t1)m∗Y (t2)
RY ,X(t2, t1) = R∗

X ,Y (t1, t2) RX(t2, t1) = R∗
X
(t1, t2)

KY ,X(t2, t1) = K ∗
X ,Y (t1, t2) KX (t2, t1) = K ∗

X
(t1, t2)
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Stationary random processes

Definition

A random process X(t) is said to be strictly or strict-sense
stationary (SSS) if its finite-dimensional joint distribution
function is shift-invariant, i.e. for any integer k > 0, any
t1,⋯, tk ∈ T and any τ ,

FX (t1 − τ,⋯, tk − τ ; x1,⋯, xk) = FX (t1,⋯, tk ; x1,⋯, xk)

Definition

A random process X(t) is said to be weakly or wide-sense
stationary (WSS) if its mean function and (auto)correlation
function are shift-invariant, i.e. for any t1, t2 ∈ T and any τ ,

mX(t − τ) = mX (t) and RX(t1 − τ, t2 − τ) = RX(t1, t2).
The above condition is equivalent to

mX(t) = constant and RX(t1, t2) = RX(t1 − t2).
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Wide-sense stationary random processes

Definition

Two random processes X(t) and Y (t) are said to be jointly
wide-sense stationary if

Both X(t) and Y (t) are WSS;

RX ,Y (t1, t2) = RX ,Y (t1 − t2).

Proposition

For jointly WSS X(t) and Y (t),

RY ,X(t2, t1) = R∗
X ,Y (t1, t2) 5⇒ RX ,Y (τ) = R∗

Y ,X(−τ)
KY ,X(t2, t1) = K ∗

X ,Y (t1, t2) 5⇒ KX ,Y (τ) = K ∗
Y ,X(−τ)
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Gaussian random process

Definition

A random process {X(t), t ∈ T } is said to be Gaussian if for
any integer k > 0 and for any t1,⋯, tk ∈ T , the
finite-dimensional joint cdf

FX (t1,⋯, tk ; x1,⋯, xk) = Pr [X(t1) ≤ x1,⋯,X (tk) ≤ xk]

is Gaussian.

Remark

The joint cdf of a Gaussian process is fully determined by its
mean function and its autocovariance function.

Digital Communications: Chapter 2 Ver. 2018.09.12 Po-Ning Chen 38 / 106



Gaussian random process

Definition

Two real random processes {X(t), t ∈ TX} and {Y (t), t ∈ TY }
are said to be jointly Gaussian if for any integers j ,k > 0 and
for any s1,⋯, sj ∈ TX and t1,⋯, tk ∈ TY , the finite-dimensional
joint cdf

Pr [X(s1) ≤ x1,⋯,X (sj) ≤ xj ,Y (t1) ≤ y1,⋯,Y (tk) ≤ yk]

is Gaussian.

Definition

A complex process is Gaussian if the real and imaginary
processes are jointly Gaussian.
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Gaussian random process

Remark

For joint (in general complex) Gaussian processes,
“uncorrelatedness”, defined as

RX ,Y (t1, t2) = E[X (t1)Y ∗(t2)]

= E[X (t1)]E[Y ∗(t2)] = mX(t1)m∗Y (t2),

implies “independence”, i.e.,

Pr [X(s1) ≤ x1,⋯,X (sj) ≤ xj ,Y (t1) ≤ y1,⋯,Y (tk) ≤ yk]
= Pr [X(s1) ≤ x1,⋯,X (sk) ≤ xk]⋅Pr [Y (t1) ≤ y1,⋯,Y (tk) ≤ yk]
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Theorem

If a Gaussian random process X (t) is WSS, then it is SSS.

Idea behind the Proof:
For any k > 0, consider the sampled random vector

X⃗ k =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

X(t1)
X(t2)

⋮
X(tk)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

The mean vector and covariance matrix of X⃗ k are respectively

m
X⃗ k

= E[X⃗ k] =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

E[X(t1)]
E[X(t2)]

⋮
E[X (tk)]

⎤⎥⎥⎥⎥⎥⎥⎥⎦

= mX(0) ⋅ 1⃗
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and

R
X⃗
= E[X⃗ kX⃗

H

k ] =
⎡⎢⎢⎢⎢⎢⎣

KX(0) KX (t1 − t2) ⋯
KX(t2 − t1) KX(0) ⋯

⋮ ⋮ ⋱

⎤⎥⎥⎥⎥⎥⎦
.

It can be shown that for a new sampled random vector

⎡⎢⎢⎢⎢⎢⎢⎢⎣

X (t1 + τ)
X (t2 + τ)

⋮
X(tk + τ)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

the mean vector and covariance matrix remain the same.
Hence, X(t) is SSS.
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Power spectral density

Definition

Let RX(τ) be the correlation function of a WSS random
process X(t). The power spectral density (PSD) or power
spectrum of X(t) is defined as

SX(f ) = ∫
∞
−∞

RX(τ)e− ı2πf τ dτ.

Let RX ,Y (τ) be the cross-correlation function of two jointly
WSS random process X(t) and Y (t); then the cross spectral
density (CSD) is

SX ,Y (f ) = ∫
∞
−∞

RX ,Y (τ)e− ı2πf τ dτ.
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Properties of PSD

PSD (in units of watts per Hz) describes the density of
power as a function of frequency.

Analogously, probability density function (pdf) describes
the density of probability as a function of outcome.
The integration of PSD gives power of the random
process over the considered range of frequency.
Analogously, the integration of pdf gives probability over
the considered range of outcome.
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Theorem

SX (f ) is non-negative and real (which matches that the power
of a signal cannot be negative or complex-valued).

Proof: SX (f ) is real because

SX(f ) = ∫
∞
−∞

RX(τ)e− ı2πf τ dτ

= ∫
∞
−∞

RX(−s)e ı2πfs ds (s = −τ)

= ∫
∞

−∞
R∗

X
(s)e ı2πfs ds

= (∫
∞

−∞
RX(s)e− ı2πfs ds)

∗

= S∗
X
(f )
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SX (f ) is non-negative because of the following (we only prove
this based on that T ⊂ R and X(t) = 0 outside [−T ,T ]).

SX(f ) = ∫
∞
−∞

E[X(t + τ)X ∗(t)]e− ı2πf τ dτ

= E [X ∗(t)∫
∞
−∞

X(t + τ)e− ı2πf τ dτ] (s = t + τ)

= E [X ∗(t)∫
∞
−∞

X(s)e− ı2πf (s−t) ds]

= E [X ∗(t)X̃ (f )e ı2πft] In notation, X̃(f ) = F{X (t)}.
Since the above is a constant with respect to t (by WSS),

SX (f ) = 1

2T ∫
T

−T
E [X ∗(t)X̃ (f )e ı2πft]dt

= 1

2T
E [X̃(f )∫

T

−T
X ∗(t)e ı2πftdt]

= 1

2T
E [X̃(f )X̃ ∗(f )] = 1

2T
E [∣X̃(f )∣2] ≥ 0.

◻
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Wiener-Khintchine theorem

Theorem (Wiener-Khintchine)

Let {X(t), t ∈ R} be a WSS random process. Define

XT(t) = { X(t) if t ∈ [−T ,T ]
0, otherwise.

and set

X̃T(f ) = ∫
∞
−∞

XT(t)e− ı2πft dt = ∫
T

−T
X(t)e− ı2πft dt.

If SX(f ) exists (i.e., RX(τ) has a Fourier transform), then

SX(f ) = lim
T→∞

1

2T
E{∣X̃T(f )∣

2}
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Variations of PSD definitions

Power density spectrum : Alternative definition

Fourier transform of auto-covariance function (e.g.,
Robert M. Gray and Lee D. Davisson, Random
Processes: A Mathematical Approach for Engineers,
p. 193)

I remark that from the viewpoint of digital
communications, the text’s definition is more appropriate
since

the auto-covariance function is independent of a
mean-shift; however, random signals with different
“means” consume different “powers.”
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What can we say about, e.g., the PSD of stochastic
system input and output?

x(t)
x�(t)

y(t)
y�(t)

� h(t)
1
2h�(t)

�

⎧⎪⎪⎨⎪⎪⎩

◻(t) = Re{◻�(t)e ı2πfc t}
◻�(t) = (◻(t) + ı ◻̂(t))e− ı2πfc t

where “◻” can be x , y or h.

⇓

X(t)
X �(t)

Y (t)
Y �(t)

� h(t)
1
2h�(t)

�

⎧⎪⎪⎨⎪⎪⎩

◻(t) = Re{◻�(t)e ı2πfc t}
◻�(t) = (◻(t) + ı ◻̂(t))e− ı2πfc t

where “◻” can be X ,Y or h.
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2.9 Bandpass and lowpass random processes
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Definition (Bandpass random signal)

A bandpass (WSS) stochastic signal X (t) is a real random
process whose PSD is located around central frequency f0, i.e.

SX(f ) = 0 for all ∣f ± f0∣ >W

�

�SX (f )

�
�
�
�

f0f0 −W f0 +W

�
�

�
�

−f0 −f0 +W−f0 −W

f0 may not be the
carrier frequency fc !

We know

⎧⎪⎪⎨⎪⎪⎩

X(t) = Re{X �(t)e ı2πfc t}
X �(t) = (X(t) + ı X̂(t))e− ı2πfc t
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Assumption (Fundamental assumption)

The bandpass signal X(t) is WSS.
In addition, its complex lowpass equivalent process X �(t) is
WSS. In other words,

X i(t) and X q(t) are WSS.

X i(t) and X q(t) are jointly WSS.

Under this fundamental assumption, we obtain the
following properties:

P1) If X(t) zero-mean, both X i(t) and X q(t) zero-mean

because mX = mX i
cos(2πfct) −mX q sin(2πfct) .

P2)

⎧⎪⎪⎨⎪⎪⎩

RX i
(τ) = RX q(τ)

RX i ,X q(τ) = −RX q,X i
(τ)
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Proof of P2):

RX(τ)
= E [X(t + τ)X (t)]
= E [Re{X �(t + τ)e ı2πfc(t+τ)}Re{X �(t)e ı2πfc t}]
= E [(X i(t + τ) cos(2πfc(t + τ)) −X q(t + τ) sin(2πfc(t + τ)))

(X i(t) cos(2πfct) −X q(t) sin(2πfct))]

=
RX i

(τ) +RX q(τ)
2

cos(2πfcτ)

+
RX i ,Xq(τ) − RX q,X i

(τ)
2

sin(2πfcτ)

+
RX i

(τ) − RX q(τ)
2

cos(2πfc(2t + τ)) (= 0)

−
RX i ,Xq(τ) + RX q,X i

(τ)
2

sin(2πfc(2t + τ)) (= 0)

◻
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P3) RX(τ) = Re{1
2RX�

(τ)e ı2πfc τ}.
Proof: Observe from P2),

RX�
(τ) = E [X �(t + τ)X ∗� (t)]

= E [(X i(t + τ) + ıX q(t + τ))(X i(t) − ıX q(t))]
= RX i

(τ) + RX q(τ) − ıRX i ,X q(τ) + ıRX q ,X i
(τ)

= 2RX i
(τ) + ı2RX q ,X i

(τ).

Hence, also from P2),

RX(τ) = RX i
(τ) cos(2πfcτ) −RX q ,X i

(τ) sin(2πfcτ)

= Re{1
2
RX�

(τ)e ı2πfc τ}
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P4) SX (f ) = 1
4
[SX �

(f − fc) + S∗
X �
(−f − fc)].

Proof: A direct consequence of P3). ◻

Note:

Amplitude X̃ (f ) = 1
2 [X̃ �(f − fc) + X̃

∗
� (−f − fc)]

Amplitude square

∣X̃(f )∣2 = 1

4
∣X̃ �(f − fc) + X̃

∗
� (−f − fc)∣

2

= 1

4
(∣X̃ �(f − fc)∣2 + ∣X̃ ∗� (−f − fc)∣

2)

Wiener-Khintchine: SX (f ) ≡ ∣X̃ (f )∣2.
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P5) X i(t) and X q(t) uncorrelated if one of them has
zero-mean.

Proof: From P2),

RX i ,X q(τ) = −RX q,X i
(τ) = −RX i ,X q(−τ).

Hence, RX i ,X q(0) = 0 (i.e.,

E[X i(t)X q(t)] = 0 = E[X i(t)]E[X q(t)]).

◻
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P6) If SX �
(−f ) = S∗

X �
(f )(= SX �

(f )) symmetric, then
X i(t + τ) and X q(t) uncorrelated for any τ , provided one
of them has zero-mean.

Proof: From P3),

RX �
(τ) = 2RX i

(τ) + ı2RX q,X i
(τ).

SX �
(−f ) = S∗

X �
(f ) implies RX �

(τ) is real;

hence, RX q ,X i
(τ) = 0 for any τ . ◻

Note that SX �
(−f ) = S∗

X �
(f ) iff RX�

(τ) real iff RX q ,X i
(τ) = 0

for any τ .

We next discuss the PSD of a system.
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X(t) Y (t)� h(t) �
Y (t) = ∫

∞
−∞

h(τ)X (t − τ)dτ

mY = mX ∫
∞

−∞
h(τ)dτ

RX ,Y (τ) = E [X(t + τ)(∫
∞
−∞

h(u)X (t − u)du)
∗
]

= ∫
∞

−∞
h∗(u)RX (τ + u)du = ∫

∞

−∞
h∗(−v)RX (τ − v)dv

= RX(τ) ⋆ h∗(−τ)

RY (τ) = E [(∫
∞

−∞
h(u)X (t + τ − u)du) (∫

∞

−∞
h(v)X(t − v)dv)

∗
]

= ∫
∞
−∞

h(u)(∫
∞
−∞

h∗(v)RX((τ − u) + v)dv)du

= ∫
∞

−∞
h(u)RX ,Y (τ − u)du

= RX ,Y (τ) ⋆ h(τ) = RX(τ) ⋆ h∗(−τ) ⋆ h(τ).
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Thus,

SX ,Y (f ) = SX (f )H∗(f ) since ∫
∞
−∞

h∗(−τ)e− ı2πf τdτ = H∗(f )

and

SY (f ) = SX ,Y (f )H(f ) = SX (f )∣H(f )∣2.
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White process

Definition (White process)

A (WSS) process W (t) is called a white process if its PSD is
constant for all frequencies:

SW (f ) = N0

2

This constant is usually denoted by N0

2 because the PSD
is two-sided (−∞← 0 and 0→∞). So, the power
spectral density is actually N0 per Hz (N0/2 at f = −f0
and N0/2 at f = f0).

The autocorrelation function RW (τ) = N0

2 δ(⋅), where δ(⋅)
is the Dirac delta function.
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Why negative frequency?

It is an imaginarily convenient way created by Human to
correspond to the “imaginary” domain of a complex signal
(that is why we call it “imaginary part”).

By giving respectively the spectrum for f0 and −f0 (which
may not be symmetric), we can specify the amount of real
part and imaginary part in time domain corresponding to
this frequency.

For example, if the spectrum is conjugate symmetric, we
know imaginary part (in time domain) = 0.

Notably, in communications, imaginary part is the part
that will be modulated by (or transmitted with carrier)
sin(2πfct); on the contrary, real part is the part that will
be modulated by (or transmitted with carrier) cos(2πfct).
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Why δ(⋅) function?

Definition (Dirac delta function)

Define the Dirac delta function δ(t) as

δ(t) = { ∞, t = 0;
0, t ≠ 0

,

which satisfies the replication property, i.e., for every
continuous point of g(t),

g(t) = ∫
∞
−∞

g(τ)δ(t − τ)dτ.

Hence, by replication property,

∫
∞
−∞

δ(u)du = ∫
∞
−∞

δ(t − τ)dτ = ∫
∞
−∞

1 ⋅ δ(t − τ)dτ = 1.
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Note that it seems δ(t) = 2δ(t) = { ∞, t = 0;
0, t ≠ 0

; but

with g1(t) = 1 and g2(t) = 2 continuous at all points,

1 = ∫
∞
−∞

g1(τ)δ(t − τ)dτ ≠ ∫
∞
−∞

g2(τ)δ(t − τ)dτ = 2.

So, it is not “well-defined” and contradicts the below
intuition: With f (t) = δ(t) and g(t) = 2δ(t),

f (t) = g(t) for t ∈ R except for countably many points

⇒∫
∞
−∞

f (t)dt = ∫
∞
−∞

g(t)dt (if ∫
∞
−∞

f (t)dt is finite).

Hence, δ(t) and 2δ(t) are two “different” Diract delta
functions by definition. (Their multiplicative constant
cannot be omitted!)

What is the problem saying f (t) = g(t) for t ∈ R?
Digital Communications: Chapter 2 Ver. 2018.09.12 Po-Ning Chen 63 / 106



Comment: x + a = y + a ⇒ x = y is incorrect if a = ∞.

As a result, saying ∞ =∞ (or δ(t) = 2δ(t) ) is not a
“rigorously defined” statement.

Summary: The Dirac delta function, like “∞”, is simply
a concept defined only through its replication property.

Hence, a white process W (t) that has autocorrelation
function RW (τ) = N0

2 δ(τ) is just a convenient and
simplified notion for theoretical research about real world
phenomenon. Usually, N0 = KT , where T is the ambient
temperature in kelvins and k is Boltzman’s constant.
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Discrete-time random processes

The property of a time-discrete process {X [n],n ∈ Z+}
can be “obtained” using sampling notion via the Dirac
delta function.
X [n] = X(nT ), a sample at t = nT from a
time-continuous process X(t), where we assume T = 1
for convenience.
The autocorrelation function of a time-discrete process is
given by:

RX [m] = E{X [n +m]X ∗[n]}
= E{X(n +m)X ∗(n)}
= RX(m), a sample from RX(t).

�
�

�
� � �

�
�

� � �
�

�
� �

RX (0)
RX (1)

RX (2)RX (3)RX (4)
RX (5)

RX (6)
RX (7)RX (8)RX (9)

RX (10)
RX (11)

RX (12)RX (13)
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SX [f ] = ∫
∞
−∞

(
∞
∑

n=−∞
RX(t)δ(t − n)) e− ı2πftdt

=
∞
∑

n=−∞
∫
∞
−∞

RX(t)e− ı2πftδ(t − n)dt

=
∞
∑

n=−∞
RX(n)e− ı2πfn (Replication Property)

=
∞
∑

n=−∞
RX [n]e− ı2πfn (Fourier Series)

Hence, by Fourier sesies,

RX [n] = ∫
1/2
−1/2

SX [f ]e ı2πfmdf ( = RX(n) = ∫
∞
−∞

SX (f )e ı2πfmdf ).
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2.8 Series expansion of random processes
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2.8-1 Sampling band-limited random process

Deterministic case

A deterministic signal x(t) is called band-limited if
X(f ) = 0 for all ∣f ∣ >W .

Shannon-Nyquist theorem: If the sampling rate fs ≥ 2W ,
then x(t) can be perfectly reconstructed from samples.

An example of such reconstruction is

x(t) =
∞
∑

n=−∞
x ( n

fs
) sinc [fs (t −

n

fs
)] .

Note that the above is only sufficient, not necessary.
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Stochastic case

A WSS stochastic process X(t) is said to be band-limited
if its PSD SX(f ) = 0 for all ∣f ∣ >W .

It follows that

RX(τ) =
∞
∑

n=−∞
RX ( n

2W
) sinc [2W (τ − n

2W
)] .

In fact, this random process X(t) can be reconstructed
by its random samples in the sense of mean square.

Theorem

E ∣X(t) −
∞
∑

n=−∞
X ( n

2W
) sinc [2W (t − n

2W
)]∣

2

= 0
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The random samples

Problems of using these random samples

These random samples {X ( n
2W
)}∞

n=−∞ are in general
correlated unless X (t) is zero-mean white.

E{X ( n

2W
)X ∗ ( m

2W
)} = RX (n −m

2W
)

≠ E{X ( n

2W
)}E{X ∗ ( m

2W
)} = ∣mX ∣2

If X(t) is zero-mean white,

E{X ( n

2W
)X∗ ( m

2W
)} = RX (n −m

2W
) = N0

2
δ (n −m

2W
)

= E{X ( n

2W
)}E{X ∗ ( m

2W
)} = ∣mX ∣2 = 0 except n = m.

Thus, we will introduce the uncorrelated KL expansions
in Slide 2-87.

Digital Communications: Chapter 2 Ver. 2018.09.12 Po-Ning Chen 70 / 106



2.9 Bandpass and lowpass random processes (revisited)
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Definition (Filtered white noise)

A process N(t) is called a filtered white noise if its PSD equals

SN(f ) = {
N0

2 , ∣f ± fc ∣ <W
0, otherwise

Applying P4) SX (f ) = 1
4
[SX �

(f − fc) + S∗
X �
(−f − fc)] , we

learn the PSD of the lowpass equivalent process N�(t) of
N(t) is

SN�
(f ) = { 2N0, ∣f ∣ <W

0, otherwise

From P6), SN�
(−f ) = S∗

N�
(f ) implies N i(t + τ) and

Nq(t) are uncorrelated for any τ if one of them has zero
mean.
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Now we explore more properties for PSD of bandlimited X(t)
and complex X �(t).

P0-1) By fundamental assumption on Slide 2-52, we obtain
that X(t) and X̂(t) are jointly WSS.

R
X ,X̂(τ) and R

X̂
(τ) are only functions of τ because X̂ (t) is the

Hilbert transform of X (t), i.e., R
X ,X̂ (τ) = RX(τ)⋆h∗(−τ) = −RX(τ)⋆

h(τ) (since h∗(−τ) = −h(τ)) and R
X̂
(τ) = R

X ,X̂(τ) ⋆ h(τ).
P0-2) X i(t) = Re{(X (t) + ı X̂ (t))e− ı2πfc t} is WSS by

fundamental assumption.

P2′)
⎧⎪⎪⎨⎪⎪⎩

RX(τ) = R
X̂
(τ)

R
X ,X̂(τ) = −RX̂ ,X(τ)

(X (t) + ı X̂ (t) is the “lowpass

equivalent” signal of X i(t)!)
(X i(t) + ıX q(t) is the lowpass

equivalent signal of X (t)!)
Thus, R

X̂ ,X(τ) = −RX ,X̂ (τ) = RX (τ) ⋆ h(τ) = R̂X (τ) is the Hilbert

transform output due to input RX(τ).
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P3′) RX i
(τ) = Re{1

2R(X+ ı X̂ )(τ)e− ı2πfc τ}

RX i
(τ) = Re{1

2
R(X+ ı X̂ )(τ)e− ı2πfc τ}

= Re{(RX(τ) + ıR
X̂ ,X(τ))e− ı2πfc τ}

= RX(τ) cos(2πfcτ) + R̂X(τ) sin(2πfcτ)

Note that ŜX(f ) = SX (f )HHilbert(f ) = SX(f )(− ı sgn(f )).
P4′) SX i

(f ) ( = SX q(f )) = SX (f − fc) + SX (f + fc) for ∣f ∣ < fc

�
�

�
�

���

SX i
(f ) = 1

2
(SX(f − fc) + SX(f + fc))

+ 1

2 ı
(− ı sgn(f − fc)SX(f − fc) + ı sgn(f + fc)SX(f + fc))

= SX (f − fc) + SX (f + fc) for ∣f ∣ < fc
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P4′′) SX q,X i
(f ) = ı [SX (f − fc) − SX (f + fc)] for ∣f ∣ < fc

Terminologies & relations

●
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

RX (τ) = Re{ 1
2RX �

(τ) e ı2πfcτ} (P3)
R

X̂ ,X(τ) = RX(τ) ⋆ hHilbert(τ)
������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

P0-1

= Im{ 1
2RX�

(τ) e ı2πfcτ}

● Then: 1
2RX �

(τ) = RX i
(τ) + ıRX q ,X i

(τ)
������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Proof of P3

= (RX (τ) + ıR
X̂ ,X (τ))e− ı2πfc τ

●
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

RX i
(τ) = Re{ (RX (τ) + ıR

X̂ ,X (τ)) e− ı2πfc τ} (P3′)
RXq ,X i

(τ) = Im{ (RX (τ) + ıR
X̂ ,X (τ)) e− ı2πfc τ} = RX i

(τ) ⋆ hHilbert(τ)

Digital Communications: Chapter 2 Ver. 2018.09.12 Po-Ning Chen 75 / 106



Proof (of P4′′): Hence,

RXq ,X i
(τ) = Im{(RX(τ) + ıR

X̂ ,X(τ))e− ı2πfc τ}
= −RX(τ) sin(2πfcτ) + R

X̂ ,X(τ) cos(2πfcτ)
= −RX(τ) sin(2πfcτ) + R̂X(τ) cos(2πfcτ).

Then we can prove P4′′ by following similar procedure to the
proof of P4′.
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2.2 Signal space representation
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Key idea & motivation

The low-pass equivalent representation removes the
dependence of system performance analysis on carrier
frequency.

Equivalent vectorization of the (discrete or continuous)
signals further removes the “waveform” redundancy in
the analysis of system performance.
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Vector space concepts

Inner product: ⟨v 1,v 2⟩ = ∑n
i=1 v1,iv∗2,i = vH

2 v 1

(“H” denotes Hermitian transpose)

Orthogonal if ⟨v 1,v 2⟩ = 0

Norm: ∥v∥ =
√
⟨v ,v ⟩

Orthonormal: ⟨v 1,v 2⟩ = 0 and ∥v 1∥ = ∥v 2∥ = 1

Linearly independent:

k

∑
i=1

aiv i = 0 iff ai = 0 for all i
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Vector space concepts

Triangle inequality

∥v 1 + v 2∥ ≤ ∥v 1∥ + ∥v 2∥

Cauchy-Schwartz inequality

∣⟨v 1,v 2⟩∣ ≤ ∥v 1∥ ∥v 2∥ .

Equality holds iff v 1 = av 2 for some a.

Norm square of sum:

∥v 1 + v 2∥2 = ∥v 1∥2 + ∥v 2∥2 + ⟨v 1,v 2⟩ + ⟨v 2,v 1⟩

Pythagorean: if ⟨v 1,v 2⟩ = 0, then

∥v 1 + v 2∥2 = ∥v 1∥2 + ∥v 2∥2
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Eigen-decomposition

1 Matrix transformation w.r.t. matrix A

v̂ = Av

2 Eigenvalues of square matrix A are solutions {λ} of
characteristic polynomial

det(A − λI ) = 0

3 Eigenvectors for eigenvalue λ is solution v of

Av = λv
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Signal space concept

How to extend the signal space concept to a (complex)
function/signal z(t) defined over [0,T ) ?

Answer: We can start by defining the inner product for
complex functions.

Inner product: ⟨z1(t), z2(t)⟩ = ∫
T

0 z1(t)z∗2 (t)dt
Orthogonal if ⟨z1(t), z2(t)⟩ = 0.

Norm: ∥z(t)∥ =
√
⟨z(t), z(t)⟩

Orthonormal: ⟨z1(t), z2(t)⟩ = 0 and ∥z1(t)∥ = ∥z2(t)∥ = 1.

Linearly independent: ∑k
i=1 aizi(t) = 0 iff ai = 0 for all

ai ∈ C
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Triangle Inequality

∥z1(t) + z2(t)∥ ≤ ∥z1(t)∥ + ∥z2(t)∥

Cauchy Schwartz inequality

∣⟨z1(t), z2(t)⟩∣ ≤ ∥z1(t)∥ ⋅ ∥z2(t)∥

Equality holds iff z1(t) = a ⋅ z2(t) for some a ∈ C.
Norm square of sum:

∥z1(t) + z2(t)∥2 = ∥z1(t)∥2 + ∥z2(t)∥2

+ ⟨z1(t), z2(t)⟩ + ⟨z2(t), z1(t)⟩

Pythagorean property: if ⟨z1(t), z2(t)⟩ = 0,

∥z1(t) + z2(t)∥2 = ∥z1(t)∥2 + ∥z2(t)∥2
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Transformation w.r.t. a function C(t, s)

ẑ(t) = ∫
T

0
C(t, s)z(s)ds

This is in parallel to

v̂ (v̂t =
n

∑
s=1

At,svs) = Av .
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Eigenvalues and eigenfunctions

Given a complex continuous function C(t, s) over [0,T )2, the
eigenvalues and eigenfunctions are {λk} and {ϕk(t)} such
that

∫
T

0
C(t, s)ϕk(s)ds = λkϕk(t) (In parallel to Av = λv)

Digital Communications: Chapter 2 Ver. 2018.09.12 Po-Ning Chen 85 / 106



Mercer’s theorem

Theorem (Mercer’s theorem)

Give a complex continuous function C(t, s) over [0,T ]2 that
is Hermitian symmetric (i.e., C(t, s) = C∗(s, t)) and
nonnegative definite (i.e., ∑i ∑j aiC(ti , tj)a∗j ≥ 0 for any {ai}
and {ti}). Then the eigenvalues {λk} are reals, and C(t, s)
has the following eigen-decomposition

C(t, s) =
∞
∑
k=1

λkϕk(t)ϕ∗k(s).
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Karhunen-Loève theorem

Theorem (Karhunen-Loève theorem)

Let {Z(t), t ∈ [0,T )} be a zero-mean random process with a
continuous autocorrelation function RZ(t, s) = E[Z(t)Z ∗(s)].
Then Z(t) can be written as

Z(t)M2= ∑∞k=1 Z k ⋅ ϕk(t) 0 ≤ t < T

where “=” is in the sense of mean-square,

Z k = ⟨Z(t), ϕk(t)⟩ = ∫
T

0 Z(t)ϕ∗k(t)dt
and {ϕk(t)} are orthonormal eigenfunctions of RZ(t, s).

Merit of KL expansion: {Z k} are uncorrelated. (But
samples {Z(k/(2W ) )} are not uncorrelated even if
Z(t) is bandlimited!)
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Proof.

E[Z iZ∗j ] = E[(∫
T

0
Z(t)ϕ∗i (t)dt) (∫

T

0
Z(s)ϕ∗j (s)ds)

∗
]

= ∫
T

0
(∫

T

0
RZ(t, s)ϕj(s)ds)ϕ∗i (t)dt

= ∫
T

0
λjϕj(t)ϕ∗i (t)dt

=
⎧⎪⎪⎨⎪⎪⎩

λj if i = j

0 ( = E[Z i]E [Z∗j ]) if i ≠ j
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Lemma

For a given orthonormal set {φk(t)}, how to minimize the
energy of error signal e(t) = s(t) − ŝ(t) for ŝ(t) spanned by
(i.e., expressed as a linear combination of) {φk(t)}?

Assume ŝ(t) = ∑k akφk(t); then

∥e(t)∥2 = ∥s(t) − ŝ(t)∥2

= ∥s(t) −∑kakφk(t)∥2

= ∥s(t)∥2 −∑k⟨s(t), akφk(t)⟩ −∑k⟨akφk(t), s(t)⟩ + ∑k ∣ak ∣2

= ∥s(t)∥2 −∑ka
∗
k⟨s(t), φk(t)⟩ −∑kak(⟨s(t), φk(t)⟩)∗ +∑k ∣ak ∣2

= ∥s(t)∥2 −∑k ∣⟨s(t), φk(t)⟩∣2 +∑k ∥ak − ⟨s(t), φk(t)⟩∥2

Thus, ak = ⟨s(t), φk(t)⟩ minimizes ∥e(t)∥2. ◻
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Definition

If every finite energy signal s(t) (i.e., ∥s(t)∥2 < ∞) satisfies

∥e(t)∥2 = ∥s(t) −∑
k

⟨s(t), φk(t)⟩φk(t)∥
2

= 0

equivalently,

s(t) L2= ∑
k

⟨s(t), φk(t)⟩φk(t) = ∑
k

ak ⋅ φk(t)

(in the sense that the norm of the difference between
left-hand-side and right-hand-side is zero), then the set of
orthonormal functions {φk(t)} is said to be complete.
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Example (Fourier series)

⎧⎪⎪⎨⎪⎪⎩

√
2

T
cos(2πkt

T
) ,
√

2

T
sin(2πkt

T
) ∶ 0 ≤ k ∈ Z

⎫⎪⎪⎬⎪⎪⎭

is a complete orthonormal set for signals defined over [0,T )
with finite number of discontinuities.

For a complete orthonormal basis, the energy of s(t) is
equal to

∥s(t)∥2 = ⟨∑
j

ajφj(t),∑
k

akφk(t)⟩

= ∑
j

∑
k

aja
∗
k ⟨φj(t), φk(t)⟩

= ∑
j

aja
∗
j

= ∑
j

∣aj ∣2
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Given a deterministic function s(t), and a set of complete
orthonormal basis {φk(t)} (possibly countably infinite),
s(t) can be written as

s(t) L2=
∞
∑
k=0

akφk(t), 0 ≤ t ≤ T

where

ak = ⟨s(t), φk(t)⟩ = ∫
T

0
s(t)φ∗k(t)dt.

In addition,
∥s(t)∥2 = ∑

k

∣ak ∣2.
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Remark

In terms of energy (and error rate):

A bandpass signal s(t) can be equivalently “analyzed”
through lowpass equivalent signal s�(t) without the
burden of carrier freq fc ;

A lowpass equivalent signal s�(t) can be equivalently
“analyzed” through (countably many)
{ak = ⟨s�(t), φk(t)⟩} without the burden of continuous
waveforms.
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Gram-Schmidt procedure

Given a set of functions v1(t), v2(t),⋯, vk(t)
1 φ1(t) = v1(t)

∥v1(t)∥

2 Compute for i = 2,3,⋯,k (or until ∥φi(t)∥ = 0),

γi(t) = vi(t) −
i−1
∑
j=1

⟨vi(t), φj(t)⟩φj(t)

and set φi(t) = γi(t)
∥γi(t)∥ .

This gives an orthonormal basis φ1(t), φ2(t),⋯, φk′(t), where
k ′ ≤ k.
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Example

Find a Gram-Schmidt orthonormal basis of the following
signals.
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Sol.

φ1(t) = v1(t)
∥v1(t)∥ =

v1(t)√
2

γ2(t) = v2(t) − ⟨v2(t), φ1(t)⟩φ1(t)

= v2(t) − (∫
3

0
v2(t)φ∗1(t)dt)φ1(t) = v2(t)

Hence φ2(t) = γ2(t)
∥γ2(t)∥ =

v2(t)√
2
.

γ3(t) = v3(t) − ⟨v3(t), φ1(t)⟩φ1(t) − ⟨v3(t), φ2(t)⟩φ2(t)

= v3(t) −
√
2φ1(t) − 0 ⋅ φ2(t) = {

−1, 2 ≤ t < 3
0, otherwise

Hence φ3(t) = γ3(t)
∥γ3(t)∥ .
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γ4(t) = v4(t) − ⟨v4(t), φ1(t)⟩φ1(t) − ⟨v4(t), φ2(t)⟩φ2(t)
−⟨v4(t), φ3(t)⟩φ3(t)

= v4(t) − (−
√
2)φ1(t) − (0)φ2(t) − φ3(t) = 0

Orthonormal basis={φ1(t), φ2(t), φ3(t)}, where 3 ≤ 4.
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Example

Represent the signals in Slide 2-95 in terms of the orthonormal
basis obtained in the same example.

Sol.

v1(t) =
√
2φ1(t) + 0 ⋅ φ2(t) + 0 ⋅ φ3(t) 5⇒ [

√
2,0,0]

v2(t) = 0 ⋅ φ1(t) +
√
2 ⋅ φ2(t) + 0 ⋅ φ3(t) 5⇒ [0,

√
2,0]

v3(t) =
√
2φ1(t) + 0 ⋅ φ2(t) + ⋅φ3(t) 5⇒ [

√
2,0,1]

v4(t) = −
√
2φ1(t) + 0 ⋅ φ2(t) + 1 ⋅ φ3(t) 5⇒ [−

√
2,0,1]

The vectors are named signal space representations or
constellations of the signals.
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Remark

The orthonormal basis is not unique.
For example, for k = 1,2,3, re-define

φk(t) = {
1, k − 1 ≤ t < k
0, otherwise

Then

v1(t)
Φ5⇒ (+1,+1,0)

v2(t)
Φ5⇒ (+1,−1,0)

v3(t)
Φ5⇒ (+1,+1,−1)

v4(t)
Φ5⇒ (−1,−1,−1)
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Euclidean distance

s1(t) 5⇒ (a1, a2,⋯, an) for some complete basis

s2(t) 5⇒ (b1,b2,⋯,bn) for the same complete basis

d12 = Euclidean distance between s1(t) and s2(t)

=
\
^̂_

n

∑
i=1

∣ai − bi ∣2

= ∥s1(t) − s2(t)∥ ( =
√

∫
T

0
∣s1(t) − s2(t)∣2dt)
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Bandpass and lowpass orthonormal basis

Now let’s change our focus from [0,T ) to (−∞,∞)

A time-limited signal cannot be bandlimited to W .

A bandlimited signal cannot be time-limited to T .

Hence, in order to talk about the ideal bandlimited signal, we
have to deal with signals with unlimited time span.

Re-define the inner product as:

⟨f (t),g(t)⟩ = ∫
∞
−∞

f (t)g∗(t)dt
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Let s1,�(t) and s2,�(t) be lowpass equivalent signals of the
bandpass s1(t) and s2(t), satisfying

S1,�(f ) = S2,�(f ) = 0 for ∣f ∣ > fB

si(t) = Re{si ,�(t)e ı2πfc t} where fc ≫ fB

Then, as we have proved in Slide 2-24,

⟨s1(t), s2(t)⟩ = 1
2Re {⟨s1,�(t), s2,�(t)⟩} .

Proposition

If ⟨s1,�(t), s2,�(t)⟩ = 0, then ⟨s1(t), s2(t)⟩ = 0.
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Proposition

If {φn,�(t)} is a complete basis for the set of lowpass signals,
then

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

φn(t) = Re{(
√
2φn,�(t)) e ı2πfc t}

φ̃n(t) = −Im{(
√
2φn,�(t)) e ı2πfc t}

= Re{( ı
√
2φn,�(t)) e ı2πfc t}

is a complete orthonormal set for the set of bandpass signals.

Proof: First, orthonormality can be proved by

⟨φn(t), φm(t)⟩ =
1

2
Re{⟨

√
2φn,�(t),

√
2φm,�(t)⟩} =

⎧⎪⎪⎨⎪⎪⎩

1 n = m

0 n ≠ m

⟨φ̃n(t), φ̃m(t)⟩ =
1

2
Re{⟨ ı

√
2φn,�(t), ı

√
2φm,�(t)⟩} =

⎧⎪⎪⎨⎪⎪⎩

1 n = m

0 n ≠ m
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and

⟨φ̃n(t), φm(t)⟩ = 1

2
Re{⟨ ı

√
2φn,�(t),

√
2φm,�(t)⟩}

= Re{ ı ⟨φn,�(t), φm,�(t)⟩}

=
⎧⎪⎪⎨⎪⎪⎩

Re { ı} = 0 n = m

0 n ≠ m

Now, with

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

s(t) = Re{s�(t)e ı2πfc t}
ŝ(t) = Re{ŝ�(t)e ı2πfc t}
ŝ�(t) L2= ∑

n

an,�φn,�(t) with an,� = ⟨s�(t), φn,�(t)⟩

∥s�(t) − ŝ�(t)∥2 = 0
we have

∥s(t) − ŝ(t)∥2 = 1

2
∥s�(t) − ŝ�(t)∥2 = 0
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and

ŝ(t) = Re{ŝ�(t)e ı2πfc t}

= Re{∑
n

an,�φn,�(t)e ı2πfc t}

= ∑
n

(Re{an,�√
2
}Re{

√
2φn,�(t)e ı2πfc t}

+Im{an,�√
2
} Im{(−

√
2φn,�(t)) e ı2πfc t})

= ∑
n

(Re{an,�√
2
}φn(t) + Im{an,�√

2
} φ̃n(t))

◻

Digital Communications: Chapter 2 Ver. 2018.09.12 Po-Ning Chen 105 / 106



What you learn from Chapter 2

Random process
WSS
autocorrelation and crosscorrelation functions
PSD and CSD
White and filtered white

Relation between (bandlimited) bandpass and lowpass
equivalent deterministic signals
Relation between (bandlimited) bandpass and lowpass
equivalent random signals

Properties of autocorrelation and power spectrum density

Role of Hilbert transform

Signal space concept
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