Digital Communications Chapter 2: Deterministic and Random Signal Analysis

Po-Ning Chen, Professor

Institute of Communications Engineering National Chiao-Tung University, Taiwan

2.1 Bandpass and lowpass signal representation

2.1 Bandpass and lowpass signal representation

Definition (Bandpass signal)

A bandpass signal x(t) is a real signal whose frequency content is located around central frequency f_0 , i.e.

2.1 Bandpass and lowpass signal representation

 Since the spectrum is Hermitian symmetric, we only need to retain half of the spectrum X₊(f) = X(f)u₋₁(f) (named analytic signal or pre-envelope) in order to analyze it,

where
$$u_{-1}(f) = \begin{cases} 1 & f > 0 \\ \frac{1}{2} & f = 0 \\ 0 & f < 0 \end{cases}$$
 Note: $X(f) = X_{+}(f) + X_{+}^{*}(-f)$

- A bandpass signal is very "real," but may contain "unnecessary" content such as the carrier frequency f_c that has nothing to do with the "digital information" transmitted.
- So, it is more convenient to remove this carrier frequency and transform x(t) into its lowpass equivalent signal x_l(t) before "analyzing" the digital content.

Po-Ning Chen

2.1 Bandpass and lowpass signal representation -Baseband and bandpass signals

Definition (Baseband signal)

A lowpass or baseband (equivalent) signal $x_{\ell}(t)$ is a complex signal (because it is not necessarily Hermitian symmetric!) whose spectrum is located around zero frequency, i.e.

$$X_{\ell}(f) = 0$$
 for all $|f| > W$

It is generally written as

$$x_{\ell}(t) = x_i(t) + \imath x_q(t)$$

where

x_i(t) is called the in-phase signal
x_q(t) is called the quadrature signal

Digital Communications: Chapter 2 Ver. 2018.09.12

Baseband signal

Our goal is to relate $x_{\ell}(t)$ to x(t) and vice versa

Definition of bandwidth. The bandwidth of a signal is one half of the entire range of frequencies over which the spectrum is essentially nonzero. Hence, W is the bandwidth in the lowpass signal we just defined, while 2W is the bandwidth of the bandpass signal by our definition.

Analytic signal

• Let's start from the analytic signal $x_+(t)$.

$$\begin{aligned} x_{+}(t) &= \int_{-\infty}^{\infty} X_{+}(f) e^{i2\pi ft} df \\ &= \int_{-\infty}^{\infty} X(f) u_{-1}(f) e^{i2\pi ft} df \\ &= \mathcal{F}^{-1} \{ X(f) u_{-1}(f) \} \quad \overline{\mathcal{F}^{-1} \text{ Inverse Fourier transform}} \\ &= \mathcal{F}^{-1} \{ X(f) \} * \mathcal{F}^{-1} \{ u_{-1}(f) \} \\ &= x(t) * \left(\frac{1}{2} \delta(t) + i \frac{1}{2\pi t} \right) \\ &= \frac{1}{2} x(t) + i \frac{1}{2} \hat{x}(t), \end{aligned}$$

where $\hat{x}(t) = x(t) \star \frac{1}{\pi t} = \int_{-\infty}^{\infty} \frac{x(\tau)}{\pi(t-\tau)} d\tau$ is a real-valued signal.

Appendix: Extended Fourier transform

$$\mathcal{F}^{-1} \{ 2u_{-1}(f) \} = \mathcal{F}^{-1} \{ 1 + \operatorname{sgn}(f) \}$$

= $\mathcal{F}^{-1} \{ 1 \} + \mathcal{F}^{-1} \{ \operatorname{sgn}(f) \} = \delta(t) + \imath \frac{1}{\pi t}$

Since $\int_{-\infty}^{\infty} |\operatorname{sgn}(f)| = \infty$, the inverse Fourier transform of $\operatorname{sgn}(f)$ does not exist in the standard sense! We therefore have to derive its inverse Fourier transform in the extended sense!

$$(\forall f)S(f) = \lim_{n \to \infty} S_n(f) \text{ and } (\forall n) \int_{-\infty}^{\infty} |S_n(f)| df < \infty$$

$$\Rightarrow \mathcal{F}^{-1}\{S(f)\} = \lim_{n \to \infty} \mathcal{F}^{-1}\{S_n(f)\}.$$

Appendix: Extended Fourier transform

Since
$$\lim_{a\downarrow 0} e^{-a|f|} \operatorname{sgn}(f) = \operatorname{sgn}(f)$$
,

$$\lim_{a \downarrow 0} \int_{-\infty}^{\infty} e^{-a|f|} \operatorname{sgn}(f) e^{i 2\pi f t} df$$

= $\lim_{a \downarrow 0} \left[-\int_{-\infty}^{0} e^{f(a+i 2\pi t)} df + \int_{0}^{\infty} e^{f(-a+i 2\pi t)} df \right]$
= $\lim_{a \downarrow 0} \left[-\frac{1}{a+i 2\pi t} + \frac{1}{a-i 2\pi t} \right]$
= $\lim_{a \downarrow 0} \left[\frac{i 4\pi t}{a^2 + 4\pi^2 t^2} \right] = \begin{cases} 0 & t = 0\\ i \frac{1}{\pi t} & t \neq 0 \end{cases}$

Hence, $\mathcal{F}^{-1}\{2u_{-1}(f)\} = \mathcal{F}^{-1}\{1\} + \mathcal{F}^{-1}\{\operatorname{sgn}(f)\} = \delta(t) + i\frac{1}{\pi t}$.

$$x_{\ell}(t) \leftrightarrow x_{+}(t) \leftrightarrow x(t)$$

• We then observe

$$X_{\ell}(f)=2X_{+}(f+f_{0}).$$

This implies

$$\begin{aligned} x_{\ell}(t) &= \mathcal{F}^{-1}\{X_{\ell}(f)\} \\ &= \mathcal{F}^{-1}\{2X_{+}(f+f_{0})\} \\ &= 2x_{+}(t)e^{-i2\pi f_{0}t} \\ &= (x(t)+i\hat{x}(t))e^{-i2\pi f_{0}t} \end{aligned}$$

As a result,

$$x(t) + \imath \hat{x}(t) = x_{\ell}(t)e^{\imath 2\pi f_0 t}$$

which gives:

$$\mathbf{x}(t) \quad \left(= \operatorname{\mathsf{Re}}\left\{x(t) + \imath \hat{x}(t)\right\}\right) = \operatorname{\mathsf{Re}}\left\{x_{\ell}(t)e^{\imath 2\pi f_0 t}\right\}$$

By
$$x_\ell(t) = x_i(t) + \imath x_q(t)$$
,

$$x(t) \quad \left(= \mathbf{Re} \left\{ (x_i(t) + i x_q(t)) e^{i 2\pi f_0 t} \right\} \right) \\ = x_i(t) \cos(2\pi f_0 t) - x_q(t) \sin(2\pi f_0 t)$$

$X_{\ell}(f) \leftrightarrow X(f)$

• From $x(t) = \operatorname{Re} \{x_{\ell}(t)e^{i 2\pi f_0 t}\}$, we obtain

$$\begin{aligned} X(f) &= \int_{-\infty}^{\infty} x(t) e^{-i2\pi ft} dt \\ &= \int_{-\infty}^{\infty} \mathbf{Re} \left\{ x_{\ell}(t) e^{i2\pi f_0 t} \right\} e^{-i2\pi ft} dt \\ &= \int_{-\infty}^{\infty} \frac{1}{2} \left[x_{\ell}(t) e^{i2\pi f_0 t} + \left(x_{\ell}(t) e^{i2\pi f_0 t} \right)^* \right] e^{-i2\pi ft} dt \\ &= \frac{1}{2} \int_{-\infty}^{\infty} x_{\ell}(t) e^{-i2\pi (f-f_0) t} dt \\ &+ \frac{1}{2} \int_{-\infty}^{\infty} x_{\ell}^*(t) e^{-i2\pi (f-f_0) t} dt \\ &= \frac{1}{2} \left[X_{\ell}(f-f_0) + X_{\ell}^*(-f-f_0) \right] \end{aligned}$$

$$X_{\ell}^{*}(-f) = \int_{-\infty}^{\infty} (x_{\ell}(t)e^{-i2\pi(-f)t})^{*} dt = \int_{-\infty}^{\infty} x_{\ell}^{*}(f)e^{-i2\pi ft} dt$$

Terminologies & relations

Bandpass signal

$$\begin{cases} x(t) = \mathbf{Re} \{ x_{\ell}(t) e^{i 2\pi f_0 t} \} \\ X(f) = \frac{1}{2} \left[X_{\ell}(f - f_0) + X_{\ell}^*(-f - f_0) \right] \end{cases}$$

- Analytic signal or pre-envelope $x_+(t)$ and $X_+(f)$
- Lowpass equivalent signal or complex envelope

$$\begin{cases} x_{\ell}(t) = (x(t) + \imath \hat{x}(t))e^{-\imath 2\pi f_0 t} \\ X_{\ell}(f) = 2X(f + f_0)u_{-1}(f + f_0) \end{cases}$$

Useful to know

Terminologies & relations • From $x_{\ell}(t) = x_{i}(t) + i x_{a}(t) = (x(t) + i \hat{x}(t))e^{-i2\pi f_{0}t}$ $\begin{cases} x_i(t) = \operatorname{Re}\left\{ \left(x(t) + \imath \hat{x}(t) \right) e^{-\imath 2\pi f_0 t} \right\} \\ x_q(t) = \operatorname{Im}\left\{ \left(x(t) + \imath \hat{x}(t) \right) e^{-\imath 2\pi f_0 t} \right\} \end{cases}$ • Also from $x_{\ell}(t) = (x(t) + i \hat{x}(t))e^{-i 2\pi f_0 t}$. $\begin{cases} x(t) = \mathbf{Re} \begin{cases} x_{\ell}(t) e^{i2\pi f_0 t} \end{cases} \\ \hat{x}(t) = \mathbf{Im} \begin{cases} x_{\ell}(t) e^{i2\pi f_0 t} \end{cases} \end{cases}$

Useful to know

Terminologies & relations • From $x_{\ell}(t) = x_i(t) + i x_a(t) = (x(t) + i \hat{x}(t))e^{-i 2\pi f_0 t}$, $\begin{cases} x_i(t) = \operatorname{Re}\left\{ \left(x(t) + \imath \hat{x}(t) \right) e^{-\imath 2\pi f_0 t} \right\} \\ x_q(t) = \operatorname{Im}\left\{ \left(x(t) + \imath \hat{x}(t) \right) e^{-\imath 2\pi f_0 t} \right\} \end{cases}$ • Also from $x_{\ell}(t) = (x(t) + i \hat{x}(t))e^{-i 2\pi f_0 t}$. $\begin{cases} x(t) = \mathbf{Re} \left\{ (x_i(t) + \imath x_q(t)) e^{\imath 2\pi f_0 t} \right\} \\ \hat{x}(t) = \mathbf{Im} \left\{ (x_i(t) + \imath x_q(t)) e^{\imath 2\pi f_0 t} \right\} \end{cases}$

Useful to know

Terminologies & relations

- pre-envelope $x_+(t)$
- complex envelope $x_{\ell}(t)$
- envelope $|\times_{\ell}(t)| = \sqrt{x_i^2(t) + x_q^2(t)} = r_{\ell}(t)$

Usually, we will modulate and demodulate with respect to carrier frequency f_c , which may not be equal to the center frequency f_0 .

•
$$x_{\ell}(t) \rightarrow x(t) = \operatorname{Re} \{ x_{\ell}(t) e^{i 2\pi f_{c} t} \} \Rightarrow \operatorname{modulation}$$

•
$$x(t) \rightarrow x_{\ell}(t) = (x(t) + i\hat{x}(t))e^{-i2\pi f_{c}t} \Rightarrow \text{demodulation}$$

• The demodulation requires to generate $\hat{x}(t)$, a Hilbert transform of x(t)

$$\begin{array}{c} x(t) \\ \hline h(t) = \frac{1}{\pi t} \\ \hline \end{array} \\ \hline \end{array}$$
Hilbter Transformer

Hilbert transform is basically a 90-degree phase shifter.

$$H(f) = \mathcal{F}\left\{\frac{1}{\pi t}\right\} = -i \operatorname{sgn}(f) = \begin{cases} -i, & f > 0\\ 0, & f = 0\\ i, & f < 0 \end{cases}$$

Recall that on page 10, we have shown

$$\mathcal{F}^{-1}\left\{\operatorname{sgn}(f)\right\} = i\frac{1}{\pi t}\mathbf{1}\left\{t\neq 0\right\};$$

hence

$$\mathcal{F}\left\{\frac{1}{\pi t}\right\} = \frac{1}{\imath}\mathrm{sgn}(f) = -\imath\,\mathrm{sgn}(f).$$

Energy considerations

Definition (Energy of a signal)

The energy \mathcal{E}_s of a (complex) signal s(t) is

$$\mathcal{E}_s = \int_{-\infty}^{\infty} |s(t)|^2 dt$$

Hence, the energies of x(t), $x_{+}(t)$ and $x_{\ell}(t)$ are

$$\mathcal{E}_{x} = \int_{-\infty}^{\infty} |x(t)|^{2} dt$$
$$\mathcal{E}_{x_{+}} = \int_{-\infty}^{\infty} |x_{+}(t)|^{2} dt$$
$$\mathcal{E}_{x_{\ell}} = \int_{-\infty}^{\infty} |x_{\ell}(t)|^{2} dt$$

We are interested in the connection among \mathcal{E}_{x} , $\mathcal{E}_{x_{+}}$, and $\mathcal{E}_{x_{\ell}}$.

Digital Communications: Chapter 2 Ver. 2018.09.12

• First, from Parseval's Theorem, we see

$$\mathcal{E}_{x} = \int_{-\infty}^{\infty} |x(t)|^{2} dt = \int_{-\infty}^{\infty} |X(f)|^{2} df$$

Parseval's theorem $\int_{-\infty}^{\infty} x(t)y^*(t)dt = \int_{-\infty}^{\infty} X(f)Y^*(f)df$ (Rayleigh's theorem) $\int_{-\infty}^{\infty} |x(t)|^2 dt = \int_{-\infty}^{\infty} |X(f)|^2 df$

$$X(f) = \underbrace{\frac{1}{2}X_{\ell}(f-f_{c})}_{=X_{+}(f)} + \underbrace{\frac{1}{2}X_{\ell}^{*}(-f-f_{c})}_{=X_{+}^{*}(-f)}$$

• Third, $f_c \gg W$ and

Second

$$X_{\ell}(f - f_c)X_{\ell}^*(-f - f_c) = 4X_+(f)X_+^*(-f) = 0$$
 for all f

It then shows

$$\mathcal{E}_{x} = \int_{-\infty}^{\infty} \left| \frac{1}{2} X_{\ell} (f - f_{c}) + \frac{1}{2} X_{\ell}^{*} (-f - f_{c}) \right|^{2} df$$

= $\frac{1}{4} \mathcal{E}_{x_{\ell}} + \frac{1}{4} \mathcal{E}_{x_{\ell}} = \frac{1}{2} \mathcal{E}_{x_{\ell}}$

and

$$\mathcal{E}_{x} = \int_{-\infty}^{\infty} |X_{+}(f) + X_{+}^{*}(-f)|^{2} df$$

= $\mathcal{E}_{x_{+}} + \mathcal{E}_{x_{+}} = 2\mathcal{E}_{x_{+}}$

Theorem (Energy considerations)

$$\mathcal{E}_{x_{\ell}} = 2\mathcal{E}_{x} = 4\mathcal{E}_{x_{+}}$$

Digital Communications: Chapter 2 Ver. 2018.09.12

Definition (Inner product)

We define the inner product of two (complex) signals x(t) and y(t) as

$$\langle x(t), y(t) \rangle = \int_{-\infty} x(t)y^*(t)dt.$$

Parseval's relation immediately gives

$$\langle x(t), y(t) \rangle = \langle X(f), Y(f) \rangle.$$

•
$$\mathcal{E}_{x} = \langle x(t), x(t) \rangle = \langle X(f), X(f) \rangle$$

• $\mathcal{E}_{x_{\ell}} = \langle x_{\ell}(t), x_{\ell}(t) \rangle = \langle X_{\ell}(f), X_{\ell}(f) \rangle$

We can similarly prove that

$$\begin{aligned} \langle x(t), y(t) \rangle \\ &= \langle X(f), Y(f) \rangle \\ &= \left\langle \frac{1}{2} X_{\ell}(f - f_{c}) + \frac{1}{2} X_{\ell}^{*}(-f - f_{c}), \frac{1}{2} Y_{\ell}(f - f_{c}) + \frac{1}{2} Y_{\ell}^{*}(-f - f_{c}) \right\rangle \\ &= \left\langle \frac{1}{4} \langle X_{\ell}(f - f_{c}), Y_{\ell}(f - f_{c}) \rangle + \frac{1}{4} \langle X_{\ell}(f - f_{c}), Y_{\ell}^{*}(-f - f_{c}) \rangle \right\rangle \\ &+ \left\langle \frac{1}{4} \langle X_{\ell}^{*}(-f - f_{c}), Y_{\ell}(f - f_{c}) \rangle + \frac{1}{4} \langle X_{\ell}^{*}(-f - f_{c}), Y_{\ell}^{*}(-f - f_{c}) \rangle \right\rangle \\ &= \left\langle \frac{1}{4} \langle x_{\ell}(t), y_{\ell}(t) \rangle + \frac{1}{4} \langle (x_{\ell}(t), y_{\ell}(t)) \rangle \right\rangle \\ &= \left\langle \frac{1}{2} \operatorname{Re} \left\{ \langle x_{\ell}(t), y_{\ell}(t) \rangle \right\} \end{aligned}$$

Corss-correlation of two signals

Definition (Cross-correlation)

The cross-correlation of two signals x(t) and y(t) is defined as

$$\rho_{x,y} = \frac{\langle x(t), y(t) \rangle}{\sqrt{\langle x(t), x(t) \rangle} \sqrt{\langle y(t), y(t) \rangle}} = \frac{\langle x(t), y(t) \rangle}{\sqrt{\mathcal{E}_x \mathcal{E}_y}}.$$

Definition (Orthogonality)

Two signals x(t) and y(t) are said to be orthogonal if $\rho_{x,y} = 0$.

• The previous slide then shows $\rho_{x,y} = \mathbf{Re} \{ \rho_{x_{\ell},y_{\ell}} \}.$

•
$$\rho_{x_{\ell},y_{\ell}} = 0 \Rightarrow \rho_{x,y} = 0$$
 but $\rho_{x,y} = 0 \Rightarrow \rho_{x_{\ell},y_{\ell}} = 0$

2.1-4 Lowpass equivalence of a bandpass system

Definition (Bandpass system)

A bandpass **system** is an LTI system with real impulse response h(t) whose transfer function is located around a frequency f_c .

• Using a similar concept, we set the lowpass equivalent impulse response as

$$h(t) = \mathbf{Re} \left\{ h_{\ell}(t) e^{i 2\pi f_{c} t} \right\}$$

and

$$H(f) = \frac{1}{2} \left[H_{\ell}(f - f_{c}) + H_{\ell}^{*}(-f - f_{c}) \right]$$

Baseband input-output relation

- Let x(t) be a bandpass input signal and let
 y(t) = h(t) * x(t) or equivalently Y(f) = H(f)X(f)
- Then, we know

$$\begin{aligned} x(t) &= \operatorname{Re}\left\{x_{\ell}(t)e^{i2\pi f_{c}t}\right\}\\ h(t) &= \operatorname{Re}\left\{h_{\ell}(t)e^{i2\pi f_{c}t}\right\}\\ y(t) &= \operatorname{Re}\left\{y_{\ell}(t)e^{i2\pi f_{c}t}\right\}\end{aligned}$$

and

Theorem (Baseband input-output relation)

$$y(t) = h(t) \star x(t) \iff y_{\ell}(t) = \frac{1}{2}h_{\ell}(t) \star x_{\ell}(t)$$

Proof:
For
$$f \neq -f_c$$
 (or specifically, for $u_{-1}(f + f_c) = u_{-1}^2(f + f_c)$),
Note $\frac{1}{2} = u_{-1}(0) \neq u_{-1}^2(0) = \frac{1}{4}$.

$$\begin{aligned} Y_{\ell}(f) &= 2Y(f+f_{c})u_{-1}(f+f_{c}) \\ &= 2H(f+f_{c})X(f+f_{c})u_{-1}(f+f_{c}) \\ &= \frac{1}{2}[2H(f+f_{c})u_{-1}(f+f_{c})] \cdot [2X(f+f_{c})u_{-1}(f+f_{c})] \\ &= \frac{1}{2}H_{\ell}(f) \cdot X_{\ell}(f) \end{aligned}$$

The case for $f = -f_c$ is valid since $Y_{\ell}(-f_c) = X_{\ell}(-f_c) = 0$.

• The above theorem applies to a deterministic system. How about a stochastic system?

The text abuses the notation by using X(f) as the spectrum of x(t) but using X(t) as the stochastic counterpart of x(t).

2.7 Random processes

Definition

A random process is a set of indexed random variables $\{X(t), t \in \mathcal{T}\}$, where \mathcal{T} is often called the index set.

Classification

- **()** If \mathcal{T} is a finite set \Rightarrow Random Vector
- ② If $\mathcal{T} = \mathbb{Z}$ or $\mathbb{Z}^+ \Rightarrow$ Discrete Random Process
- If $\mathcal{T} = \mathbb{R}$ or $\mathbb{R}^+ \Rightarrow$ Continuous Random Process
- If $\mathcal{T} = \mathbb{R}^2, \mathbb{Z}^2, \dots, \mathbb{R}^n, \mathbb{Z}^n \Rightarrow$ Random Field

Examples of random process

Example

Let **U** be a random variable uniformly distributed over $[-\pi,\pi)$. Then

$$\boldsymbol{X}(t) = \cos\left(2\pi f_c t + \boldsymbol{U}\right)$$

is a continuous random process.

Example

Let **B** be a random variable taking values in $\{-1, 1\}$. Then

$$\boldsymbol{X}(t) = \begin{cases} \cos(2\pi f_c t) & \text{if } \boldsymbol{B} = -1\\ \sin(2\pi f_c t) & \text{if } \boldsymbol{B} = +1 \end{cases} = \cos\left(2\pi f_c t - \frac{\pi}{4}(\boldsymbol{B} + 1)\right)$$

is a continuous random process.

Statistical properties of random process

For any integer k > 0 and any $t_1, t_2, \dots, t_k \in \mathcal{T}$, the finite-dimensional cumulative distribution function (cdf) for X(t) is given by:

$$F_{\boldsymbol{X}}(t_1, \cdots, t_k; x_1, \cdots, x_k) = \Pr\{\boldsymbol{X}(t_1) \le x_1, \cdots, \boldsymbol{X}(t_k) \le x_k\}$$

As event $[\boldsymbol{X}(t) < \infty]$ (resp. $[\boldsymbol{X}(t) \leq -\infty]$) is always regarded

as true (resp. false),

$$\lim_{x_{s}\to\infty} F_{\mathbf{X}}(t_{1},\dots,t_{k};x_{1},\dots,x_{k}) = F_{\mathbf{X}}(t_{1},\dots,t_{s-1},t_{s+1},t_{k};x_{1},\dots,x_{s-1},x_{s+1},\dots,x_{k})$$

and

$$\lim_{x_s\to-\infty} F_{\boldsymbol{X}}(t_1,\cdots,t_k;x_1,\cdots,x_k) = 0$$

Definition

Let X(t) be a random process; then the mean function is

$$m_{\boldsymbol{X}}(t) = \mathbb{E}[\boldsymbol{X}(t)],$$

the (auto)correlation function is

$$R_{\boldsymbol{X}}(t_1,t_2) = \mathbb{E}[\boldsymbol{X}(t_1)\boldsymbol{X}^*(t_2)],$$

and the (auto)covariance function is

$$\mathcal{K}_{\boldsymbol{X}}(t_1, t_2) = \mathbb{E}\left[\left(\boldsymbol{X}(t_1) - m_{\boldsymbol{X}}(t_1) \right) \left(\boldsymbol{X}(t_2) - m_{\boldsymbol{X}}(t_2) \right)^* \right]$$

Definition

Let X(t) and Y(t) be two random processes; then the cross-correlation function is

$$R_{\boldsymbol{X},\boldsymbol{Y}}(t_1,t_2) = \mathbb{E}[\boldsymbol{X}(t_1)\boldsymbol{Y}^*(t_2)],$$

and cross-covariance function is

$$\mathcal{K}_{\boldsymbol{X},\boldsymbol{Y}}(t_1,t_2) = \mathbb{E}\left[\left(\boldsymbol{X}(t_1) - m_{\boldsymbol{X}}(t_1) \right) \left(\boldsymbol{Y}(t_2) - m_{\boldsymbol{Y}}(t_2) \right)^* \right]$$

Proposition

$$R_{\mathbf{X},\mathbf{Y}}(t_{1},t_{2}) = K_{\mathbf{X},\mathbf{Y}}(t_{1},t_{2}) + m_{\mathbf{X}}(t_{1})m_{\mathbf{Y}}^{*}(t_{2})$$

$$R_{\mathbf{Y},\mathbf{X}}(t_{2},t_{1}) = R_{\mathbf{X},\mathbf{Y}}^{*}(t_{1},t_{2}) \qquad R_{\mathbf{X}}(t_{2},t_{1}) = R_{\mathbf{X}}^{*}(t_{1},t_{2})$$

$$K_{\mathbf{Y},\mathbf{X}}(t_{2},t_{1}) = K_{\mathbf{X},\mathbf{Y}}^{*}(t_{1},t_{2}) \qquad K_{\mathbf{X}}(t_{2},t_{1}) = K_{\mathbf{X}}^{*}(t_{1},t_{2})$$

Stationary random processes

Definition

A random process X(t) is said to be strictly or strict-sense stationary (SSS) if its finite-dimensional joint distribution function is shift-invariant, i.e. for any integer k > 0, any $t_1, \dots, t_k \in T$ and any τ , $F_X(t_1 - \tau, \dots, t_k - \tau; x_1, \dots, x_k) = F_X(t_1, \dots, t_k; x_1, \dots, x_k)$

Definition

A random process $\mathbf{X}(t)$ is said to be weakly or wide-sense stationary (WSS) if its mean function and (auto)correlation function are shift-invariant, i.e. for any $t_1, t_2 \in \mathcal{T}$ and any τ , $m_{\mathbf{X}}(t - \tau) = m_{\mathbf{X}}(t)$ and $R_{\mathbf{X}}(t_1 - \tau, t_2 - \tau) = R_{\mathbf{X}}(t_1, t_2)$. The above condition is equivalent to $m_{\mathbf{X}}(t) = constant$ and $R_{\mathbf{X}}(t_1, t_2) = R_{\mathbf{X}}(t_1 - t_2)$.
Two random processes X(t) and Y(t) are said to be jointly wide-sense stationary if

Both X(t) and Y(t) are WSS;

•
$$R_{\mathbf{X},\mathbf{Y}}(t_1,t_2) = R_{\mathbf{X},\mathbf{Y}}(t_1-t_2).$$

Proposition

For jointly WSS $\mathbf{X}(t)$ and $\mathbf{Y}(t)$,

$$R_{\mathbf{Y},\mathbf{X}}(t_2,t_1) = R^*_{\mathbf{X},\mathbf{Y}}(t_1,t_2) \implies R_{\mathbf{X},\mathbf{Y}}(\tau) = R^*_{\mathbf{Y},\mathbf{X}}(-\tau)$$

$$K_{\mathbf{Y},\mathbf{X}}(t_2,t_1) = K^*_{\mathbf{X},\mathbf{Y}}(t_1,t_2) \implies K_{\mathbf{X},\mathbf{Y}}(\tau) = K^*_{\mathbf{Y},\mathbf{X}}(-\tau)$$

A random process $\{X(t), t \in T\}$ is said to be Gaussian if for any integer k > 0 and for any $t_1, \dots, t_k \in T$, the finite-dimensional joint cdf

$$F_{\boldsymbol{X}}(t_1, \cdots, t_k; x_1, \cdots, x_k) = \Pr\left[\boldsymbol{X}(t_1) \le x_1, \cdots, \boldsymbol{X}(t_k) \le x_k\right]$$

is Gaussian.

Remark

The joint cdf of a Gaussian process is fully determined by its mean function and its autocovariance function.

Two real random processes $\{\mathbf{X}(t), t \in \mathcal{T}_X\}$ and $\{\mathbf{Y}(t), t \in \mathcal{T}_Y\}$ are said to be jointly Gaussian if for any integers j, k > 0 and for any $s_1, \dots, s_j \in \mathcal{T}_X$ and $t_1, \dots, t_k \in \mathcal{T}_Y$, the finite-dimensional joint cdf

$$\Pr\left[\boldsymbol{X}(s_1) \leq x_1, \cdots, \boldsymbol{X}(s_j) \leq x_j, \boldsymbol{Y}(t_1) \leq y_1, \cdots, \boldsymbol{Y}(t_k) \leq y_k\right]$$

is Gaussian.

Definition

A complex process is Gaussian if the real and imaginary processes are jointly Gaussian.

Remark

For joint (in general complex) Gaussian processes, "uncorrelatedness", defined as

$$R_{\mathbf{X},\mathbf{Y}}(t_1,t_2) = \mathbb{E}[\mathbf{X}(t_1)\mathbf{Y}^*(t_2)]$$
$$= \mathbb{E}[\mathbf{X}(t_1)]\mathbb{E}[\mathbf{Y}^*(t_2)] = m_{\mathbf{X}}(t_1)m_{\mathbf{Y}}^*(t_2),$$

implies "independence", i.e.,

$$\Pr\left[\boldsymbol{X}(\boldsymbol{s}_{1}) \leq \boldsymbol{x}_{1}, \cdots, \boldsymbol{X}(\boldsymbol{s}_{j}) \leq \boldsymbol{x}_{j}, \boldsymbol{Y}(\boldsymbol{t}_{1}) \leq \boldsymbol{y}_{1}, \cdots, \boldsymbol{Y}(\boldsymbol{t}_{k}) \leq \boldsymbol{y}_{k}\right]$$

=
$$\Pr\left[\boldsymbol{X}(\boldsymbol{s}_{1}) \leq \boldsymbol{x}_{1}, \cdots, \boldsymbol{X}(\boldsymbol{s}_{k}) \leq \boldsymbol{x}_{k}\right] \cdot \Pr\left[\boldsymbol{Y}(\boldsymbol{t}_{1}) \leq \boldsymbol{y}_{1}, \cdots, \boldsymbol{Y}(\boldsymbol{t}_{k}) \leq \boldsymbol{y}_{k}\right]$$

Theorem

If a Gaussian random process X(t) is WSS, then it is SSS.

Idea behind the Proof:

For any k > 0, consider the sampled random vector

$$\vec{\boldsymbol{X}}_{k} = \begin{bmatrix} \boldsymbol{X}(t_{1}) \\ \boldsymbol{X}(t_{2}) \\ \vdots \\ \boldsymbol{X}(t_{k}) \end{bmatrix}.$$

The mean vector and covariance matrix of \vec{X}_k are respectively

$$m_{\vec{\boldsymbol{X}}_{k}} = \mathbb{E}[\vec{\boldsymbol{X}}_{k}] = \begin{bmatrix} \mathbb{E}[\boldsymbol{X}(t_{1})] \\ \mathbb{E}[\boldsymbol{X}(t_{2})] \\ \vdots \\ \mathbb{E}[\boldsymbol{X}(t_{k})] \end{bmatrix} = m_{\boldsymbol{X}}(0) \cdot \vec{\boldsymbol{1}}$$

and

$$R_{\vec{\boldsymbol{X}}} = \mathbb{E}[\vec{\boldsymbol{X}}_{k}\vec{\boldsymbol{X}}_{k}^{H}] = \begin{bmatrix} K_{\boldsymbol{X}}(0) & K_{\boldsymbol{X}}(t_{1}-t_{2}) & \cdots \\ K_{\boldsymbol{X}}(t_{2}-t_{1}) & K_{\boldsymbol{X}}(0) & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix}$$

It can be shown that for a new sampled random vector

$$\begin{bmatrix} \boldsymbol{X}(t_1+\tau) \\ \boldsymbol{X}(t_2+\tau) \\ \vdots \\ \boldsymbol{X}(t_k+\tau) \end{bmatrix}$$

the mean vector and covariance matrix remain the same. Hence, $\boldsymbol{X}(t)$ is SSS.

.

Let $R_{\mathbf{X}}(\tau)$ be the correlation function of a WSS random process $\mathbf{X}(t)$. The power spectral density (PSD) or power spectrum of $\mathbf{X}(t)$ is defined as

$$S_{\mathbf{X}}(f) = \int_{-\infty}^{\infty} R_{\mathbf{X}}(\tau) e^{-\imath 2\pi f \tau} d\tau.$$

Let $R_{\mathbf{X},\mathbf{Y}}(\tau)$ be the cross-correlation function of two jointly WSS random process $\mathbf{X}(t)$ and $\mathbf{Y}(t)$; then the cross spectral density (CSD) is

$$S_{\mathbf{X},\mathbf{Y}}(f) = \int_{-\infty}^{\infty} R_{\mathbf{X},\mathbf{Y}}(\tau) e^{-\imath 2\pi f \tau} d\tau.$$

- PSD (in units of watts per Hz) describes the density of power as a function of frequency.
 - Analogously, probability density function (pdf) describes the density of probability as a function of outcome.
 - The integration of PSD gives power of the random process over the considered range of frequency.
 Analogously, the integration of pdf gives probability over the considered range of outcome.

Theorem

 $S_{\mathbf{X}}(f)$ is non-negative and real (which matches that the power of a signal cannot be negative or complex-valued).

Proof: $S_{\mathbf{X}}(f)$ is real because

$$S_{\mathbf{X}}(f) = \int_{-\infty}^{\infty} R_{\mathbf{X}}(\tau) e^{-i2\pi f\tau} d\tau$$

$$= \int_{-\infty}^{\infty} R_{\mathbf{X}}(-s) e^{i2\pi fs} ds \quad (s = -\tau)$$

$$= \int_{-\infty}^{\infty} R_{\mathbf{X}}^{*}(s) e^{i2\pi fs} ds$$

$$= \left(\int_{-\infty}^{\infty} R_{\mathbf{X}}(s) e^{-i2\pi fs} ds\right)^{*}$$

$$= S_{\mathbf{X}}^{*}(f)$$

 $S_{\mathbf{X}}(f)$ is non-negative because of the following (we only prove this based on that $\mathcal{T} \subset \mathbb{R}$ and $\mathbf{X}(t) = 0$ outside $[-\mathcal{T}, \mathcal{T}]$).

$$S_{\mathbf{X}}(f) = \int_{-\infty}^{\infty} \mathbb{E}[\mathbf{X}(t+\tau)\mathbf{X}^{*}(t)]e^{-i2\pi f\tau} d\tau$$

= $\mathbb{E}[\mathbf{X}^{*}(t)\int_{-\infty}^{\infty}\mathbf{X}(t+\tau)e^{-i2\pi f\tau} d\tau]$ (s = t + τ)
= $\mathbb{E}[\mathbf{X}^{*}(t)\int_{-\infty}^{\infty}\mathbf{X}(s)e^{-i2\pi f(s-t)} ds]$
= $\mathbb{E}[\mathbf{X}^{*}(t)\mathbf{\tilde{X}}(f)e^{i2\pi ft}]$ In notation, $\mathbf{\tilde{X}}(f) = \mathcal{F}{\mathbf{X}(t)}$.

Since the above is a constant with respect to t (by WSS),

$$S_{\mathbf{X}}(f) = \frac{1}{2T} \int_{-T}^{T} \mathbb{E} \left[\mathbf{X}^{*}(t) \mathbf{\tilde{X}}(f) e^{i 2\pi f t} \right] dt$$

$$= \frac{1}{2T} \mathbb{E} \left[\mathbf{\tilde{X}}(f) \int_{-T}^{T} \mathbf{X}^{*}(t) e^{i 2\pi f t} dt \right]$$

$$= \frac{1}{2T} \mathbb{E} \left[\mathbf{\tilde{X}}(f) \mathbf{\tilde{X}}^{*}(f) \right] = \frac{1}{2T} \mathbb{E} \left[|\mathbf{\tilde{X}}(f)|^{2} \right] \ge 0.$$

Wiener-Khintchine theorem

Theorem (Wiener-Khintchine)

Let $\{\boldsymbol{X}(t), t \in \mathbb{R}\}$ be a WSS random process. Define

$$\boldsymbol{X}_{T}(t) = \begin{cases} \boldsymbol{X}(t) & \text{if } t \in [-T, T] \\ 0, & \text{otherwise.} \end{cases}$$

and set

$$\tilde{\boldsymbol{X}}_{T}(f) = \int_{-\infty}^{\infty} \boldsymbol{X}_{T}(t) e^{-\imath 2\pi f t} dt = \int_{-T}^{T} \boldsymbol{X}(t) e^{-\imath 2\pi f t} dt.$$

If $S_{\mathbf{X}}(f)$ exists (i.e., $R_{\mathbf{X}}(\tau)$ has a Fourier transform), then

$$S_{\boldsymbol{X}}(f) = \lim_{T \to \infty} \frac{1}{2T} \mathbb{E}\left\{ \left| \tilde{\boldsymbol{X}}_{T}(f) \right|^{2} \right\}$$

- Power density spectrum : Alternative definition
 - Fourier transform of auto-covariance function (e.g., Robert M. Gray and Lee D. Davisson, Random Processes: A Mathematical Approach for Engineers, p. 193)
- I remark that from the viewpoint of digital communications, the text's definition is more appropriate since
 - the auto-covariance function is independent of a mean-shift; however, random signals with different "means" consume different "powers."

• What can we say about, e.g., the PSD of stochastic system input and output?

$$\begin{array}{c|c} x(t) & h(t) \\ \hline x_{\ell}(t) & \frac{1}{2}h_{\ell}(t) \end{array} y(t) \\ \hline \frac{1}{2}h_{\ell}(t) & y_{\ell}(t) \end{array} \begin{cases} \Box(t) = \mathbf{Re}\{\Box_{\ell}(t)e^{i2\pi f_{c}t}\}\\ \Box_{\ell}(t) = (\Box(t) + i\widehat{\Box}(t))e^{-i2\pi f_{c}t}\\ \text{where "}\Box" \text{ can be } x, y \text{ or } h. \end{cases}$$

$$\begin{array}{c} \downarrow\\ \downarrow\\ \hline\\ X(t) & h(t) \\ \hline X_{\ell}(t) & \frac{1}{2}h_{\ell}(t) \end{array} \begin{array}{c} Y(t) \\ \hline \frac{1}{2}h_{\ell}(t) \end{array} \begin{cases} \Box(t) = \mathbf{Re}\{\Box_{\ell}(t)e^{i2\pi f_{c}t}\}\\ \Box_{\ell}(t) = (\Box(t) + i\widehat{\Box}(t))e^{-i2\pi f_{c}t}\\ \Box_{\ell}(t) = (\Box(t) + i\widehat{\Box}(t))e^{-i2\pi f_{c}t}\\ \text{where "}\Box" \text{ can be } X, Y \text{ or } h. \end{array}$$

2.9 Bandpass and lowpass random processes

Definition (Bandpass random signal)

A bandpass (WSS) stochastic signal X(t) is a real random process whose PSD is located around central frequency f_0 , i.e.

• We know
$$\begin{cases} \boldsymbol{X}(t) = \operatorname{Re} \left\{ \boldsymbol{X}_{\ell}(t) e^{i 2\pi f_{c} t} \right\} \\ \boldsymbol{X}_{\ell}(t) = \left(\boldsymbol{X}(t) + i \hat{\boldsymbol{X}}(t) \right) e^{-i 2\pi f_{c} t} \end{cases}$$

Assumption (Fundamental assumption)

The bandpass signal X(t) is WSS. In addition, its complex lowpass equivalent process $X_{\ell}(t)$ is WSS. In other words,

- $X_i(t)$ and $X_q(t)$ are WSS.
- $X_i(t)$ and $X_q(t)$ are jointly WSS.

Under this **fundamental assumption**, we obtain the following properties:

P1) If X(t) zero-mean, both $X_i(t)$ and $X_q(t)$ zero-mean because $m_X = m_{X_i} \cos(2\pi f_c t) - m_{X_q} \sin(2\pi f_c t)$. P2) $\begin{cases} R_{X_i}(\tau) = R_{X_q}(\tau) \\ R_{X_i,X_q}(\tau) = -R_{X_q,X_i}(\tau) \end{cases}$

Proof of P2):

$$R_{\mathbf{X}}(\tau)$$

$$= \mathbb{E} [\mathbf{X}(t+\tau)\mathbf{X}(t)]$$

$$= \mathbb{E} [\mathbf{Re} \{\mathbf{X}_{\ell}(t+\tau)e^{i2\pi f_{c}(t+\tau)}\} \mathbf{Re} \{\mathbf{X}_{\ell}(t)e^{i2\pi f_{c}t}\}]$$

$$= \mathbb{E} [(\mathbf{X}_{i}(t+\tau)\cos(2\pi f_{c}(t+\tau)) - \mathbf{X}_{q}(t+\tau)\sin(2\pi f_{c}(t+\tau)))$$

$$(\mathbf{X}_{i}(t)\cos(2\pi f_{c}t) - \mathbf{X}_{q}(t)\sin(2\pi f_{c}t))]$$

$$= \frac{R_{\mathbf{X}_{i}}(\tau) + R_{\mathbf{X}_{q}}(\tau)}{2}\cos(2\pi f_{c}\tau)$$

$$+ \frac{R_{\mathbf{X}_{i},\mathbf{X}_{q}}(\tau) - R_{\mathbf{X}_{q},\mathbf{X}_{i}}(\tau)}{2}\sin(2\pi f_{c}\tau)$$

$$+ \frac{R_{\mathbf{X}_{i},\mathbf{X}_{q}}(\tau) - R_{\mathbf{X}_{q}}(\tau)}{2}\cos(2\pi f_{c}(2t+\tau)) \quad (=0)$$

$$- \frac{R_{\mathbf{X}_{i},\mathbf{X}_{q}}(\tau) + R_{\mathbf{X}_{q},\mathbf{X}_{i}}(\tau)}{2}\sin(2\pi f_{c}(2t+\tau)) \quad (=0)$$

$$P3) R_{\mathbf{X}}(\tau) = \mathbf{Re} \left\{ \frac{1}{2} R_{\mathbf{X}_{\ell}}(\tau) e^{i 2\pi f_{c} \tau} \right\}.$$

$$Proof: \text{ Observe from } P2),$$

$$R_{\mathbf{X}_{\ell}}(\tau) = \mathbb{E} \left[\mathbf{X}_{\ell}(t+\tau) \mathbf{X}_{\ell}^{*}(t) \right]$$

$$= \mathbb{E} \left[(\mathbf{X}_{i}(t+\tau) + i \mathbf{X}_{q}(t+\tau)) (\mathbf{X}_{i}(t) - i \mathbf{X}_{q}(t)) \right]$$

$$= R_{\mathbf{X}_{i}}(\tau) + R_{\mathbf{X}_{q}}(\tau) - i R_{\mathbf{X}_{i},\mathbf{X}_{q}}(\tau) + i R_{\mathbf{X}_{q},\mathbf{X}_{i}}(\tau)$$

$$= 2R_{\mathbf{X}_{i}}(\tau) + i 2R_{\mathbf{X}_{q},\mathbf{X}_{i}}(\tau).$$

Hence, also from P2),

$$\begin{aligned} \mathsf{R}_{\mathbf{X}}(\tau) &= R_{\mathbf{X}_{i}}(\tau) \cos(2\pi f_{c}\tau) - R_{\mathbf{X}_{q},\mathbf{X}_{i}}(\tau) \sin(2\pi f_{c}\tau) \\ &= \mathbf{Re} \left\{ \frac{1}{2} R_{\mathbf{X}_{\ell}}(\tau) e^{i 2\pi f_{c}\tau} \right\} \end{aligned}$$

P4)
$$S_{\mathbf{X}}(f) = \frac{1}{4} \left[S_{\mathbf{X}_{\ell}}(f - f_c) + S_{\mathbf{X}_{\ell}}^{*}(-f - f_c) \right].$$

Proof: A direct consequence of P3).

Note:

• Amplitude
$$\tilde{\boldsymbol{X}}(f) = \frac{1}{2} \left[\tilde{\boldsymbol{X}}_{\ell}(f - f_c) + \tilde{\boldsymbol{X}}_{\ell}^*(-f - f_c) \right]$$

Amplitude square

$$\left|\tilde{\boldsymbol{X}}(f)\right|^{2} = \frac{1}{4}\left|\tilde{\boldsymbol{X}}_{\ell}(f-f_{c})+\tilde{\boldsymbol{X}}_{\ell}^{*}(-f-f_{c})\right|^{2}$$
$$= \frac{1}{4}\left(\left|\tilde{\boldsymbol{X}}_{\ell}(f-f_{c})\right|^{2}+\left|\tilde{\boldsymbol{X}}_{\ell}^{*}(-f-f_{c})\right|^{2}\right)$$

• Wiener-Khintchine: $S_{\boldsymbol{X}}(f) \equiv |\tilde{\boldsymbol{X}}(f)|^2$.

P5) $X_i(t)$ and $X_q(t)$ uncorrelated if one of them has zero-mean.

Proof: From P2), $R_{\mathbf{X}_{i},\mathbf{X}_{q}}(\tau) = -R_{\mathbf{X}_{q},\mathbf{X}_{i}}(\tau) = -R_{\mathbf{X}_{i},\mathbf{X}_{q}}(-\tau).$ Hence, $R_{\mathbf{X}_{i},\mathbf{X}_{q}}(0) = 0$ (i.e., $\mathbb{E}[\mathbf{X}_{i}(t)\mathbf{X}_{q}(t)] = 0 = \mathbb{E}[\mathbf{X}_{i}(t)]\mathbb{E}[\mathbf{X}_{q}(t)]).$ *P6)* If $S_{\boldsymbol{X}_{\ell}}(-f) = S^*_{\boldsymbol{X}_{\ell}}(f)(= S_{\boldsymbol{X}_{\ell}}(f))$ symmetric, then $\boldsymbol{X}_i(t+\tau)$ and $\boldsymbol{X}_q(t)$ uncorrelated for any τ , provided one of them has zero-mean.

Proof: From P3), $R_{\mathbf{X}_{\ell}}(\tau) = 2R_{\mathbf{X}_{i}}(\tau) + i 2R_{\mathbf{X}_{q},\mathbf{X}_{i}}(\tau).$ $S_{\mathbf{X}_{\ell}}(-f) = S_{\mathbf{X}_{\ell}}^{*}(f) \text{ implies } R_{\mathbf{X}_{\ell}}(\tau) \text{ is real;}$ hence, $R_{\mathbf{X}_{q},\mathbf{X}_{i}}(\tau) = 0$ for any τ .

Note that $S_{\boldsymbol{X}_{\ell}}(-f) = S^*_{\boldsymbol{X}_{\ell}}(f)$ iff $R_{\boldsymbol{X}_{\ell}}(\tau)$ real iff $R_{\boldsymbol{X}_{q},\boldsymbol{X}_{i}}(\tau) = 0$ for any τ .

We next discuss the PSD of a system.

$$\mathbf{X}(t) \qquad \mathbf{h}(t) \qquad \mathbf{Y}(t) = \int_{-\infty}^{\infty} h(\tau) \mathbf{X}(t-\tau) d\tau$$
$$m_{\mathbf{Y}} = m_{\mathbf{X}} \int_{-\infty}^{\infty} h(\tau) d\tau$$

$$R_{\mathbf{X},\mathbf{Y}}(\tau) = \mathbb{E}\left[\mathbf{X}(t+\tau)\left(\int_{-\infty}^{\infty} h(u)\mathbf{X}(t-u)du\right)^{*}\right]$$
$$= \int_{-\infty}^{\infty} h^{*}(u)R_{\mathbf{X}}(\tau+u)du = \int_{-\infty}^{\infty} h^{*}(-v)R_{\mathbf{X}}(\tau-v)dv$$
$$= R_{\mathbf{X}}(\tau) * h^{*}(-\tau)$$

$$\begin{aligned} R_{\mathbf{Y}}(\tau) &= \mathbb{E}\left[\left(\int_{-\infty}^{\infty} h(u)\mathbf{X}(t+\tau-u)du\right)\left(\int_{-\infty}^{\infty} h(v)\mathbf{X}(t-v)dv\right)^{*}\right] \\ &= \int_{-\infty}^{\infty} h(u)\left(\int_{-\infty}^{\infty} h^{*}(v)R_{\mathbf{X}}((\tau-u)+v)dv\right)du \\ &= \int_{-\infty}^{\infty} h(u)R_{\mathbf{X},\mathbf{Y}}(\tau-u)du \\ &= R_{\mathbf{X},\mathbf{Y}}(\tau) * h(\tau) = R_{\mathbf{X}}(\tau) * h^{*}(-\tau) * h(\tau). \end{aligned}$$

Thus,

$$S_{\mathbf{X},\mathbf{Y}}(f) = S_{\mathbf{X}}(f)H^{*}(f) \text{ since } \int_{-\infty}^{\infty} h^{*}(-\tau)e^{-\imath 2\pi f \tau}d\tau = H^{*}(f)$$

and

$S_{\mathbf{Y}}(f) = S_{\mathbf{X},\mathbf{Y}}(f)H(f) = S_{\mathbf{X}}(f)|H(f)|^2.$

Definition (White process)

A (WSS) process W(t) is called a white process if its PSD is constant for all frequencies:

$$S_{W}(f) = \frac{N_0}{2}$$

- This constant is usually denoted by $\frac{N_0}{2}$ because the PSD is two-sided $(-\infty \leftarrow 0 \text{ and } 0 \rightarrow \infty)$. So, the power spectral density is actually N_0 per Hz $(N_0/2 \text{ at } f = -f_0 \text{ and } N_0/2 \text{ at } f = f_0)$.
- The autocorrelation function $R_{W}(\tau) = \frac{N_0}{2}\delta(\cdot)$, where $\delta(\cdot)$ is the Dirac delta function.

Why negative frequency?

- It is an imaginarily convenient way created by Human to correspond to the "imaginary" domain of a complex signal (that is why we call it "imaginary part").
- By giving respectively the spectrum for f_0 and $-f_0$ (which may not be symmetric), we can specify the amount of real part and imaginary part in time domain corresponding to this frequency.
- For example, if the spectrum is conjugate symmetric, we know imaginary part (in time domain) = 0.
- Notably, in communications, imaginary part is the part that will be modulated by (or transmitted with carrier) sin(2πf_ct); on the contrary, real part is the part that will be modulated by (or transmitted with carrier) cos(2πf_ct).

Why $\delta(\cdot)$ function?

Definition (Dirac delta function)

Define the Dirac delta function $\delta(t)$ as

$$\delta(t) = \begin{cases} \infty, & t = 0; \\ 0, & t \neq 0 \end{cases},$$

which satisfies the replication property, i.e., for every continuous point of g(t),

$$g(t) = \int_{-\infty}^{\infty} g(\tau) \delta(t-\tau) d\tau.$$

Hence, by replication property,

$$\int_{-\infty}^{\infty} \delta(u) du = \int_{-\infty}^{\infty} \delta(t-\tau) d\tau = \int_{-\infty}^{\infty} \mathbf{1} \cdot \delta(t-\tau) d\tau = \mathbf{1}.$$

• Note that it seems $\delta(t) = 2\delta(t) = \begin{cases} \infty, & t = 0; \\ 0, & t \neq 0 \end{cases}$; but with $g_1(t) = 1$ and $g_2(t) = 2$ continuous at all points,

$$1 = \int_{-\infty}^{\infty} g_1(\tau) \delta(t-\tau) d\tau \neq \int_{-\infty}^{\infty} g_2(\tau) \delta(t-\tau) d\tau = 2.$$

• So, it is not "well-defined" and contradicts the below intuition: With $f(t) = \delta(t)$ and $g(t) = 2\delta(t)$,

f(t) = g(t) for $t \in \mathbb{R}$ except for countably many points

$$\Rightarrow \int_{-\infty}^{\infty} f(t) dt = \int_{-\infty}^{\infty} g(t) dt \quad \left(\text{if } \int_{-\infty}^{\infty} f(t) dt \text{ is finite} \right).$$

- Hence, δ(t) and 2δ(t) are two "different" Diract delta functions by definition. (Their multiplicative constant cannot be omitted!)
- What is the problem saying f(t) = g(t) for $t \in \mathbb{R}$?

- **Comment:** $x + a = y + a \Rightarrow x = y$ is incorrect if $a = \infty$. As a result, saying $\infty = \infty$ (or $\delta(t) = 2\delta(t)$) is not a "rigorously defined" statement.
- **Summary:** The Dirac delta function, like "∞", is simply a concept *defined* only through its *replication property*.
- Hence, a white process W(t) that has autocorrelation function $R_{W}(\tau) = \frac{N_0}{2}\delta(\tau)$ is just a convenient and simplified notion for theoretical research about real world phenomenon. Usually, $N_0 = KT$, where T is the ambient temperature in kelvins and k is Boltzman's constant.

Discrete-time random processes

- The property of a time-discrete process {X[n], n ∈ Z⁺} can be "obtained" using sampling notion via the Dirac delta function.
- X[n] = X(nT), a sample at t = nT from a time-continuous process X(t), where we assume T = 1 for convenience.
- The autocorrelation function of a time-discrete process is given by:

$$R_{\mathbf{X}}[m] = \mathbb{E}\{\mathbf{X}[n+m]\mathbf{X}^{*}[n]\} \\ = \mathbb{E}\{\mathbf{X}(n+m)\mathbf{X}^{*}(n)\} \\ = R_{\mathbf{X}}(m), \text{ a sample from } R_{\mathbf{X}}(t). \\ \begin{pmatrix} 0 \\ R_{\mathbf{X}}(1) \\ R_{\mathbf{X}}(1) \\ R_{\mathbf{X}}(3) \\ R_{\mathbf{X}}(4) \\ R_{\mathbf{X}}(6) \\ R_{\mathbf{X}}(1) \\ R_{\mathbf{X}}(1)$$

$$S_{\mathbf{X}}[f] = \int_{-\infty}^{\infty} \left(\sum_{n=-\infty}^{\infty} R_{\mathbf{X}}(t)\delta(t-n) \right) e^{-i2\pi ft} dt$$

$$= \sum_{n=-\infty}^{\infty} \int_{-\infty}^{\infty} R_{\mathbf{X}}(t)e^{-i2\pi ft}\delta(t-n)dt$$

$$= \sum_{n=-\infty}^{\infty} R_{\mathbf{X}}(n)e^{-i2\pi fn} \text{ (Replication Property)}$$

$$= \sum_{n=-\infty}^{\infty} R_{\mathbf{X}}[n]e^{-i2\pi fn} \text{ (Fourier Series)}$$

Hence, by Fourier sesies,

$$R_{\boldsymbol{X}}[n] = \int_{-1/2}^{1/2} S_{\boldsymbol{X}}[f] e^{i 2\pi f m} df \left(= R_{\boldsymbol{X}}(n) = \int_{-\infty}^{\infty} S_{\boldsymbol{X}}(f) e^{i 2\pi f m} df \right).$$

2.8 Series expansion of random processes

2.8-1 Sampling band-limited random process

Deterministic case

- A deterministic signal x(t) is called band-limited if
 X(f) = 0 for all |f| > W.
- Shannon-Nyquist theorem: If the sampling rate $f_s \ge 2W$, then x(t) can be perfectly reconstructed from samples.

An example of such reconstruction is

$$x(t) = \sum_{n=-\infty}^{\infty} x\left(\frac{n}{f_s}\right) \operatorname{sinc}\left[f_s\left(t-\frac{n}{f_s}\right)\right].$$

Note that the above is only sufficient, not necessary.

Stochastic case

- A WSS stochastic process X(t) is said to be band-limited if its PSD S_X(f) = 0 for all |f| > W.
- It follows that

$$R_{\mathbf{X}}(\tau) = \sum_{n=-\infty}^{\infty} R_{\mathbf{X}}\left(\frac{n}{2W}\right) \operatorname{sinc}\left[2W\left(\tau - \frac{n}{2W}\right)\right].$$

 In fact, this random process X(t) can be reconstructed by its random samples in the sense of mean square.

Theorem
$$\mathbb{E}\left|\boldsymbol{X}(t) - \sum_{n=-\infty}^{\infty} \boldsymbol{X}\left(\frac{n}{2W}\right) \operatorname{sinc}\left[2W\left(t - \frac{n}{2W}\right)\right]\right|^{2} = 0$$

The random samples

• Problems of using these random samples

• These random samples $\{X(\frac{n}{2W})\}_{n=-\infty}^{\infty}$ are in general correlated unless X(t) is zero-mean white.

$$\mathbb{E}\left\{\boldsymbol{X}\left(\frac{n}{2W}\right)\boldsymbol{X}^{*}\left(\frac{m}{2W}\right)\right\} = R_{\boldsymbol{X}}\left(\frac{n-m}{2W}\right)$$
$$\neq \mathbb{E}\left\{\boldsymbol{X}\left(\frac{n}{2W}\right)\right\}\mathbb{E}\left\{\boldsymbol{X}^{*}\left(\frac{m}{2W}\right)\right\} = |m_{\boldsymbol{X}}|^{2}$$

• If $\boldsymbol{X}(t)$ is zero-mean white,

$$\mathbb{E}\left\{\boldsymbol{X}\left(\frac{n}{2W}\right)\boldsymbol{X}^{*}\left(\frac{m}{2W}\right)\right\} = R_{\boldsymbol{X}}\left(\frac{n-m}{2W}\right) = \frac{N_{0}}{2}\delta\left(\frac{n-m}{2W}\right)$$
$$= \mathbb{E}\left\{\boldsymbol{X}\left(\frac{n}{2W}\right)\right\}\mathbb{E}\left\{\boldsymbol{X}^{*}\left(\frac{m}{2W}\right)\right\} = |m_{\boldsymbol{X}}|^{2} = 0 \text{ except } n = m.$$

• Thus, we will introduce the uncorrelated KL expansions in Slide 2-87.

2.9 Bandpass and lowpass random processes (revisited)

Definition (Filtered white noise)

A process N(t) is called a filtered white noise if its PSD equals

$$S_{N}(f) = \begin{cases} \frac{N_{0}}{2}, & |f \pm f_{c}| < W\\ 0, & otherwise \end{cases}$$

• Applying P4) $S_{\mathbf{X}}(f) = \frac{1}{4} \left[S_{\mathbf{X}_{\ell}}(f - f_c) + S_{\mathbf{X}_{\ell}}^*(-f - f_c) \right]$, we learn the PSD of the lowpass equivalent process $N_{\ell}(t)$ of N(t) is

$$S_{\boldsymbol{N}_{\ell}}(f) = \begin{cases} 2N_0, & |f| < W\\ 0, & \text{otherwise} \end{cases}$$

• From *P6*), $S_{N_{\ell}}(-f) = S^*_{N_{\ell}}(f)$ implies $N_i(t + \tau)$ and $N_q(t)$ are uncorrelated for any τ if one of them has zero mean.
Now we explore more properties for PSD of bandlimited X(t)and complex $X_{\ell}(t)$.

P0-1) By **fundamental assumption** on Slide 2-52, we obtain that X(t) and $\hat{X}(t)$ are jointly WSS.

 $R_{\boldsymbol{X},\hat{\boldsymbol{X}}}(\tau)$ and $R_{\hat{\boldsymbol{X}}}(\tau)$ are only functions of τ because $\hat{\boldsymbol{X}}(t)$ is the Hilbert transform of $\boldsymbol{X}(t)$, i.e., $R_{\boldsymbol{X},\hat{\boldsymbol{X}}}(\tau) = R_{\boldsymbol{X}}(\tau) \star h^{*}(-\tau) = -R_{\boldsymbol{X}}(\tau) \star h(\tau)$ (since $h^{*}(-\tau) = -h(\tau)$) and $R_{\hat{\boldsymbol{X}}}(\tau) = R_{\boldsymbol{X},\hat{\boldsymbol{X}}}(\tau) \star h(\tau)$.

P0-2)
$$X_i(t) = \operatorname{Re}\left\{ (X(t) + \imath \hat{X}(t))e^{-\imath 2\pi f_c t} \right\}$$
 is WSS by fundamental assumption.

P2') $\begin{cases} F \\ F \\ F \end{cases}$

$$R_{\mathbf{X}}(\tau) = R_{\hat{\mathbf{X}}}(\tau)$$

$$R_{\mathbf{X},\hat{\mathbf{X}}}(\tau) = -R_{\hat{\mathbf{X}},\mathbf{X}}(\tau)$$

$$(\mathbf{X}(t) + i \mathbf{X}(t) \text{ is the "lowpass equivalent" signal of } \mathbf{X}_{i}(t)!)$$

$$(\mathbf{X}_{i}(t) + i \mathbf{X}_{q}(t) \text{ is the lowpass equivalent signal of } \mathbf{X}(t)!)$$

Thus, $R_{\hat{\boldsymbol{X}},\boldsymbol{X}}(\tau) = -R_{\boldsymbol{X},\hat{\boldsymbol{X}}}(\tau) = R_{\boldsymbol{X}}(\tau) \star h(\tau) = \hat{R}_{\boldsymbol{X}}(\tau)$ is the Hilbert transform output due to input $R_{\boldsymbol{X}}(\tau)$.

 $P3') R_{\mathbf{X}_i}(\tau) = \mathbf{Re}\left\{\frac{1}{2}R_{(\mathbf{X}+\imath\hat{\mathbf{X}})}(\tau)e^{-\imath 2\pi f_c \tau}\right\}$

$$R_{\mathbf{X}_{i}}(\tau) = \mathbf{Re} \left\{ \frac{1}{2} R_{(\mathbf{X}+\imath \hat{\mathbf{X}})}(\tau) e^{-\imath 2\pi f_{c}\tau} \right\}$$
$$= \mathbf{Re} \left\{ (R_{\mathbf{X}}(\tau) + \imath R_{\hat{\mathbf{X}},\mathbf{X}}(\tau)) e^{-\imath 2\pi f_{c}\tau} \right\}$$
$$= R_{\mathbf{X}}(\tau) \cos(2\pi f_{c}\tau) + \hat{R}_{\mathbf{X}}(\tau) \sin(2\pi f_{c}\tau)$$
Note that $\hat{S}_{\mathbf{X}}(f) = S_{\mathbf{X}}(f) H_{\text{Hibert}}(f) = S_{\mathbf{X}}(f)(-\imath \operatorname{sgn}(f)).$
$$P4') S_{\mathbf{X}_{i}}(f) \left(= S_{\mathbf{X}_{q}}(f) \right) = S_{\mathbf{X}}(f - f_{c}) + S_{\mathbf{X}}(f + f_{c}) \text{ for } |f| < f_{c}$$
$$\left[\frac{S_{\mathbf{X}_{i}}(f)}{2\imath} \right] = \frac{1}{2} \left(S_{\mathbf{X}}(f - f_{c}) + S_{\mathbf{X}}(f + f_{c}) \right)$$
$$+ \frac{1}{2\imath} \left(-\imath \operatorname{sgn}(f - f_{c}) S_{\mathbf{X}}(f - f_{c}) + \imath \operatorname{sgn}(f + f_{c}) S_{\mathbf{X}}(f + f_{c}) \right)$$
$$= \left[S_{\mathbf{X}}(f - f_{c}) + S_{\mathbf{X}}(f + f_{c}) \right] \text{ for } |f| < f_{c}$$

$$P4'') S_{\boldsymbol{X}_{q},\boldsymbol{X}_{i}}(f) = \imath \left[S_{\boldsymbol{X}}(f - f_{c}) - S_{\boldsymbol{X}}(f + f_{c}) \right] \text{ for } |f| < f_{c}$$

Terminologies & relations

•
$$\begin{cases} R_{\mathbf{X}}(\tau) = \mathbf{Re} \left\{ \frac{1}{2} R_{\mathbf{X}_{\ell}}(\tau) e^{i 2\pi f_{c} \tau} \right\} & (P3) \\ R_{\hat{\mathbf{X}},\mathbf{X}}(\tau) = R_{\mathbf{X}}(\tau) \star h_{\text{Hilbert}}(\tau) \\ P0^{-1} \end{bmatrix} = \mathbf{Im} \left\{ \frac{1}{2} R_{\mathbf{X}_{\ell}}(\tau) e^{i 2\pi f_{c} \tau} \right\} \\ \bullet \text{ Then: } \underbrace{\frac{1}{2} R_{\mathbf{X}_{\ell}}(\tau) = R_{\mathbf{X}_{i}}(\tau) + i R_{\mathbf{X}_{q},\mathbf{X}_{i}}(\tau)}_{\text{Proof of } P3} = (R_{\mathbf{X}}(\tau) + i R_{\hat{\mathbf{X}},\mathbf{X}}(\tau)) e^{-i 2\pi f_{c} \tau} \\ \bullet \left\{ R_{\mathbf{X}_{i}}(\tau) = \mathbf{Re} \left\{ (R_{\mathbf{X}}(\tau) + i R_{\hat{\mathbf{X}},\mathbf{X}}(\tau)) e^{-i 2\pi f_{c} \tau} \right\} & (P3') \\ R_{\mathbf{X}_{q},\mathbf{X}_{i}}(\tau) = \mathbf{Im} \left\{ (R_{\mathbf{X}}(\tau) + i R_{\hat{\mathbf{X}},\mathbf{X}}(\tau)) e^{-i 2\pi f_{c} \tau} \right\} = R_{\mathbf{X}_{i}}(\tau) \star h_{\text{Hilbert}}(\tau) \end{cases}$$

Proof (of P4"): Hence,

$$R_{\boldsymbol{X}_{q},\boldsymbol{X}_{i}}(\tau) = \operatorname{Im}\left\{ (R_{\boldsymbol{X}}(\tau) + \imath R_{\hat{\boldsymbol{X}},\boldsymbol{X}}(\tau))e^{-\imath 2\pi f_{c}\tau} \right\}$$
$$= -R_{\boldsymbol{X}}(\tau)\sin(2\pi f_{c}\tau) + R_{\hat{\boldsymbol{X}},\boldsymbol{X}}(\tau)\cos(2\pi f_{c}\tau)$$
$$= -R_{\boldsymbol{X}}(\tau)\sin(2\pi f_{c}\tau) + \hat{R}_{\boldsymbol{X}}(\tau)\cos(2\pi f_{c}\tau).$$

Then we can prove P4'' by following similar procedure to the proof of P4'.

2.2 Signal space representation

- The low-pass equivalent representation removes the dependence of system performance analysis on carrier frequency.
- Equivalent vectorization of the (discrete or continuous) signals further removes the "waveform" redundancy in the analysis of system performance.

Vector space concepts

- Inner product: $\langle \mathbf{v}_1, \mathbf{v}_2 \rangle = \sum_{i=1}^n \mathbf{v}_{1,i} \mathbf{v}_{2,i}^* = \mathbf{v}_2^H \mathbf{v}_1$ ("H" denotes Hermitian transpose)
- Orthogonal if $\langle \boldsymbol{v}_1, \boldsymbol{v}_2 \rangle = 0$
- Norm: $\|\boldsymbol{v}\| = \sqrt{\langle \boldsymbol{v}, \boldsymbol{v} \rangle}$
- Orthonormal: $\langle \boldsymbol{v}_1, \boldsymbol{v}_2 \rangle = 0$ and $\|\boldsymbol{v}_1\| = \|\boldsymbol{v}_2\| = 1$
- Linearly independent:

$$\sum_{i=1}^{k} a_i \boldsymbol{v}_i = \boldsymbol{0} \text{ iff } a_i = 0 \text{ for all } i$$

Vector space concepts

• Triangle inequality

$$\|\boldsymbol{v}_1 + \boldsymbol{v}_2\| \leq \|\boldsymbol{v}_1\| + \|\boldsymbol{v}_2\|$$

• Cauchy-Schwartz inequality

$$|\langle \boldsymbol{v}_1, \boldsymbol{v}_2 \rangle| \leq \|\boldsymbol{v}_1\| \|\boldsymbol{v}_2\|.$$

Equality holds iff $v_1 = av_2$ for some *a*.

• Norm square of sum:

$$\|\boldsymbol{v}_1 + \boldsymbol{v}_2\|^2 = \|\boldsymbol{v}_1\|^2 + \|\boldsymbol{v}_2\|^2 + \langle \boldsymbol{v}_1, \boldsymbol{v}_2 \rangle + \langle \boldsymbol{v}_2, \boldsymbol{v}_1 \rangle$$

• Pythagorean: if $\langle \boldsymbol{v}_1, \boldsymbol{v}_2 \rangle = 0$, then

$$\|\boldsymbol{v}_{1} + \boldsymbol{v}_{2}\|^{2} = \|\boldsymbol{v}_{1}\|^{2} + \|\boldsymbol{v}_{2}\|^{2}$$

Eigen-decomposition

Matrix transformation w.r.t. matrix A

$$\hat{\boldsymbol{v}} = A\boldsymbol{v}$$

 Eigenvalues of square matrix A are solutions {λ} of characteristic polynomial

$$\det(A - \lambda I) = 0$$

③ Eigenvectors for eigenvalue λ is solution \boldsymbol{v} of

$$A\mathbf{v} = \lambda \mathbf{v}$$

How to extend the signal space concept to a (complex) function/signal z(t) defined over [0, T) ?

Answer: We can start by defining the inner product for complex functions.

- Inner product: $\langle z_1(t), z_2(t) \rangle = \int_0^T z_1(t) z_2^*(t) dt$
- Orthogonal if $\langle z_1(t), z_2(t) \rangle = 0$.
- Norm: $||z(t)|| = \sqrt{\langle z(t), z(t) \rangle}$
- Orthonormal: $\langle z_1(t), z_2(t) \rangle = 0$ and $||z_1(t)|| = ||z_2(t)|| = 1$.
- Linearly independent: ∑^k_{i=1} a_iz_i(t) = 0 iff a_i = 0 for all a_i ∈ C

• Triangle Inequality

$$||z_1(t) + z_2(t)|| \le ||z_1(t)|| + ||z_2(t)||$$

• Cauchy Schwartz inequality

$$|\langle z_1(t), z_2(t) \rangle| \le ||z_1(t)|| \cdot ||z_2(t)||$$

Equality holds iff $z_1(t) = a \cdot z_2(t)$ for some $a \in \mathbb{C}$.

• Norm square of sum:

$$||z_1(t) + z_2(t)||^2 = ||z_1(t)||^2 + ||z_2(t)||^2 + \langle z_1(t), z_2(t) \rangle + \langle z_2(t), z_1(t) \rangle$$

• Pythagorean property: if $\langle z_1(t), z_2(t) \rangle = 0$,

$$||z_1(t) + z_2(t)||^2 = ||z_1(t)||^2 + ||z_2(t)||^2$$

• Transformation w.r.t. a function C(t,s)

$$\hat{z}(t) = \int_0^T C(t,s) z(s) \, ds$$

This is in parallel to

$$\hat{\boldsymbol{v}} \quad \left(\hat{\boldsymbol{v}}_t = \sum_{s=1}^n A_{t,s} \boldsymbol{v}_s\right) = A \boldsymbol{v}.$$

Given a complex continuous function C(t,s) over $[0, T)^2$, the eigenvalues and eigenfunctions are $\{\lambda_k\}$ and $\{\varphi_k(t)\}$ such that

$$\int_0^T C(t,s)\varphi_k(s)\,ds = \lambda_k\varphi_k(t) \quad (\text{In parallel to } A\boldsymbol{v} = \lambda\boldsymbol{v})$$

Theorem (Mercer's theorem)

Give a complex continuous function C(t,s) over $[0, T]^2$ that is Hermitian symmetric (i.e., $C(t,s) = C^*(s,t)$) and nonnegative definite (i.e., $\sum_i \sum_j a_i C(t_i, t_j) a_j^* \ge 0$ for any $\{a_i\}$ and $\{t_i\}$). Then the eigenvalues $\{\lambda_k\}$ are reals, and C(t,s)has the following eigen-decomposition

$$C(t,s) = \sum_{k=1}^{\infty} \lambda_k \varphi_k(t) \varphi_k^*(s).$$

Theorem (Karhunen-Loève theorem)

Let $\{Z(t), t \in [0, T)\}$ be a zero-mean random process with a continuous autocorrelation function $R_Z(t,s) = \mathbb{E}[Z(t)Z^*(s)]$. Then Z(t) can be written as

$$\mathbf{Z}(t) \stackrel{\mathcal{M}_2}{=} \sum_{k=1}^{\infty} \mathbf{Z}_k \cdot \varphi_k(t) \quad 0 \le t < T$$

where "=" is in the sense of mean-square, $Z_{k} = \langle Z(t), \varphi_{k}(t) \rangle = \int_{0}^{T} Z(t) \varphi_{k}^{*}(t) dt$ and $\{\varphi_{k}(t)\}$ are orthonormal eigenfunctions of $R_{Z}(t,s)$.

Merit of KL expansion: {Z_k} are uncorrelated. (But samples {Z(k/(2W))} are not uncorrelated even if Z(t) is bandlimited!)

Proof.

$$\mathbb{E}[\mathbf{Z}_{i}\mathbf{Z}_{j}^{*}] = \mathbb{E}\left[\left(\int_{0}^{T}\mathbf{Z}(t)\varphi_{i}^{*}(t)dt\right)\left(\int_{0}^{T}\mathbf{Z}(s)\varphi_{j}^{*}(s)ds\right)^{*}\right]$$
$$= \int_{0}^{T}\left(\int_{0}^{T}R_{\mathbf{Z}}(t,s)\varphi_{j}(s)ds\right)\varphi_{i}^{*}(t)dt$$
$$= \int_{0}^{T}\lambda_{j}\varphi_{j}(t)\varphi_{i}^{*}(t)dt$$
$$= \begin{cases}\lambda_{j} & \text{if } i=j\\0 & (=\mathbb{E}[\mathbf{Z}_{i}]E[\mathbf{Z}_{j}^{*}]) & \text{if } i\neq j\end{cases}$$

Lemma

For a given orthonormal set $\{\phi_k(t)\}\)$, how to minimize the energy of error signal $e(t) = s(t) - \hat{s}(t)$ for $\hat{s}(t)$ spanned by (i.e., expressed as a linear combination of) $\{\phi_k(t)\}\$?

Assume
$$\hat{s}(t) = \sum_k a_k \phi_k(t)$$
; then

$$\begin{aligned} \|e(t)\|^{2} &= \|s(t) - \hat{s}(t)\|^{2} \\ &= \|s(t) - \sum_{k} a_{k} \phi_{k}(t)\|^{2} \\ &= \|s(t)\|^{2} - \sum_{k} \langle s(t), a_{k} \phi_{k}(t) \rangle - \sum_{k} \langle a_{k} \phi_{k}(t), s(t) \rangle + \sum_{k} |a_{k}|^{2} \\ &= \|s(t)\|^{2} - \sum_{k} a_{k}^{*} \langle s(t), \phi_{k}(t) \rangle - \sum_{k} a_{k} (\langle s(t), \phi_{k}(t) \rangle)^{*} + \sum_{k} |a_{k}|^{2} \\ &= \|s(t)\|^{2} - \sum_{k} |\langle s(t), \phi_{k}(t) \rangle|^{2} + \sum_{k} \|a_{k} - \langle s(t), \phi_{k}(t) \rangle\|^{2} \end{aligned}$$

Thus, $a_k = \langle s(t), \phi_k(t) \rangle$ minimizes $||e(t)||^2$.

П

Definition

If every finite energy signal s(t) (i.e., $||s(t)||^2 < \infty$) satisfies

$$\left\|\boldsymbol{e}(t)\right\|^{2} = \left\|\boldsymbol{s}(t) - \sum_{k} \left\langle \boldsymbol{s}(t), \phi_{k}(t) \right\rangle \phi_{k}(t)\right\|^{2} = 0$$

equivalently,

$$s(t) \stackrel{\mathcal{L}_2}{=} \sum_k \langle s(t), \phi_k(t) \rangle \phi_k(t) = \sum_k a_k \cdot \phi_k(t)$$

(in the sense that the norm of the difference between left-hand-side and right-hand-side is zero), then the set of orthonormal functions $\{\phi_k(t)\}$ is said to be complete. Example (Fourier series)

$$\left\{\sqrt{\frac{2}{T}}\cos\left(\frac{2\pi kt}{T}\right), \sqrt{\frac{2}{T}}\sin\left(\frac{2\pi kt}{T}\right): 0 \le k \in \mathbb{Z}\right\}$$

is a complete orthonormal set for signals defined over [0, T) with finite number of discontinuities.

• For a complete orthonormal basis, the energy of *s*(*t*) is equal to

$$\|s(t)\|^{2} = \left\langle \sum_{j} a_{j} \phi_{j}(t), \sum_{k} a_{k} \phi_{k}(t) \right\rangle$$
$$= \sum_{j} \sum_{k} a_{j} a_{k}^{*} \left\langle \phi_{j}(t), \phi_{k}(t) \right\rangle$$
$$= \sum_{j} a_{j} a_{j}^{*}$$
$$= \sum_{j} |a_{j}|^{2}$$

Given a deterministic function s(t), and a set of complete orthonormal basis {φ_k(t)} (possibly countably infinite), s(t) can be written as

$$s(t) \stackrel{\mathcal{L}_2}{=} \sum_{k=0}^{\infty} a_k \phi_k(t), \quad 0 \le t \le T$$

where

$$a_k = \langle s(t), \phi_k(t) \rangle = \int_0^T s(t) \phi_k^*(t) dt.$$

In addition,

$$|s(t)||^2 = \sum_k |a_k|^2.$$

Remark

In terms of energy (and error rate):

- A bandpass signal s(t) can be equivalently "analyzed" through lowpass equivalent signal s_l(t) without the burden of carrier freq f_c;
- A lowpass equivalent signal s_ℓ(t) can be equivalently "analyzed" through (countably many)
 {a_k = (s_ℓ(t), φ_k(t))} without the burden of continuous waveforms.

Given a set of functions
$$v_1(t), v_2(t), \dots, v_k(t)$$

• $\phi_1(t) = \frac{v_1(t)}{\|v_1(t)\|}$

Or a compute for
$$i = 2, 3, \dots, k$$
 (or until $\|\phi_i(t)\| = 0$),

$$\gamma_i(t) = v_i(t) - \sum_{j=1}^{i-1} \langle v_i(t), \phi_j(t) \rangle \phi_j(t)$$

and set
$$\phi_i(t) = \frac{\gamma_i(t)}{\|\gamma_i(t)\|}$$
.

This gives an orthonormal basis $\phi_1(t), \phi_2(t), \dots, \phi_{k'}(t)$, where $k' \leq k$.

Example

Find a Gram-Schmidt orthonormal basis of the following signals.

Sol.

٥

•
$$\phi_1(t) = \frac{v_1(t)}{\|v_1(t)\|} = \frac{v_1(t)}{\sqrt{2}}$$

• $\gamma_2(t) = v_2(t) - \langle v_2(t), \phi_1(t) \rangle \phi_1(t)$
 $= v_2(t) - \left(\int_0^3 v_2(t) \phi_1^*(t) dt\right) \phi_1(t) = v_2(t)$

Hence
$$\phi_2(t) = \frac{\gamma_2(t)}{\|\gamma_2(t)\|} = \frac{v_2(t)}{\sqrt{2}}.$$

$$\begin{aligned} \gamma_3(t) &= v_3(t) - \langle v_3(t), \phi_1(t) \rangle \phi_1(t) - \langle v_3(t), \phi_2(t) \rangle \phi_2(t) \\ &= v_3(t) - \sqrt{2}\phi_1(t) - 0 \cdot \phi_2(t) = \begin{cases} -1, & 2 \le t < 3 \\ 0, & \text{otherwise} \end{cases} \end{aligned}$$

Hence
$$\phi_3(t) = \frac{\gamma_3(t)}{\|\gamma_3(t)\|}$$
.

$$\begin{aligned} \gamma_4(t) &= v_4(t) - \langle v_4(t), \phi_1(t) \rangle \phi_1(t) - \langle v_4(t), \phi_2(t) \rangle \phi_2(t) \\ &- \langle v_4(t), \phi_3(t) \rangle \phi_3(t) \\ &= v_4(t) - (-\sqrt{2})\phi_1(t) - (0)\phi_2(t) - \phi_3(t) = 0 \end{aligned}$$

• Orthonormal basis= $\{\phi_1(t), \phi_2(t), \phi_3(t)\}$, where $3 \le 4$.

۲

Example

Represent the signals in Slide 2-95 in terms of the orthonormal basis obtained in the same example.

Sol.

$$\begin{aligned} v_1(t) &= \sqrt{2}\phi_1(t) + 0 \cdot \phi_2(t) + 0 \cdot \phi_3(t) \implies \left[\sqrt{2}, 0, 0\right] \\ v_2(t) &= 0 \cdot \phi_1(t) + \sqrt{2} \cdot \phi_2(t) + 0 \cdot \phi_3(t) \implies \left[0, \sqrt{2}, 0\right] \\ v_3(t) &= \sqrt{2}\phi_1(t) + 0 \cdot \phi_2(t) + \phi_3(t) \implies \left[\sqrt{2}, 0, 1\right] \\ v_4(t) &= -\sqrt{2}\phi_1(t) + 0 \cdot \phi_2(t) + 1 \cdot \phi_3(t) \implies \left[-\sqrt{2}, 0, 1\right] \end{aligned}$$

The vectors are named signal space representations or constellations of the signals.

Digital Communications: Chapter 2 Ver. 2018.09.12

Po-Ning Chen

Remark

The orthonormal basis is not unique. For example, for k = 1, 2, 3, re-define

$$\phi_k(t) = \begin{cases} 1, & k-1 \le t < k \\ 0, & \text{otherwise} \end{cases}$$

Then

$$\begin{array}{ccc} v_1(t) & \stackrel{\Phi}{\Longrightarrow} & (+1,+1,0) \\ v_2(t) & \stackrel{\Phi}{\Longrightarrow} & (+1,-1,0) \\ v_3(t) & \stackrel{\Phi}{\Longrightarrow} & (+1,+1,-1) \\ v_4(t) & \stackrel{\Phi}{\Longrightarrow} & (-1,-1,-1) \end{array}$$

Euclidean distance

$$s_1(t) \implies (a_1, a_2, \dots, a_n)$$
 for some complete basis
 $s_2(t) \implies (b_1, b_2, \dots, b_n)$ for the same complete basis

$$d_{12} = \text{Euclidean distance between } s_1(t) \text{ and } s_2(t)$$
$$= \sqrt{\sum_{i=1}^n |a_i - b_i|^2}$$
$$= \|s_1(t) - s_2(t)\| \quad \left(= \sqrt{\int_0^T |s_1(t) - s_2(t)|^2 dt} \right)$$

Bandpass and lowpass orthonormal basis

• Now let's change our focus from [0, T) to $(-\infty, \infty)$

- A time-limited signal cannot be bandlimited to W.
- A bandlimited signal cannot be time-limited to T.

Hence, in order to talk about the ideal bandlimited signal, we have to deal with signals with unlimited time span.

• Re-define the inner product as:

$$\langle f(t),g(t)\rangle = \int_{-\infty}^{\infty} f(t)g^{*}(t) dt$$

 Let s_{1,l}(t) and s_{2,l}(t) be lowpass equivalent signals of the bandpass s₁(t) and s₂(t), satisfying

$$S_{1,\ell}(f) = S_{2,\ell}(f) = 0 \text{ for } |f| > f_B$$

$$s_i(t) = \mathbf{Re} \left\{ s_{i,\ell}(t) e^{i 2\pi f_c t} \right\} \text{ where } f_c \gg f_B$$

Then, as we have proved in Slide 2-24,

$$\langle s_1(t), s_2(t) \rangle = \frac{1}{2} \operatorname{Re} \{ \langle s_{1,\ell}(t), s_{2,\ell}(t) \rangle \}.$$

Proposition

If
$$\langle s_{1,\ell}(t), s_{2,\ell}(t) \rangle = 0$$
, then $\langle s_1(t), s_2(t) \rangle = 0$.

Proposition

If $\{\phi_{n,\ell}(t)\}$ is a complete basis for the set of lowpass signals, then

$$\begin{cases} \phi_n(t) = \operatorname{Re}\left\{\left(\sqrt{2}\phi_{n,\ell}(t)\right)e^{i2\pi f_c t}\right\} \\ \tilde{\phi}_n(t) = -\operatorname{Im}\left\{\left(\sqrt{2}\phi_{n,\ell}(t)\right)e^{i2\pi f_c t}\right\} \\ = \operatorname{Re}\left\{\left(i\sqrt{2}\phi_{n,\ell}(t)\right)e^{i2\pi f_c t}\right\} \end{cases}$$

is a complete orthonormal set for the set of bandpass signals.

Proof: First, orthonormality can be proved by

$$\langle \phi_n(t), \phi_m(t) \rangle = \frac{1}{2} \mathbf{Re} \left\{ \left(\sqrt{2} \phi_{n,\ell}(t), \sqrt{2} \phi_{m,\ell}(t) \right) \right\} = \begin{cases} 1 & n = m \\ 0 & n \neq m \end{cases}$$

$$\left\langle \tilde{\phi}_{n}(t), \tilde{\phi}_{m}(t) \right\rangle = \frac{1}{2} \mathbf{Re} \left\{ \left\langle i \sqrt{2} \phi_{n,\ell}(t), i \sqrt{2} \phi_{m,\ell}(t) \right\rangle \right\} = \begin{cases} 1 & n = m \\ 0 & n \neq m \end{cases}$$

 and

$$\begin{split} \left\langle \tilde{\phi}_{n}(t), \phi_{m}(t) \right\rangle &= \frac{1}{2} \mathbf{Re} \left\{ \left\langle \imath \sqrt{2} \phi_{n,\ell}(t), \sqrt{2} \phi_{m,\ell}(t) \right\rangle \right\} \\ &= \mathbf{Re} \left\{ \imath \left\langle \phi_{n,\ell}(t), \phi_{m,\ell}(t) \right\rangle \right\} \\ &= \begin{cases} \mathbf{Re} \left\{ \imath \right\} = 0 \quad n = m \\ 0 \qquad n \neq m \end{cases} \end{split}$$

Now, with
$$\begin{cases} s(t) = \operatorname{Re} \{ s_{\ell}(t) e^{i 2\pi f_{c} t} \} \\ \hat{s}(t) = \operatorname{Re} \{ \hat{s}_{\ell}(t) e^{i 2\pi f_{c} t} \} \\ \hat{s}_{\ell}(t) \stackrel{\mathcal{L}_{2}}{=} \sum_{n} a_{n,\ell} \phi_{n,\ell}(t) \text{ with } a_{n,\ell} = \langle s_{\ell}(t), \phi_{n,\ell}(t) \rangle \\ \| s_{\ell}(t) - \hat{s}_{\ell}(t) \|^{2} = 0 \end{cases}$$

we have

$$\|s(t) - \hat{s}(t)\|^2 = \frac{1}{2} \|s_{\ell}(t) - \hat{s}_{\ell}(t)\|^2 = 0$$

 and

$$\hat{s}(t) = \operatorname{Re}\left\{\hat{s}_{\ell}(t)e^{i2\pi f_{c}t}\right\}$$

$$= \operatorname{Re}\left\{\sum_{n}a_{n,\ell}\phi_{n,\ell}(t)e^{i2\pi f_{c}t}\right\}$$

$$= \sum_{n}\left(\operatorname{Re}\left\{\frac{a_{n,\ell}}{\sqrt{2}}\right\}\operatorname{Re}\left\{\sqrt{2}\phi_{n,\ell}(t)e^{i2\pi f_{c}t}\right\}\right.$$

$$+\operatorname{Im}\left\{\frac{a_{n,\ell}}{\sqrt{2}}\right\}\operatorname{Im}\left\{\left(-\sqrt{2}\phi_{n,\ell}(t)\right)e^{i2\pi f_{c}t}\right\}\right)$$

$$= \sum_{n}\left(\operatorname{Re}\left\{\frac{a_{n,\ell}}{\sqrt{2}}\right\}\phi_{n}(t) + \operatorname{Im}\left\{\frac{a_{n,\ell}}{\sqrt{2}}\right\}\widetilde{\phi}_{n}(t)\right)$$

What you learn from Chapter 2

- Random process
 - WSS
 - autocorrelation and crosscorrelation functions
 - PSD and CSD
 - White and filtered white
- Relation between (bandlimited) bandpass and lowpass equivalent deterministic signals
- Relation between (bandlimited) bandpass and lowpass equivalent random signals
 - Properties of autocorrelation and power spectrum density
- Role of Hilbert transform
- Signal space concept