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Digital Communications

What we study in this course is:

@ Theories of information transmission in digital form from
one or more sources to one or more destinations.
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1.1 Elements of digital communication system

Functional diagram of a digital communication system |
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Basic elements of a digital communication system
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1.2 Comm channels and their characteristics

@ Physical channel media
o (magnetic-electrical signaled) Wireline channel
@ Telephone line, twisted-pair and coaxial cable, etc.

©

(modulated light beam) Fiber-optical channel
(antenna radiated) Wireless electromagnetic channel

©

@ ground-wave propagation, sky-wave propagation,
line-of-sight (LOS) propagation, etc.

©

(multipath) Underwater acoustic channel
. etc.

@ Virtual channel
e Storage channel
@ Magnetic storage, CD, DVD, etc.
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1.2 Comm channels and their characteristics

@ Channel impairments

Thermal noise (additive noise)
Signal attenuation

Amplitude and phase distortion
Multi-path distortion

e ¢ ¢ ¢

@ Limitations of channel usage

o Transmission power
o Receiver sensitivity
o Bandwidth

o Transmission time
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1.3 Math models for communication channels

Additive noise channel (with attenuation)

In studying these channels, a mathematical model is necessary.

r(t)

Channel

s(t) o

r(t) = as(t) + n(t) T T
@ n(t)

where
@ « is the attenuation factor
@ s(t) is the transmitted signal

@ n(t) is the additive random noise (a random process,

usually Gaussian)
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1.3 Math models for communication channels

Linear filter channel with additive noise

To meet the specified bandwidth limitation

Linear
s(t) time-invariant filter %T r(t)

c(t)
Channel n(t)

r(t) = s({l*fc(t)4—n(t)
- f c(r)s(t - 7)dr + n(t)
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1.3 Math models for communication channels

Linear time-variant (LTV) filter channel with additive noise

Linear
t
s(®) time-variant filter 7 r(t)
c(r;t) T
Channel n(t)

r(t)

s(t) = c(7;t) + n(t)

= [T c(rit)s(t-7)dT+n(t)

@ 7 is the argument for filtering.
@ t is the argument for time-dependence.

@ The time-invariant filter can be viewed as a special case
of the time-variant filter.
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Assume n(t) =0 (noise-free).

LTI Versus LTV
(1)
o
(2)
L
3 D
) y A . c(t:3)
t=0 1 2 3 ¢ t=0 1 2 3 ¢
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1.3 Math models for communication channels

LTV filter channel with additive noise

c(7;t) usually has the form

L

c(r;t) = Z ar(t)o(1 — 1)

k=1

where
o {ax(t)}k_, represent the possibly time-varying
attenuation factor for the L multipath propagation paths
o {74}t _, are the corresponding time delays.

Hence
L

r(t) = > a(t)s(t-7i) +n(t)

k=1
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1.3 Math models for communication channels

Time varying multipath fading channel

Transmitter Receiver

r(t) = a(t)s(t—m)+ax(t)s(t-1)+as(t)s(t—73)+n(t)
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1.4 A historical perspective in the developement of

digital communications

@ Morse code (1837)
o Variable-length binary code for telegraph
@ Baudot code (1875)
o Fixed-length binary code of length 5
@ Nyquist (1924)
o Determine the maximum signaling rate without
intersymbol interference over, e.g., a telegraph channel
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1.4 A historical perspective in the developement of

digital communications - Nyquist rate

o Nyquist (1924)
o Define basic pulse shape g(t) that is bandlimited to W.

g(?) T

o One wishes to transmit {-1,1} signals in terms of g(t),
or equivalently, one wishes to transmit ag, aj, a2, ... in
{-1,1} in terms of s(t) defined as

s(t)=aog(t) +a1g(t—T)+axg(t—2T) + -

Digital Communications: Chapter 1 Ver. 2018.07.10 Po-Ning Chen



1.4 A historical perspective in the developement of

digital communications - Nyquist rate

Example. (ag,a1,a0,...) = (+1,-1,+1,...).
a,g(1) e
agt-T)

a,g(1-2T)

s(1) = a,g(?) + =S /

a,g(t-T)+a,g(t-2T)+--
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1.4 A historical perspective in the developement of

digital communications - Nyquist rate

@ Question that Nyquist shoots for:
@ What is the maximum rate that the data can be
transmitted under the constraint that g(t) causes no
intersymbol interference (at the sampling instances)?

Answer : 2W pulses/second. (Not 2W bits/second!)

o What g(t) can achieve this rate?
Answer : o W
g(t) = S|n2( TWt)
Wit
o Conclusion:

@ A bandlimited-to-W basic pulse shape signal (or
symbol) can convey at most 2W pulses/second (or
symbols/second) without introducing inter-pulse (or
inter-symbol) interference.
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1.4 A historical perspective in the developement of

digital communications - Sampling theorem

@ Shannon (1948)
@ Sampling theorem

@ A signal of bandwidth W can be reconstructed from
samples taken at the Nyquist rate (= 2W
samples/second) using the interpolation formula

= n sin[2rW(t - n/(2W))]
0~ 3 +(507) (T )

n=—oo
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1.4 A historical perspective in the developement of

dlgltal communications - Shannon’s channel coding theorem

@ Channel capacity of additive white Gaussian noise

C = Wlog, (1 + ) bits /second

P
WN,
W is the bandwidth of the bandlimited channel,
where { P is the average transmitted power,
Ny is single-sided noise power per hertz.
@ Shannon’s channel coding theorem
o Let R be the information rate of the source. Then
o if R< C, it is theoretically possible to achieve reliable
(asymptotically error-free) transmission by appropriate
coding;
@ if R> C, reliable transmission is impossible.

This gives birth to a new field named Information Theory.
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1.4 A historical perspective in the developement of

digital communications

@ Other important contributions
o Harvey (1928), based on Nyquists result, concluded that
@ a maximum reliably transmitted data rate exists for a
bandlimited channel under maximum transmitted signal
amplitude constraint and minimum transmitted signal
amplitude resolution constraint.

o Kolmogorov (1939) and Wiener (1942)

@ Optimum linear (Kolmogorov-Wiener) filter whose
output is the best mean-square approximation to the
desired signal s(t) in presence of additive noise

o Kotenikov (1947), Wozencraft and Jacobs (1965)

@ Use geometric approach to analyze various coherent
digital communication systems.

o Hamming (1950)

@ Hamming codes
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1.4 A historical perspective in the developement of

digital communications

@ Other important contributions (Continue)

o Muller (1954), Reed (1954), Reed and Solomon (1960),
Bose and Ray-Chaudhuri (1960), and Goppa
(1970,1971)

@ New block codes, such as Reed-Solomon codes,
Bose-Chaudhuri-Hocquenghem (BCH) codes and Goppa
codes.

o Forney (1966)

@ Concatenated codes

o Chien (1964), Berlekamp (1968)
o Berlekamp-Massey BCH-code decoding algorithm

Digital Communications: Chapter 1 Ver. 2018.07.10 Po-Ning Chen



1.4 A historical perspective in the developement of

digital communications

@ Other important contributions (Continue)

o Wozencraft and Reiffen (1961), Fano (1963), Zigangirov
(1966), Jelinek (1969), Forney (1970, 1972, 1974) and
Viterbi (1967, 1971)

o Convolusional code and its decoding

o Ungerboeck (1982), Forney et al. (1984), Wei (1987)
@ Trellis-coded modulation

o Ziv and Lempel (1977, 1978) and Linde et al. (1980)

@ Source encoding and decoding algorithms, such as
Lempel-Ziv code

o Berrou et al. (1993)
@ Turbo code and iterative decoding
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1.4 A historical perspective in the developement of

digital communications

@ Other important contributions (Continue)
o Gallager (1963), Davey and Mackay (1998)

o Low-density parity-check (LDPC) code and the
sum-product decoding algorithm
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What you learn from Chapter 1

@ Mathematical models of

@ time-variant and time-invariant additive noise channels
o multipath channels

@ Nyquist rates and Sampling theorem
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