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Digital Communications

What we study in this course is:

Theories of information transmission in digital form from
one or more sources to one or more destinations.

Digital Communications: Chapter 1 Ver. 2018.07.10 Po-Ning Chen 2 / 22



1.1 Elements of digital communication system

Functional diagram of a digital communication system
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Basic elements of a digital communication system
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1.2 Comm channels and their characteristics

Physical channel media
(magnetic-electrical signaled) Wireline channel

Telephone line, twisted-pair and coaxial cable, etc.

(modulated light beam) Fiber-optical channel
(antenna radiated) Wireless electromagnetic channel

ground-wave propagation, sky-wave propagation,
line-of-sight (LOS) propagation, etc.

(multipath) Underwater acoustic channel
. . . etc.

Virtual channel
Storage channel

Magnetic storage, CD, DVD, etc.

Digital Communications: Chapter 1 Ver. 2018.07.10 Po-Ning Chen 4 / 22



1.2 Comm channels and their characteristics

Channel impairments

Thermal noise (additive noise)
Signal attenuation
Amplitude and phase distortion
Multi-path distortion

Limitations of channel usage

Transmission power
Receiver sensitivity
Bandwidth
Transmission time
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1.3 Math models for communication channels

Additive noise channel (with attenuation)

In studying these channels, a mathematical model is necessary.

r(t) = αs(t) + n(t)
s(t) �⊗

�

α

�⊕ �
�

n(t)

r(t)
Channel

where

α is the attenuation factor
s(t) is the transmitted signal
n(t) is the additive random noise (a random process,
usually Gaussian)
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1.3 Math models for communication channels

Linear filter channel with additive noise

To meet the specified bandwidth limitation

s(t) �
Linear

time-invariant filter
c(t)

�⊕ �
�

n(t)
r(t)

Channel

r(t) = s(t) ⋆ c(t) + n(t)
= ∫

∞

−∞
c(τ)s(t − τ)dτ + n(t)
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1.3 Math models for communication channels

Linear time-variant (LTV) filter channel with additive noise

s(t) �
Linear

time-variant filter
c(τ ; t)

�⊕ �
�

n(t)

r(t)

Channel

r(t) = s(t) ⋆ c(τ ; t) + n(t)
= ∫ ∞−∞ c(τ ; t)s(t − τ)dτ + n(t)

τ is the argument for filtering.

t is the argument for time-dependence.

The time-invariant filter can be viewed as a special case
of the time-variant filter.
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Assume n(t) = 0 (noise-free).

LTI versus LTV
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1.3 Math models for communication channels

LTV filter channel with additive noise

c(τ ; t) usually has the form

c(τ ; t) = L∑
k=1

ak(t)δ(τ − τk)

where

{ak(t)}Lk=1 represent the possibly time-varying
attenuation factor for the L multipath propagation paths

{τk}Lk=1 are the corresponding time delays.

Hence

r(t) = L∑
k=1

ak(t)s(t − τk) + n(t)
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1.3 Math models for communication channels

Time varying multipath fading channel

r(t) = a1(t)s(t − τ1) + a2(t)s(t − τ2) + a3(t)s(t − τ3) + n(t)
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1.4 A historical perspective in the developement of

digital communications

Morse code (1837)

Variable-length binary code for telegraph

Baudot code (1875)

Fixed-length binary code of length 5

Nyquist (1924)

Determine the maximum signaling rate without
intersymbol interference over, e.g., a telegraph channel
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1.4 A historical perspective in the developement of

digital communications - Nyquist rate

Nyquist (1924)

Define basic pulse shape g(t) that is bandlimited to W .

One wishes to transmit {−1,1} signals in terms of g(t),
or equivalently, one wishes to transmit a0, a1, a2, . . . in{−1,1} in terms of s(t) defined as

s(t) = a0g(t) + a1g(t −T ) + a2g(t − 2T ) + ⋯
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1.4 A historical perspective in the developement of

digital communications - Nyquist rate

Example. (a0, a1, a2, . . .) = (+1,−1,+1, . . .).
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1.4 A historical perspective in the developement of

digital communications - Nyquist rate

Question that Nyquist shoots for:
What is the maximum rate that the data can be
transmitted under the constraint that g(t) causes no
intersymbol interference (at the sampling instances)?

Answer : 2W pulses/second. (Not 2W bits/second!)

What g(t) can achieve this rate?
Answer :

g(t) = sin(2πWt)
2πWt

Conclusion:
A bandlimited-to-W basic pulse shape signal (or
symbol) can convey at most 2W pulses/second (or
symbols/second) without introducing inter-pulse (or
inter-symbol) interference.
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1.4 A historical perspective in the developement of

digital communications - Sampling theorem

Shannon (1948)
Sampling theorem

A signal of bandwidth W can be reconstructed from
samples taken at the Nyquist rate (= 2W
samples/second) using the interpolation formula

s(t) = ∞∑
n=−∞

s ( n

2W
) × ( sin[2πW (t − n/(2W ))]

2πW (t − n/(2W )) ) .
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1.4 A historical perspective in the developement of

digital communications - Shannon’s channel coding theorem

Channel capacity of additive white Gaussian noise

C =W log2 (1 + P

WN0

) bits/second

where

⎧⎪⎪⎪⎨⎪⎪⎪⎩
W is the bandwidth of the bandlimited channel,
P is the average transmitted power,
N0 is single-sided noise power per hertz.

Shannon′s channel coding theorem
Let R be the information rate of the source. Then

if R < C , it is theoretically possible to achieve reliable
(asymptotically error-free) transmission by appropriate
coding;
if R > C , reliable transmission is impossible.

This gives birth to a new field named Information Theory.
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1.4 A historical perspective in the developement of

digital communications

Other important contributions
Harvey (1928), based on Nyquists result, concluded that

a maximum reliably transmitted data rate exists for a
bandlimited channel under maximum transmitted signal
amplitude constraint and minimum transmitted signal
amplitude resolution constraint.

Kolmogorov (1939) and Wiener (1942)

Optimum linear (Kolmogorov-Wiener) filter whose
output is the best mean-square approximation to the
desired signal s(t) in presence of additive noise

Kotenikov (1947), Wozencraft and Jacobs (1965)

Use geometric approach to analyze various coherent
digital communication systems.

Hamming (1950)

Hamming codes
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1.4 A historical perspective in the developement of

digital communications

Other important contributions (Continue)
Muller (1954), Reed (1954), Reed and Solomon (1960),
Bose and Ray-Chaudhuri (1960), and Goppa
(1970,1971)

New block codes, such as Reed-Solomon codes,
Bose-Chaudhuri-Hocquenghem (BCH) codes and Goppa
codes.

Forney (1966)

Concatenated codes

Chien (1964), Berlekamp (1968)

Berlekamp-Massey BCH-code decoding algorithm
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1.4 A historical perspective in the developement of

digital communications

Other important contributions (Continue)
Wozencraft and Reiffen (1961), Fano (1963), Zigangirov
(1966), Jelinek (1969), Forney (1970, 1972, 1974) and
Viterbi (1967, 1971)

Convolusional code and its decoding

Ungerboeck (1982), Forney et al. (1984), Wei (1987)

Trellis-coded modulation

Ziv and Lempel (1977, 1978) and Linde et al. (1980)

Source encoding and decoding algorithms, such as
Lempel-Ziv code

Berrou et al. (1993)

Turbo code and iterative decoding
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1.4 A historical perspective in the developement of

digital communications

Other important contributions (Continue)
Gallager (1963), Davey and Mackay (1998)

Low-density parity-check (LDPC) code and the
sum-product decoding algorithm
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What you learn from Chapter 1

Mathematical models of

time-variant and time-invariant additive noise channels
multipath channels

Nyquist rates and Sampling theorem
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