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9. Special Topics
A. Fourier Series

The Fourier series was proposed by French matheiaratiean
Baptiste Joseph Fourier (1768-1830) and mainly iegpto periodic

functions and extended to finite duration function.

fr(X)
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The figure shows is a periodic functidx), —co<x<co, with period

T=b—a, which can be expressed as

(1) f(x)= %+Z{Aw9——+&lgﬂﬂ
or
@ f ()= A+ (Acoskux + B,sinkayx)

where xJ(-o0, ) and %:Z_I_—n is the fundamental frequency. For the

coefficients, they can be expressed as

) A=K x=2 [ £
(4) ——j OSZK—de——J- (x)coskayxd x
(5) Bkzéj; f.(x)sin 2knx ——j x)sinkagxd x

It has been proved that Fourier series could repies periodic function
if during one periodr, the periodic function f; (x) satisfies the Dirichlet
conditions:

(C1) The number of discontinuous points is finite.
(C2) The number of maximum and minimum pointsngé.
(C3) The function is absolutely integrable.
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One interesting property should be highlighted hafthough each of the
infinite number of sinusoidal functions describad1) is continuous, their

sum may be discontinuous just like the functigr) depicted in the figure.

Let's derive the coefficientd,, A, andB,, shown in (2), (3) and (4).
For A,, taking the integral of (1) in one period yields

© [ f.()dx=["Adt+> A [coskaxdx+3 B, ['sinkayxdx
k=1 k=1

Since I:coskcq)xd x=0 and I:sinka)oxd x=0, we have

(7) [[t.()dx=[ Adx=Afb-2)=AT
which results in
(®) A =21 1(dx=2] 1 (dx

b
Here, we have denoteﬁ as L to emphasize that the integration can
a

be calculated in any duration of one perigadot just in f,b]. Clearly, A,

is the mean value df(x) for one periodT. For Ay, k>0, we take the
following integration in one period, which is expsed as

IT f.(x)cosmeayxd x = IT Acosmayxd x
9) + i A L coskay,x [eosmey xd x
k=1
+ i B, L sinkey x [eosmayxd x
k=1

wheremON. It is known that

(10) J'T Acosmaxdx=0
IT coskapx [Eosmayxd x
(11) = %J'T (cogk + m)ayx + codk —m)eypx)d x

T/2, k=m

_1 _ _
—Zchos(k m)egxd x { o Kk#m

L sinkayx [€osmeayxd x
(12) ¢/ :
= EJT (sin(k+m)agx + sin(k—m)ayx)d x=0

2
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Hence, (9) becomes
(13) J; f; (X)cosmcuoxd X = Zw: A L coskapx [eosmeyxd x = % A
k=1

where the integration does not vanish onlyKem. As a result, we have

A, :?ZJ'T f.(x)cosmayxd x, for m=1,2,3,..., same as the expression in (4).

Similarly, B, can be determined from the following integration

L fr (x)sinmcq)xd x:jT Ay sinmagxd x

(14) +>° A L coskayx Binmegxd x
k=1
+>°B, L sinkagx Sinmegxd x
k=1

wheremUN. It is known that
(15) J‘Tﬁbsinma{)xd x=0

I coskapx$inmayxd X

N
(16) L

= E.[T (sin(k+ m)egx — sin(k—m)egx)d x=0

L sinkagyx [Sinmey xd X
(17) = % L (cogk — m)ayx - cogk + m)eg,x)d x

1 T/2, k=m
== | codk - m)ayxd X =
2~[T 4 ) { 0, k#m
Hence, (14) becomes
(18) L f:(x)sinmepxd x =" B, L sinkegyx sinmagxd x = 12 B,
k=1

where the integration does not vanish onlyem. As a result, we have
B, :?ZL f-(x)sinmeayxd x, for m=1,2,3,..., same as the expression in (5).

In conclusion, any periodic functiofy(x) satisfying the Dirichlet
conditions (C1) to (C3) can be expressed as thei¢foseries (1) or (2).
On the other hand, the coefficeds A, andB, in the Fourier series can be
also used to represditx), which will be further extended to the frequency

spectrum of(x).
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Actually, Fourier series (1) can be

also used to represent a function with f(>)
finite time duration, such as the function \T y A >

f(x) shown in the figure to the right. a \’\/ b
Sincef(x) is equal td+(x) for x((a,b), it

can be expressed as

(19) f(x)= A + i (Acoskyx+ B, sinkagx),  forxO(a, b)
k=1

which is the same as (1) except th& limited in the durationg( b).

If f(X) is an eve function, then its Fourier series qmigsesses the

terms of cosine function, called the Fourier cosieges and shown as
(20) f(x)=A+> Acoskgx, forxO(a b)
k=1

On the other hand, f{x) is an odd function, it can be represented by the

Fourier sine series as below:
(21) f(x)=> Bsinkagx, forxO(a b)
k=1

Later, they will be applied to the boundary valueljem (BVP) of partial

differential equations.

However, (19) is not a unique expression for thetdi duration
functionf(x). This can be seen from the figure below, in whi{ghis also a

part of the periodic functionf,.(x), different to f,(x).

\\ /\\jf( V\ \V/\\i

From the figure, since the period df.(x) is T'=b-a’, not T=b-a,

O |-

we can write f..(x) as

22  h)=A+ z(p;cos?“r—{”‘ R B'ksinz_‘;_’?‘j for x0(—, =)
k=1
and thus,
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(23) f(x)=A + Z(Aﬂcos%—m + Bksm%j for xO(a, b)

From (19) and (23), we can conclude that the Fows@ies of a finite

duration function is not unique.

For convenience, the Fourier series (1) in trigoatyio form is often
changed into the complex form based on

(24) coskayx = % (eikwox + e—jkwox)
(25) sinkax = 2_11 (ejkwox —e jkwox)
Substituting them into (1) yields
(26) ( ) A+ Z( (eJk‘qjx e_jk“’ox)+%f (ejkabx _ e—jk%x)]
or
(27) fr(x)=c, + i (ckejk“’ox + c_ke‘jk’*’oX) = icke"k"’ox

k=1 =,
where

1 _ .

(28) C, :E(Ak - jB.)=[c|e™
where |Ck|_|ck|_ AN+B!, g =-p, =-tan (2] and c, =c .

Note that the amplitud¢ck| is an even function and the phagge is an

odd function.

The amplitude|ck| and the phasey, are respectively related to the
frequencyaw=ka. If we draw the function|ck| with respect taw=kay then
we have the amplitude spectrum df(x). Similarly, if we draw the
function ¢ with respect tocwrkay then we have the phase spectrum of
f.(x). Both spectra are unique and can be used to represent the function
fT(x). Since |ck| and ¢ only exist at integek, their spectra are called

discrete frequency spectrum.

In addition to (28), the coefficiert, can be also obtained by the

5
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following process:

(29) J-T fT (X)e—jmwbxdx = i CK,L e/ (k—m)%xdx — TCm

k=-0c0

where Ipej(k‘m)%xdxzo for k #m. Hence,

(30) C, :%J-T . (x)e 4 dx

which is often used to calculate the coefficienfsFourier series in
complex form.

L

! : X
5 -1 | 1 5

\

Above shows a periodic function. Since the pericdb, we have
wy=271T=0.471 From (30), it can be attained that

¢ = %L f(x)e @ d x = %I_ll(Ze“'o"”‘”‘)d X

_ 23in(0.4kn)
kmr

(31)
= 0.83inc(0.4krr)

wherec, is a real number. The coefficierds the amplitude|ck| and the

phase ¢ are depicted in the following figures.
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The power of a periodic functiorf, (x) is defined as f?(x). Thus,
the average power off; (x) is often described by the mean-square value,

given as
(32) P=2] t7(x)dx

Based on the Fourier series, we have

P ——I ( > g el ZC e’"““de

(33) k=00 n=-o
__I (che‘k“’OX dc.e Jm“"’XJdX

It can be rearranged as

——J' (z ZCkc ek m“"’dex

k=—c0 m=—c0

= z z j c.c ek maxdy

k=-c0 m——oo

(34)

It is known that chkc_me‘(k‘m)%xdx =0 for kzm. Hence, (34) can be

rewritten as

4] 1 00 00
(35) P=Y —facidx= Y ac, = Yol
k=-c0 k=-o0 k=-0c0
Finally, we obtain the Parseval’s theorem as
(36) = j x)dx = Z|ck|

which is the average power of a periodic function.
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B. Fourier Transform

Previously, we have shown that there is an infiniienber of Fourier
series to express a finite duration function. Nowe question is raised:
Can we find a unique expression for any functioncWisatisfies Dirichlet

conditions? The answer is “Yes”.

f (%)
e lT --------- e
a \’\/ b

Any finite duration functiorf(x) can be treated as a periodic function

with periodT=co. Then, according to Fourier series we have

(1) f(x)= ickejk“bx
k=-c0

where
@) . :% [ f(x)e " dx

. 2n .
with T :a - o, Hence, we can rewrite (1) as

- S & T/2 - jkapT jkapx
3) f(x) k:z_m(zﬂ o (r)e ¥ d r}e
Toow

Under the assumptiof -, let w, =4w - 0 and kw, =kdw - w

wherewis a continuous variable, then (3) can be chamged

(4) f(x)= i (if; f(r)e’ d rje“‘xda)

k=—00 2”

Further taking 4« as dw, (4) can be written as the following integral

form

S 1l —jor jax
(5) f(x)= I(E [ 1) drje dw
If we define
(6) F(w)= fmf(x)e"'““dx
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then

7) f(x)= %T  Floe dw

Usually,F(a) in (6) is called the Fourier transformf@f), denoted as

®) Kt (P=Flw)=]_ f(xe?dx
andf(x) is the inverse Fourier transform lefc), denoted as

©) TYF (W)= (x)= %T “ Flw)e ™ dw

Moreover, from (7), we know thdfx) is composed of an infinite number

of terms Zi F(a)), each corresponding to a frequenay
T

The Fourier transfornkr(¢) in (6) is a complex number and can be

expressed as

(10) Flw)=[" f(xJe’dx=|F(w) e
It is obvious that

(11) F(-w)= fm f (x)e!* d x = F(w)
which leads to

(12) ||:(_ a))| gid-o) = |F(a))| e

It is clear that

(13) IF (- w) =|F(w)

(14) A= w)=-glw)

which means the amplitude(ky| is an even function and the phage)

is an odd function.

4 f(X)
Consider the pulse functid(x) shown 2
in the figure to the right. Its Fourier transform X
is given as -1 1

F(w)=[" f(x)e7dx

(15) J._:’ Asi

:J' 26 d x = 3N = 4sing(w)
. w
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which is a real number. Below show the figures afiffer transfornt(a),

its amplitude |F(w) and phaseg(w).
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It has been shown that a periodic function canepeesented by the
Fourier series as

(16) f(x)= Zw:ckejk“’OX

k=—00

Then, what is the Fourier transform of a periodindtion? Based on the

definition, we have

£ (x)} = f; f(x)e ' dx= J':(kicke"k%xje‘j“ d x
. ick( fwe‘i(‘**k%)de)

k=—c0

(17)

Hence, it is required to find the expressionj'(_;ofe“'(“*"“b)xdx. Let’s check

10
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the following inverse Fourier transform
1 .
18 O w-kaw, )} = w-kay, o' d w=—e*w"
(18) olo-ka) = [ slw-ka)e o
which implies
jkapx b — [ qikapxgmjax g oy — [© ailw-ka)x
(19) D{e } j_me e'dw Loe dw
= 2 (w-kew,)

Therefore, (17) can be rewritten as

(20) D{ ickejk“bx} = Zﬂi ¢ O(w-kaw,)

k=-00 k=—00
which is the expression of a periodic function in frequyedomain. It
consists of a sequence of impulses with weigttt 2nd presents a discrete

frequency spectrum.

Let F(w) and G(w) be the Fourier transform dix) and g(x),
respectively. Some important properties often used uri€otransform

are listed below:

Linearity

(21) Hart (x)+bry(x)} = arF (w)+bG(w)
Time-shifting

(22) o (x—x )} =& F()
Frequency-shifting

(23) e f (x)f = Fw- )

Time compression and expansion

@) ()= 1 2]

a

Convolution in time

(25) A" f(x-r)o)dr|= F(a)o(w)
Multiplication in time
(26) (o= [ Flw- 2)o(2)de

Time duration and frequency bandwidth
Let TD be the time duration of functidfx) andBW be the frequency
bandwidth ofF(«), thenTD is approximately proportional toBYV,

11
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ie.,

(27) TD~_1
BW

Parseval theorem

The instantaneous power of a functf@) is often expressed a$ ?(x),

or f(x)f%(x) whenf(x) is a complex number. Then, the total energy is

given as
(28) E=[ f()f(dx=["|f(x)dx
From (7), we have
_ (" 1~ g —jat
(29) E=[" f(x)(ETLOF (w)e da)jdx
:%T :F'j(w)( fwf(x)e‘j“‘deda)
1~ g 1 (= 2
= _F (w)F(w)dw:ET.[_w|F(w)| dw
Therefore,
(30) ["[f(xfdx= %T ["Flefdw

which is called the Parseval theorem.

12
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C. Wave Equation

In general, vibration and oscillation induced ins#ila material are
governed by a PDE called the wave equation. For elearapnsider the
motion of an elastic string on a guitar. If the stringh a lengthL is
placed along th&-axis and vibrates

with small displacement in thegy y

plane, then the shape of the string yoat)

can be described by(xt) at timet. /\
. . 0 | Xy \/ L

The figure to the right shows the

displacemeny(x,,t) atx=x;.

Assume the tensiof(x,t) at timet acts tangentially to the stringat

Besides, the particle moves y(x,t)

G+rA0 _» T(x+AX,)

vertically and does not encounter y

any damping forces.
T(xt) ~
From the figure to the right, ’

| S/ X XAX
based on the Newton’s second law of

motion, the dynamic equation is given as

(1) T(x+ Ax,t)sin(@+ 460)-T(x,t)sing = p&%

wherep is the length density of mass and is the center of mass. Define
the vertical component of the tension aégt):T(x,t)siné?, then (1) can

be changed into

u(x+ax,t)-u(xt) _  a%y(x.t)

(2) - 2

Ax ot
The limit of Ax - 0 leadsto X — x and

ou(x,t) _  a2y(xt)

(3) - 2

0X ot
For simplicity, we often denote (3) as
4) u, (x,t)= fo, (x,t)

_du _ 0%y _
where u, = and vy, =5 Let the horizontal component of the
X

13
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tension be defined a#(x,t)=T(x,t)cosd, then

©) u(x.t) = h{x.t)tan@ = h(x.1 "’y(_(;'t) = h(xt)y, (x.)

Substituting it into (3) gets

d(, oy a°’y
6 —|h=|=p—
©) ax[ axj ot?

Since the patrticle of the string only moves vetlcave have ? =0, i.e.,
X

h is constant along theaxis and then (6) is rewritten as

0’y _ ,0°%y
7 07y _ 207y
(7) ot? ox?
or
(8) Yo =CY

h . . . .
where ¢® =— . This is known as the one-dimension wave equation.

Let's consider the following BVP related to the waequation,
which is described by (7) or (8), and the vertitiablacement is subject to

the boundary conditions for L andt>0 as below:

9) y(x0)=f (x)
(10) y.(x0)=g(x)
(11) y(0;t)=0
(12) y(Lt)=0

wheref(x) is the shape of the string &40 andg(x) is the vertical velocity
of the particle at=0. To solve the problem, usually we adopt the ephc

of separable variables and assume

(13) y(xt)=X(x)T (t)
Substituting it into (7) gets

(14) X (T (t)=c*T (£)X"(x)
Define

14
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X' T') __p
(15) x() o)
then
(16) X"(x)+ 22X (x)=0
(17) T"(t) + A%c?T(t)=0
Hence,
(18) X (x) = a, cosAx + &, sinAx
(19) T(t)=b, coscit +b, sinct

From (11), we obtain

(20) y(0.t)=X(0)T(t)=aT(t)=0
ie.,, 8 =0 and
(21) X (x) = a, sinAx

From (12), we have
(22) y(L,t)= X(L)T(t)=a,sinAL T (t)=0

i.e., sinAL.=0 or A =%, n=0,1,2;". That implies

(23) y(x.t)= X(x)T(t)= sin%Tx(A1 cos%t +B, sin%tj

forn=1,2,3,..., where A, and B, are arbitrary constants. As a result, we
can assume that the solution is a combination®2@ and expressed as
(24) y(x,t):Zsinn—”x(A1 cos /& + B, sinEtj

—~ L L L
Further, ift=0, (9) results in

(25) y(x,O):i A, sin%Tx = (x)

n=1
which implies thaf(x) is a Fourier sine series and in the form of
(26) f(x)=> A, sinz%rx for xd(O,L)
n=1
with period P=2L. That meand(x) is odd and only spans in half period

from x=0 tox=L. Therefore, we still calculai, for one period as below:

15
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2L . nrr
A=—| flx)s m—xdx—— sm—xdx
(27) I ) P I L
——I sm—xdx

To include (10), it=0, it can be attained that

i smnTnx a(x)

which also implies thag(x) is odd and spans in half periad Similar to
(27) we have

(28) yt(x,0)=¥

(29) —_— ——j sm—xdx
ie.,
2 L . N7
(30) B, =—— | "g(x)sin="=xdx
nsc-o L
This solves the boundary problem of the wave egnati®) and the
solution is
(31) y(x.t)= Zsm—x(A1 cosTt+B smth
or

(32) ZC S|r(—t+¢;1jsm—x

where C, =/A?+B? and ¢ =tan*(A /B,). Clearly, the displacement

is the linear combination of a set of standing ve&avihenth mode of the

displacement is

(33) y,(xt)=C, si{%wjgnm’x
L L
nc_n |h :
with frequency f, =—=— . For n=1, we obtain the fundamental
2L 2L\ p

frequency f, =2—1L\/E when playing the guitar.
P

16
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Laplace’s Equation

Laplace's equation is a™®rder PDE named after Pierre-Simon
Laplace and is often expressed as
1) 0%u=0
where 0° is the Laplace operator andis a scalar function. Here, we
will discuss the Laplace’s equation in two dimensioky) which is

defined for u=u(x,y) and written as
(2) Du=—+—=u_+u, =0

This is the simplest case of linear PDEs in twoetisions shown as

2 2 2
3) AU g 0l cOU B U, EyhG=0
0X oxdy oy 0x oy

with coefficients fromA to G being functions ok andy. If B*-AC<0,

(3) is called an elliptic PDE and the simplest ane

d°u 9%
4 —t+—=
( ) aXZ ayZ g
which is the well-known Poisson’s equation. For tlt@mogeneous case

0=0, we call it the Laplace’s equation

The general theory related to Laplace's equatiokn®vn as the
potential theory anche solutions arbarmonic functionswhich have been
widely applied to a diversity of fields such as otlemagnetism,

astronomy, and fluid dynamics.

Consider the Laplace’s equation in (2) forx€A and 0g<B, which
is subject to the boundary conditions

(5) u,(0,y)=0
(6) u,(Ay)=0
(7) u(x0)=0
(8) u(x.B)=f(x)

with f(x) set for the boundary=B. Assume

17
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9) u(x.y)=X(x)v(y)
then from (2) we obtain
(10) X" (v (y)=x (x)y"(y)
which yields
X"(X)__Y'(y) __p

11 =- =-A
- KON
or
(12) X"(x)+ 22X (x)=0
(13) Y*(y)-22Y(y)=0
Then, forA=0
(14) X(x)=4a, +a,x
(15) Y(y)=b, +b,y
and forA#0
(16) X (x) = a, cosAx + a, sinAx
(17) Y(y)=b, coshly + b, sinhly

From (5) and (7), we obtain
(18) X'(0)¥(y)=a,Y(y)=0

X (x)o,=0

i.e., a, =0 and b, =0. From (6), we have

u,(0.y)=

(19) u(x,0)=

(20) u(Ay)=X"(A)(y) = -a sindATY(y) =0

nrn

i.e., sinA/A=0 or A =7, n=0,1,2,.... Hence,

(21) X(x)=a, cosnfn X

(22) Y(y)=b, sinn" Ly

That implies

(23) u(x,y)=X(x)¥(y)=c, cosfxli‘slnhfy

18
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for n=1,2,3; . From (8), it can be attained that
(24) u(x,B)=>"c, E*Binhn—:B El:osn—:x= f(x)
n=0

which implies thaf(x) is a Fourier cosine series and in the form of
(25) f(x)=>c, sinh”—A” B E:OSZ%TX, for xCJ(0.A)
n=1

with periodP=2A. That mean$(x) is even and only spans in half period.

Therefore, we obtain

n

-1

(26) c, = E(sinhﬂ Bj J'A f (x)cos = d x
A A 0 A

such that the solution can be expressed as

(27) u(xy)=>c, E:OS%TX Bsinh%y

n=0

for O<x<A and 0y<B.

Next, let’s determine the potential functigfx,y) of an electrostatic

field bounded in the range ®<A and 0g<c with boundary conditions

(28) ¢(0.y)=0
(29) AAy)=0
(30) Ax0)=Vv

Note that there is no boundary fgr0, i.e., the potentialgx,y) is
distributed fromy=0 to y=c. According to the electrostatic theory, the

potential is governed by the Laplace’s equatian, i.

2 _0’gxy) . a*dxy) _ _
(31) 0°¢ex.y)= o oy Pt =0
Assume
(32) Axy)=X(x)¥(y)

then from (31) we obtain

(33) X"(X)¥(y)=X(x)¥"(y)

Let

19
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(34) X"(X) = _Y"(y) e AZ
X(x)  v(y)

then

(35) X"(x)+ 22X (x)=0

(36) Y*(y)-22Y(y)=0

which leads to

(37) X (x) = a, cosAx + a, sinAx

(38) Y(y)=be™

for A>0. From (28), we obtain

(39) A0.y)=Xx(0)¥(y)=ay(y)=0

i.e., 8, =0 and

(40) X(x) = a, sinAx

Further from (29), we have

(41) A Ay)=absindAE™ =0

i.e., sinA/A=0 or A =n_n' n=0,1,2;". Hence,

(42) Axy)=c, sin%?x e A
for n=1,2,3,.... From (30), it can be attained that
(43) #x0)=>c, sin%?x =V, forxd(0A)
n=1
Referring to Fourier sine series, we rewrite (43) a
(44) V=>c, sinz%Tx
n=1

That means the period %=2A and we obtain

_2 A,k o N )
(45) C”_ZJOVSIanX_HT(l ( 1))- Nz
Therefore, the potential is
© A (2n+)m i
4 = ) A
(46) Ax.y) ;(Znﬂ)nsm Xl

for O<x<A and 0y<co.
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