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9. Special Topics 

A. Fourier Series 

The Fourier series was proposed by French mathematician Jean 

Baptiste Joseph Fourier (1768-1830) and mainly applied to periodic 

functions and extended to finite duration function. 

 

The figure shows is a periodic function fT(x), −∞<x<∞, with period 

T=b−a, which can be expressed as 
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0 =  is the fundamental frequency. For the 

coefficients, they can be expressed as 
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It has been proved that Fourier series could represent a periodic function  

if during one period T, the periodic function ( )xfT  satisfies the Dirichlet 

conditions: 

 (C1) The number of discontinuous points is finite. 
 (C2) The number of maximum and minimum points is finite. 
 (C3) The function is absolutely integrable. 
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One interesting property should be highlighted here. Although each of the 

infinite number of sinusoidal functions described in (1) is continuous, their 

sum may be discontinuous just like the function fT(x) depicted in the figure. 

Let’s derive the coefficients A0, Ak and Bk, shown in (2), (3) and (4). 

For A0, taking the integral of (1) in one period yields 
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Since 00 =∫
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xdxkcos ω  and 00 =∫

b

a
xdxksin ω , we have  
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which results in 
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Here, we have denoted ∫
b

a
 as ∫T to emphasize that the integration can 

be calculated in any duration of one period T, not just in [a,b]. Clearly, 0A  

is the mean value of fT(x) for one period T. For Ak, k>0, we take the 

following integration in one period, which is expressed as 
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where m∈N. It is known that 
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Hence, (9) becomes  

(13) ( ) m
k

TkT T A
T

xdxmcosxkcosAxdxmcosxf
21

000 =⋅=∑ ∫∫
∞

=

ωωω  

where the integration does not vanish only for k=m. As a result, we have 

( ) xdxmcosxf
T

A
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2 ω , for m=1,2,3,…, same as the expression in (4). 

Similarly, Bk can be determined from the following integration 
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Hence, (14) becomes  
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where the integration does not vanish only for k=m. As a result, we have 

( ) xdxinmsxf
T

B
T Tm ∫= 0

2 ω , for m=1,2,3,…, same as the expression in (5).  

In conclusion, any periodic function fT(x) satisfying the Dirichlet 

conditions (C1) to (C3) can be expressed as the Fourier series (1) or (2). 

On the other hand, the coefficents A0, Ak and Bk in the Fourier series can be 

also used to represent fT(x), which will be further extended to the frequency 

spectrum of fT(x). 
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Actually, Fourier series (1) can be 

also used to represent a function with 

finite time duration, such as the function 

f(x) shown in the figure to the right. 

Since f(x) is equal to fT(x) for x∈(a,b), it 

can be expressed as 
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which is the same as (1) except that x is limited in the duration (a, b). 

If f(x) is an eve function, then its Fourier series only possesses the 

terms of cosine function, called the Fourier cosine series and shown as 
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On the other hand, if f(x) is an odd function, it can be represented by the 

Fourier sine series as below: 
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Later, they will be applied to the boundary value problem (BVP) of partial 

differential equations. 

However, (19) is not a unique expression for the finite duration 

function f(x). This can be seen from the figure below, in which f(x) is also a 

part of the periodic function ( )xfT ′ , different to ( )xfT . 

 

From the figure, since the period of ( )xfT ′  is T’=b−a’, not T=b−a, 

we can write ( )xfT ′  as 
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From (19) and (23), we can conclude that the Fourier series of a finite 

duration function is not unique. 

For convenience, the Fourier series (1) in trigonometric form is often 

changed into the complex form based on 
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Substituting them into (1) yields 
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Note that the amplitude kc  is an even function and the phase kφ  is an 

odd function. 

The amplitude kc  and the phase kφ  are respectively related to the 

frequency ω=kω0. If we draw the function kc  with respect to ω=kω0 then 

we have the amplitude spectrum of ( )xfT . Similarly, if we draw the 

function kφ  with respect to ω=kω0 then we have the phase spectrum of 

( )xfT . Both spectra are unique and can be used to represent the function 

( )xfT . Since kc  and kφ  only exist at integer k, their spectra are called 

discrete frequency spectrum. 

In addition to (28), the coefficient ck can be also obtained by the 
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following process: 
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which is often used to calculate the coefficients of Fourier series in 

complex form. 

 

Above shows a periodic function. Since the period T=5, we have 

ω0=2π/T=0.4π. From (30), it can be attained that 
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where ck is a real number. The coefficients ck, the amplitude kc  and the 

phase kφ  are depicted in the following figures. 
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The power of a periodic function ( )xfT  is defined as ( )xfT
2 . Thus, 

the average power of ( )xfT  is often described by the mean-square value, 

given as 
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It can be rearranged as 
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It is known that ( ) 0   0 =∫
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Finally, we obtain the Parseval’s theorem as 
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which is the average power of a periodic function. 
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B. Fourier Transform 

Previously, we have shown that there is an infinite number of Fourier 

series to express a finite duration function. Now, one question is raised: 

Can we find a unique expression for any function which satisfies Dirichlet 

conditions? The answer is “Yes”. 

 

Any finite duration function f(x) can be treated as a periodic function 

with period T=∞. Then, according to Fourier series we have 
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form 

(5) ( ) ( )∫ ∫
∞

∞−

∞

∞−

−







= ωττ
π

ωωτ dedefxf xjj

2

1
 

If we define 

(6) ( ) ( ) xdexfF xj

∫
∞

∞−

−= ωω  

a b 

x 

f (x) 

T 
∞ −∞ 



Course: Differential Equations/NCTU/ECE/Yon-Ping Chen 

9 

1 
x 

f(x) 
2 

−1 

then 

(7) ( ) ( ) ωω
π

ω deFxf xj

∫
∞

∞−
=

2

1
 

Usually, F(ω) in (6) is called the Fourier transform of f(x), denoted as 
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Moreover, from (7), we know that f(x) is composed of an infinite number 

of terms ( )ω
π

F
2

1
, each corresponding to a frequency ω. 
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which is a real number. Below show the figures of Fourier transform F(ω), 

its amplitude ( )ωF  and phase ( )ωφ . 

 

  

It has been shown that a periodic function can be represented by the 

Fourier series as 
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the following inverse Fourier transform 

(18) ( ){ } ( ) xjkxj edekk 0

2

1

2

1
00

1 ωω

π
ωωωδ

π
ωωδ =−=−ℑ ∫

∞

∞−

−  

which implies 

(19) 
{ } ( )

( )02               

000

ωωπδ

ωω ωωωωω

k

dedeee xkjxjxjkxjk

−=

==ℑ ∫∫
∞

∞−

−−∞

∞−

−

 

Therefore, (17) can be rewritten as 

(20) ( )∑∑
∞

−∞=

∞

−∞=

−=






ℑ

k
k

k

xjk
k kcec 020 ωωδπω  

which is the expression of a periodic function in frequency domain. It 

consists of a sequence of impulses with weight 2πck and presents a discrete 

frequency spectrum. 

Let F(ω) and G(ω) be the Fourier transform of f(x) and g(x), 

respectively. Some important properties often used in Fourier transform 

are listed below: 
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Time duration and frequency bandwidth 

Let TD be the time duration of function f(x) and BW be the frequency 

bandwidth of F(ω), then TD is approximately proportional to 1/BW, 
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i.e., 
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which is called the Parseval theorem. 
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C. Wave Equation 

In general, vibration and oscillation induced in elastic material are 

governed by a PDE called the wave equation. For example, consider the 

motion of an elastic string on a guitar. If the string with a length L is 

placed along the x-axis and vibrates 

with small displacement in the x-y 

plane, then the shape of the string 

can be described by y(x,t) at time t. 

The figure to the right shows the 

displacement y(x1,t) at x=x1. 

Assume the tension T(x,t) at time t acts tangentially to the string at x. 

Besides, the particle moves to y(x,t) 

vertically and does not encounter 

any damping forces.  

From the figure to the right, 

based on the Newton’s second law of 

motion, the dynamic equation is given as 
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For simplicity, we often denote (3) as 
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tension be defined as ( ) ( ) θcost,xTt,xh = , then 

(5) ( ) ( ) ( ) ( ) ( ) ( )t,xyt,xh
x

t,xy
t,xhtant,xht,xu x=

∂
∂== θ  

Substituting it into (3) gets 

(6) 
2

2

t

y

x

y
h

x ∂
∂=









∂
∂

∂
∂ ρ  

Since the particle of the string only moves vertically, we have 0=
∂
∂
x

h
, i.e., 

h is constant along the x axis and then (6) is rewritten as 

(7) 
2

2
2

2

2

x

y
c

t

y

∂
∂=

∂
∂

 

or 

(8) xxtt ycy 2=  

where 
ρ
h

c =2 . This is known as the one-dimension wave equation. 

Let’s consider the following BVP related to the wave equation, 

which is described by (7) or (8), and the vertical displacement is subject to 

the boundary conditions for 0<x<L and t>0 as below: 

(9) ( ) ( )xf,xy =0  

(10) ( ) ( )xg,xyt =0  

(11) ( ) 00 =t,y  

(12) ( ) 0=t,Ly  

where f(x) is the shape of the string at t=0 and g(x) is the vertical velocity 

of the particle at t=0. To solve the problem, usually we adopt the concept 

of separable variables and assume 

(13) ( ) ( ) ( )tTxXt,xy =  

Substituting it into (7) gets 

(14) ( ) ( ) ( ) ( )xXtTctTxX ′′=′′ 2  

Define 
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(15) 
( )
( )

( )
( )

2
2

λ−=
′′

=
′′

tTc

tT

xX

xX
 

then 

(16) ( ) ( ) 02 =+′′ xXxX λ  

(17) ( ) ( ) 022 =+′′ tTctT λ  

Hence, 

(18) ( ) xsinaxcosaxX λλ 21 +=  

(19) ( ) tcsinbtccosbtT λλ 21 +=  

From (11), we obtain 

(20) ( ) ( ) ( ) ( ) 000 1 === tTatTXt,y  

i.e., 01 =a  and  

(21) ( ) xsinaxX λ2=  

From (12), we have 

(22) ( ) ( ) ( ) ( ) 02 =⋅== tTLsinatTLXt,Ly λ  

i.e., 0=Lsinλ  or 
L

nπλ = , n=0,1,2,…. That implies 

(23) ( ) ( ) ( ) 






 +== t
L

cn
sinBt

L

cn
cosAx

L

n
sintTxXt,xy nn

πππ
 

for n=1,2,3,…, where nA  and nB  are arbitrary constants. As a result, we 

can assume that the solution is a combination of (29-23) and expressed as 

(24) ( ) ∑
∞

=







 +=
1n

nn t
L

cn
sinBt

L

cn
cosAx

L

n
sint,xy

πππ
 

Further, if t=0, (9) results in 

(25) ( ) ( )xfx
L

n
sinA,xy

n
n ==∑

∞

=1

0
π

 

which implies that f(x) is a Fourier sine series and in the form of 

(26) ( ) ∑
∞

=

=
1

2

n
n x

P

n
sinAxf

π
  for x∈(0,L) 

with period P=2L. That means f(x) is odd and only spans in half period 

from x=0 to x=L. Therefore, we still calculate An for one period as below: 
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(27) 
( ) ( )

( )∫

∫∫

=

==
−−

L

L

L

L

Ln

dxx
L

n
sinxf

L

dxx
L

n
sinxf

L
dxx

P

n
sinxf

P
A

0
 

2
     

 
1

 
22

π

ππ
 

To include (10), if t=0, it can be attained that 

(28) ( ) ( ) ( )xgx
L

n
sin

L

cn
B

t

t,xy
,xy

n
n

t
t ==

∂
∂= ∑

∞

== 00

0
ππ

 

which also implies that g(x) is odd and spans in half period L. Similar to 

(27) we have 

(29) ( )∫=
L

n dxx
L

n
sinxg

L
B

L

cn
0

 
2 ππ

 

i.e., 

(30) ( )∫=
L

n dxx
L

n
sinxg

cn
B

0
 

2 π
π

 

This solves the boundary problem of the wave equation (7) and the 

solution is 

(31) ( ) ∑
∞

=







 +=
1n

nn t
L

cn
sinBt

L

cn
cosAx

L

n
sint,xy

πππ
 

or 

(32) ( ) ∑
∞

=







 +=
1n

nn x
L

n
sint

L

cn
sinCt,xy

πφπ
 

where 22
nnn BAC +=  and ( )nnn BAtan 1−=φ . Clearly, the displacement 

is the linear combination of a set of standing waves. The nth mode of the 

displacement is 

(33) ( ) x
L

n
sint

L

cn
sinCt,xy nnn

πφπ







 +=  

with frequency 
ρ
h

L

n

L

nc
fn 22

== . For n=1, we obtain the fundamental 

frequency 
ρ
h

L
f

2

1
1 =  when playing the guitar. 
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D. Laplace’s Equation 

Laplace's equation is a 2nd-order PDE named after Pierre-Simon 

Laplace and is often expressed as 

(1) 02 =∇ u  

where 2∇  is the Laplace operator and u is a scalar function. Here, we 

will discuss the Laplace’s equation in two dimensions (x,y) which is 

defined for ( )y,xuu ≡  and written as 

(2) 0
2

2

2

2
2 =+=

∂
∂+

∂
∂=∇ yyxx uu

y

u

x

u
u  

This is the simplest case of linear PDEs in two dimensions shown as 

(3) 02
2

22

2

2

=++
∂
∂+

∂
∂+

∂
∂+

∂∂
∂+

∂
∂

GFu
y

u
E

x

u
D

y

u
C

yx

u
B

x

u
A  

with coefficients from A to G being functions of x and y. If 0AC2 <−B , 

(3) is called an elliptic PDE and the simplest one is 

(4) g
y

u

x

u =
∂
∂+

∂
∂

2

2

2

2

 

which is the well-known Poisson’s equation. For the homogeneous case 

g=0, we call it the Laplace’s equation. 

The general theory related to Laplace's equation is known as the 

potential theory and the solutions are harmonic functions, which have been 

widely applied to a diversity of fields such as electromagnetism, 

astronomy, and fluid dynamics. 

Consider the Laplace’s equation in (2) for 0<x<A and 0<y<B, which 

is subject to the boundary conditions 

(5) ( ) 00 =y,ux  

(6) ( ) 0=y,Aux  

(7) ( ) 00 =,xu  

(8) ( ) ( )xfB,xu =  

with f(x) set for the boundary y=B. Assume 
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(9) ( ) ( ) ( )yYxXy,xu =  

then from (2) we obtain 

(10) ( ) ( ) ( ) ( )yYxXyYxX ′′=′′  

which yields 

(11) 
( )
( )

( )
( )

2λ−=
′′

−=
′′

yY

yY

xX

xX
 

or 

(12) ( ) ( ) 02 =+′′ xXxX λ  

(13) ( ) ( ) 02 =−′′ yYyY λ  

Then, for λ=0 

(14) ( ) xaaxX 21 +=  

(15) ( ) ybbyY 21 +=  

and for λ≠0 

(16) ( ) xsinaxcosaxX λλ 21 +=  

(17) ( ) ysinhbycoshbyY λλ 21 +=  

From (5) and (7), we obtain 

(18) ( ) ( ) ( ) ( ) 000 2 ==′= yYayYXy,ux  

(19) ( ) ( ) 00 1 == bxX,xu  

i.e., 02 =a  and 01 =b . From (6), we have 

(20) ( ) ( ) ( ) ( ) 01 =⋅−=′= yYAsinayYAXy,Aux λ  

i.e., 0=Asinλ  or 
A

nπλ = , n=0,1,2,…. Hence, 

(21) ( ) x
A

n
cosaxX

π
1=  

(22) ( ) y
A

n
sinhbyY

π
2=  

That implies 

(23) ( ) ( ) ( ) y
A

n
sinhx

A

n
coscyYxXy,xu n

ππ ⋅==  
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for n=1,2,3,…. From (8), it can be attained that 

(24) ( ) ( )xfx
A

n
cosB

A

n
sinhcB,xu

n
n =⋅⋅=∑

∞

=0

ππ
 

which implies that f(x) is a Fourier cosine series and in the form of 

(25) ( ) x
P

n
cosB

A

n
sinhcxf

n
n∑

∞

=

⋅=
1

2 ππ
,  for x∈(0,A) 

with period P=2A. That means f(x) is even and only spans in half period. 

Therefore, we obtain 

(26) ( ) xd
A

xn
cosxfB

A

n
sinh

A
c

A

n ∫
−








=
0

1
2 ππ

 

such that the solution can be expressed as 

(27) ( ) y
A

n
sinhx

A

n
coscy,xu

n
n

ππ ⋅⋅=∑
∞

=0

 

for 0<x<A and 0<y<B. 

Next, let’s determine the potential function φ(x,y) of an electrostatic 

field bounded in the range 0<x<A and 0<y<∞ with boundary conditions 

(28) ( ) 00 =y,φ  

(29) ( ) 0=y,Aφ  

(30) ( ) V,x =0φ  

Note that there is no boundary for y>0, i.e., the potential φ(x,y) is 

distributed from y=0 to y=∞. According to the electrostatic theory, the 

potential is governed by the Laplace’s equation, i.e., 

(31) ( ) ( ) ( )
0

2

2

2

2
2 =+=

∂
∂+

∂
∂=∇ yyxx

y

y,x

x

y,x
y,x φφφφφ  

Assume 

(32) ( ) ( ) ( )yYxXy,x =φ  

then from (31) we obtain 

(33) ( ) ( ) ( ) ( )yYxXyYxX ′′=′′  

Let 
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(34) 
( )
( )

( )
( )

2λ−=
′′

−=
′′

yY

yY

xX

xX
 

then 

(35) ( ) ( ) 02 =+′′ xXxX λ  

(36) ( ) ( ) 02 =−′′ yYyY λ  

which leads to 

(37) ( ) xsinaxcosaxX λλ 21 +=  

(38) ( ) ybeyY λ−=  

for λ>0. From (28), we obtain 

(39) ( ) ( ) ( ) ( ) 000 1 === yYayYXy,φ  

i.e., 01 =a  and 

(40) ( ) xsinaxX λ2=  

Further from (29), we have 

(41) ( ) 02 =⋅= − yeAsinbay,A λλφ  

i.e., 0=Asinλ  or 
A

nπλ = , n=0,1,2,…. Hence, 

(42) ( ) y
A

n

n ex
A

n
sincy,x

ππφ
−

⋅=  

for n=1,2,3,…. From (30), it can be attained that 

(43) ( ) Vx
A

n
sinc,x

n
n ==∑

∞

=1

0
πφ ,   for x∈(0,A) 

Referring to Fourier sine series, we rewrite (43) as 

(44) ∑
∞

=
=

1

2

n
n x

P

n
sincV

π
 

That means the period is P=2A and we obtain 

(45) ( )( )








=−−== ∫
ven  0,

  odd  ,
4

11
22

0

en

n
n

V

n

V
xd

A

xn
insV

A
c nA

n π
π

π
 

Therefore, the potential is 

(46) ( ) ( )
( ) ( )

∑
∞

=

+−
⋅+

+
=

0

1212

12

4

n

y
A

n

ex
A

n
sin

n

V
y,x

ππ
π

φ  

for 0<x<A and 0<y<∞. 


