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8. Power Series Method

Power Series

In mathematics, usually a function can be exprebyeal power series of
the form
(8-1) (=2 a,(x=%)
n=0
wherea, represents the coefficient of tm& term andx, is the center of the
series. For example, ti@ylor serieof an infinitely differentiabld(x) is

62) ()= o) = 5 08) e

[ee]
n=0 o N

(n)
where a, :f—EX‘J. Let x, =0, then
n!

(8-3) f(x)=3
which is called the Maclaurin series.

The power series certainly converges®, and may converge in three
possible cases:

C1. The series may converge onlyax,.

C2. The series may converge for all real numbes < x <.

C3. The series may converge fbr— x| <r and diverge for|x - x| >,

wherer is called the radius of convergence
At x=Xx,+r and x=x,-r,the series may or may not converge

In conclusion, a power series may converge*xif— x0|<r and diverges if
[x=x;| >r with the radius of convergenc@s<r <o . In addition, he series
may or may not converge at=x,+r and x=X,—r. Sometimes, we can
find the radius of convergencéy the ratio test:

By

a,

where the series converges absolutelyi<dfl and diverges if.>1. However,

(8-4) lim =L

n— o

whenlL=1, the test reaches no conclusion. For examplgsider the function
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f(x)=>_n!x". From the ratio test, we have
n=0

(8-5) Iimw
n! x"

n- oo

- lim(n+1)x-

0 forx=0

{oo for xz0

Clearly, the function f (x) = z n! x" only converges at=0.

n=0

: : 2 X" ,
Next, let's consider the functiorf (x):Z—I, then from the ratio test
n=0

we have

(8-6) lim im X|1: forall|x|<oo

which means the power series converges fot all

As for the function f(x)=i (-2) (x-=2)", using the ratio test
n=0

(n+1)9"
obtains
(_ 1)n+1 -2 2n+2
(8-7) im0+ 2)9™ o2 im0 Y (o] = L (x-2p
o (_1))n (x-ap | "0+2P
n+1)9"

It is clear that, the series convergesé(x—2)2<1, which is |x—2|<3 or
—1<x<5. The radius of convergenceris3 and the center point g=2.

Suppose that within an interval of convergeni¢e) and g(x) can be

expressed in power series as below:

(8-8) f(x)= gan(x- %)
(8-9) g(x):gbn(x—xo)ﬂ

Their algebraic operations are

(8-10) F()+9(x)=3(a, +b,)x—x)
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(8-1) (- 96d=3 -0
(8-12) i ()= Z k@, (x=%,)"
(8-12) (3909 = 26, e

n
wherek is a constant and, :Za.b Besides, the derivatives &) are

jTn=j o
j=0

listed as below:

[+ e <) | e
(8-14) F(x) =Y na, (x = %) =D a (x— %)
n=1 n=1 (n 1)!
[ _ [ ' e
(8-15) ()= Snln-Ba, (- 2 =3 e (x-x )
n=2 n=2 (n 2)I
and so on. In general, th& derivative is represented as
1 W)= " g (xox )™, k=1,2,3,...
(8-16) f (X) ;(n—k)! an(x Xo) , 2,3,

and its radius of convergence is the same as fhét) oAs for the integral of

f(t), it is given as
(8-17) jf(x)dx:Zanj-(x—xo)”dx=ii(x—xo)muc

with ¢ constant.

It should be noticed that the indices of ¥federivativein (8-16) do not

start with zero. By shifting indices as=n-k, thek™ derivativecan be modified

> +k! m
as 1900=3 MKy o) o
m=0

(8-18) £09(x) = i (n+k)

n=0 n!

B (X =)

The shifting of indices is one of the common operet in power series.
Power Series Method of Linear Differential Equatiors

In this section, we will introduce the power sermasthod to deal with

the IVP of linear ODEs. First, consider the follogiexample
(8-19) y+p(x)y=alx),  y()=¥
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wherep(x) andq(x) are analytic ak,. The condition of analyticity requires that
p(x) andq(x) are infinitely differentiable at,. This condition also implies that
p(x) andq(x) can be represented by power series in some opeval abouk,.
Most importantly, wherp(x) andq(x) are analytic, the solution is analytic as

well, and usually expressed as

) 0 (I"I)
820 V=3 (x-) = 3 Y 0) ey
n=0 n=0 .
y"(%) inear hi .
where ¢, =———*. For an IVP of a linear higher order ODE, it isalrue

n!

that the solution is analytic when its coefficieats all analytic.

For example, let's consider an IVP of a linedkotder ODE, which is

expressed as
(8-21) y +2ey=x, y(O):l

00

To determiney(x), we can directly applyy . First,

derive the higher derivatives below:
y'+2e7y -2e 7y =1
(8-22) y'+2e7y' -4y + 27y =0
v 4 267y — ey + 6871y — 267y =0
and takex=0 for them, i.e.,
y(0)+2y(0)=0
y'(0)+2y(0)-2y(0)=1
y"(0)+2y'(0)-4y(0)+2y(0)=0
y*(0)+2y"(0)-6y"(0)+ 6y(0)-2y(0) =0

(8-23)

Then, we have
y(0)=-2y(0)=-
y(0)=-2y(0)+2y(0)+1=4+2+1=7
y"(0)=-2y"(0) + 4y'(0) - 2y(0) = -14-8-2=-24
y“(0) = -2y"(0)+6y"(0)-6y(0) +2y(0) =104

Substitute them into the Taylor series as below:

(8-24)

00 (n)
(8-25) Y(X):zy (O)X“=1—2X+Zx2—4x3+£?’x4+-~-
o n 2 3

which is the solution of the IVP of (8-21).
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Similarly, the same process can be applied to dnd¥/a 2%order linear
ODE, which is expressed as
(8-26) y'+2e'y +xy=x%,  y(0)=1, y(0)=0
The higher derivatives are
(8-27) y"'+2e*y" +2e'y +xy' + y=2x
Y9+ 267y + (g€ + x)y’ + (26" + 2)y =2

By settingx=0, the above equations become
y'(0)+2y(0)=0
(8-28) y"(0)+2y'(0)+2y(0)+y(0)=0
y*(0) +2y"(0) + 4y'(0)+ 4y (0) =2
and the results are
y'(0)=-2y(0)=0
(8-29) y"(0)=-2y"(0)-2y(0)- y(0)=-1
y¥(0)= -2y"(0)-4y"(0)-4y(0)+2=2+2=4

Hence, the Taylor series is

=y 1s,1.4
8-30 x =l-—xX"+=X"+--
( ) ; n! 6 6

which is the solution of (8-26).

Next, let's apply the form ofy(x)zic (x—x,)" to solve an IVP of a

n
n=0

2"%order linear ODE, which is given as
(8-31) y'+xy/ +xy=0, y(0)=y,, Y(0)=y,

Let the solution be

(8-32) y(x) = i c. X"

then y'(x):z.o:ncnx”‘1 and y’(x):in(n—l)cnx“‘z. Substituting them into

n=2

(8-31) leads toi n(n-1)c,x"2 + xi nc, X"+ xzi cx"=0 or

n=2 n=1 n=0

M

(n+1)(n+2)c,.,,x" +chx +ch X"
0

>
1

(8-33)
+(6c, +¢ x+Z[ n+1)(n+2)c,,, +nc, +c,,Jx" =

n=2

5
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Hence,

(8-34) c,=0¢= —% andc,,,=- ( NG T G2 forn= 23,

n+1)(n+2)
Since y(0)=y, and y(0)=y,, we havec,=y, and ¢ =y,. Now, the
coefficients can be separated into two groepsandc,.,, for k=012,---. For

the coefficients,, we have

_ _ __ Y _4y,
8-35 =y, =0, ¢c,=—=, Cc.=——, .....
( ) CO yO CZ 4 12 6 36C
and for the coefficients,.,;, we have
_ __¥% -y _ ™
8-36 =y, === === =— ...
( ) =Y, G 6 G 40 G 100¢
Hence,
Y(X)ZZCan:yo(l—l—lzx4+9—]6x6+-.-j
(8-37) n=0

( 1 15, 7 7 j
+Hy X=X ——X+ X"+
6 40 1008

which is the solution of (8-31).
Singular Points and the Method of Frobenius

Here, we will introduce the method of Frobeniusdeal with a linear

ODE which possesses singular points. Consider e O

(8-38) P(x)y" +Q(x)y +R(x)y = F(x)
If P(x)#0, then it can be written as
(8-39) y'+a(x)y +r(x)y = f(x)

_Qx) _R() _F(x)
where q(x) =57, r(x)—m and f(x)—m. If q(x), r(x) andf(x) are

analytic in some open interval aboyt then we can determine a power series

2
X

solution of (8-39) by methods introduced beforerd;lg, is called an ordinary
point.

If P(xo):o or any one ofj(x), r(x) andf(x) is not analytic ak,, thenx,
is a singular point. To solve an ODE with singyaints, it is required to try
some other methods, such as the method of Frobenius

First, let’'s take some examples for the ordinaryisoand singular points.

6
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Consider the ODE
(8-40) x*(x=2)2y" +5(x+2)(x—2)y +3x’y =0

where P(x)=x*(x-2)*. Since P(0)=P(2)=0, there are two singular points

at 0 and 2. All the other real numbers are ordieripnts.

In an interval about a singular point, the soluionay be quite different
from what we have seen about an ordinary poinbrbter to understand the
behavior of solutions near a singular point, wel vabncentrate on the

homogeneous equation

(8-41) P(x)y" +Q(x)y' + R(x)y =0
After the homogeneous equation is solved, it isdifbicult for us to solve the
nonhomogeneous equation (8-38).

There are two kinds of singular points, regulagsiar point (RSP) and

irregular singular points (IRSP). X is a singular point and botﬁx— ><0)M

P(x)
2 R(X) . . . o
and (x—xo) m are analytic ax,, thenx, is an RSP, otherwise it is an IRSP.
For example, consider the ODE
(8-42) x*(x-2)y" +5(x+2)(x-2)y +3x’y =0

which has singular points at 0 and 2. kg0, we have

| 0 b 2)k-2) _ sfxrd)
(8-43) ( o) P(X) N (X— 2)2 2 (x— 2)

which is not analytic at,=0, we say thax,=0 is an IRSP. Fax,=2, we have

i - M: "— 5(x+2)(x—2):5(x+2)
(8-44) R R e e i
and

2 R(X) _ . 3 3
(8-45) (X‘Xo) m—(x_z) m—;

Because both of them are analytixa?2, we say thak,=2 is an RSP.

If (8-41) has an RSP &, we can solve it by choosing a possible solution

expressed as
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(8-46) y(x)= i c,(x—x, )"

n=0
which is called a Frobenius series. Note that &&mais series is not necessary
to be a power series sincemay be negative or no integer. The method using
(8-46) to solve (8-41) is called the method of Fenilos.

Method of Frobenius

Supposex is an RSP of the"®order homogeneous equation, which is

expressed as
(8-47) P(x)y" +Q(x)y + R(x)y =0
where qp(x) =(x- xo)% and rp(x) =(x- xo)z% are analytic and

converge in an open intervad€h, x,+h). Let the solution be a Frobenius series

given as below:

(8-48) y(x)= 3 ¢, (x-x%)"

n=0

with a a real number. Its first and second derivatives ar

y’(X) = gcn (n + a)(x - Xo)n+a—1

V()= c,(n+a)n+a-1)x-x)""?
n=0
Substituting them into (8-47) yields

PO cy(n+a)n+a-1)(x—x)"""

(8-49)

n

C
(8-50) - )
QY. o1+ @)lx=%, )" + ROY ¢, (x=%, )" =0
(x-

Further multiply P™(x)(x—x,)*, and obtain

00

: c,(n+a)(n+a-1)(x—x)""

(8-51) = )
a3+ ko o1, (5 ) <0
where qp(x):(x_xo)% and rp(X)=(X—X0)2% are analytic atx=x,.

Hence,
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65  Saln+alnta-1eq,kn+a)er,Klx-x)7 =0

n=0

where qp(x) and rp(x) can be expanded by the Taylor series as

o q(m
(853) =5 ) ey
w r(m)
(8-54) (=3 ngXO)(x— %)"
Apply (8-53) and (8-54) to (8-52), and we will ointa
(8-55) iqq fx—x,)"" =0

where the coefficientg is determined bya, n and c, for i,n=0,1,2;".

Since (8-55) is true in some interval o§—, x+h), we can conclude that

@ =0 fori=0,1,2;". Next, let's discuss how to solve, from the coefficients

@ =0 fori=0,1,2;".

The coefficient ¢ related to the termx” can be obtained from (8-52),
(8-53) and (8-54) by setting=m=0, i.e.,
(8-56) @ =clala-1)+ag,(x)+r,06)] =0
Assume c, # O then a(a—1)+aqp(x0)+rp(xo)=0 , or expressed as the
so-called indicial equation
(8-57) |(@)=a” +ala,06)-2)+1,(6)=0
where I(a) is named as the indicial function. Since the idi@quation

I(@)=0 is used to determine the possible real numberthe following

condition must be satisfied:

(8-58) (qp(xo)—l)2 —4r,(x,)=0

Otherwise, there is no Frobenius solution.

Under the assumption thal, # &nd (8-58) is satisfied, there at least

exists a solutiony(x):icn(x—xo)”” with a a root of I(a)=0, which is
n=0

called the Frobenius solution expressed by a Fiabeseries.
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Due to the fact that the indicial equation has teats, we may have two

Frobenius solutions. Let the roots g and a,, where a, > a,. We assign

the first Frobenius solution for the larger roat, i.e.,

(8-59) =26 01" =+ X (xx)

with ¢, #0. To determiney,(x), it is required to findc, for n=1,2,3;".

From (8-52) to (8-55), we have
colary(a, — 1)+ a,q, (%) + 1, (% )= %)

z[ qsr>(xo)+r,sm>(xo)j(x_x())mwl

ml ml

m=1

8-60 o
e rSia 0 a)ne g, -Y-x)
w (k-n) (k-n)
‘ ar (%) . r¥(x) oy _
Z;Cn[(n"'a&) (k—n)! + (k—n)! J(X_Xo) =
i.e.,
ol (a, =)+ oy, (%) + 1, (%) (x = %,)*
(8-61) 3 e (k+a ko+ a, ~1)(x- %)
- & a00) G
+é§)cn{(n+all (k n) + (k—n)! (X Xo)
It can be further written as
(862 > g x-x)" =0
where
(8-63) & = Colay(@, ~1)+ a,q, (%) + 1, (x,)| =0
and fork=1,2,3,...
K (k-n) (k-n)
@0 a=aloaficrn 9T/ ra) oy T
Since ¢ = 0 for k=1,2,3;", we have
K (k-n) (k-n)
865 clcralkra-i )+zc{(n+al,q( ) (X;)]—o

From the recursive relation in (8-65%, is solved and proportional to, .

10
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Then, the first Frobenius solutioyl(x) in (8-59) is obtained.

For the solution of the second roat,, which is not greater thawr, ,
there are three possible cases: (@) a, is not an integer, (C2p, —a, =0

and (C3) a,—a, =N s a positive integer.
(C1) a,-a, isnotan integer

In this case, the second Frobenius solution related, is similarly

given as

00

(8-66) Vo(x)= 3 clx =% )7 = Gk = %) + S clx—x, )"

n=0 n=1

n+a;

with c)'#0. Since a,—a, is not an integer, we know thdk—x,)""* and
(x—x%,)"® are independent and thew,(x) is independent toy,(x) .
Therefore, the total solution of (8-47) witg, # &nd ¢ # 0 is

y(X)= Ay;(x)+ Ay, (x)

8-67 - n+a P n+a
eon =AY (x-x)  A S k1)

where A; and A, are arbitrary constants. For simplicity, we oftehnoose

C,=Cy=1.

For example, let's consider the following homogeargeoequation,

expressed as

2

8-68 ey + Xy+ X y=0
(8-68) XY+2Y+2y
which has a singular point &=0. It is easy to check that
- = —_ M = ﬁ :i
(8-69) % (0= =) 5y =X e =5
2 2
(8-70) (0= (- B e X2 X

Both are analytic ak,=0, and thusx,=0 is an RSP. Let the solution be a

Frobenius series shown as below:

(8-71) y(x)=>"c,x™

11
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whereqa is a real number. Then, the derivatives are

V(=3 (0 ahee

0

y'(x)= icn(n+a)(n+a 1)xa-2

n=0

(8-72)

Substituting them into (8-68) results in

@73 Ygntalnra-Be7 Yo nrah 4l Yox =0

n=0 n=0 n=0

i.e.,

874) Yo lk+a)kra-DxT+ 3 G (kra)xre + 3 Gz yoa
k=0 k=0 2 k=2 2

k+a

The coefficients ofx are

(8-75) @ = co(a(a —1)+£aj = coa(a —EJ

2 2
(876 a=o[ala+)+3(a+1)=ola+1fa+7]
(8-77) @:ck(k+a)(k+a—%j+%:o, k=2,3,4,...

Assume ¢, # Q from (8-57) we obtain the indicial equation as

©78) a* +alo, b)Y +r,l)=a* -2 a =0

The roots area, =1/2 and a,=0. Clearly, this is the case of (C1). For

=1/2, the first Frobenius solution is

(8-79) y(x)=>cx 2

From (8-76) andg =0, we choosec, =0. From (8-77) andg = Qwe have

(8-80) 6 =-——e2 =1

Ce-2>
Zk(k . ;] k(2k +1)

for k=2,3/4....

Hence,

12
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(8-81) c,=-

%k:(_gk(

2[4 0..2k) (5O 0. {4k +1))

If we choosec, = 1then

(8-82) "

. ) 1 2n
(1+n22;‘(_1) (2@0.2n) (50, [f4n +12)) ” J

For a, =0, the second Frobenius solution is

[

(8-83) ¥,(x)=> cx"

n=0

From (8-76) andg =0, we must choosee’= .0From (8-77) andg = Owe

have
O
1
8-84 T = R 0, for k=2,3,4....
(8-84) G Zk(k—lj k(2k_1)0k_2 or
2
Hence,
¢’'=0,c/= 0 0= 0, ..
1 1 1
8-85 Do =) =)= SO
(6-85) 23 4T T4 (2&4)[@357)CO
D:_lk 1 O
= )(ZBlD..DZk)EQBUD..[Mk—l))CO

If we choosec;= 1then

00

AREDIES

(8-86) n=0

=1+i(_1)n 1 2n

2\ D@ 2n) BT 0. gan-1)

Since y,(x) and vy,(x) are linearly independent, the total solution is

y(x) = Ay,(x)+ Ay,(x), whereA, andA, are arbitrary constants.
(C2) a,-a,=0
In this case, from the indicial equation (8-57), kvew that the repeated

13
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roots are
1-q,(%)
2
With the method of Frobenius, the first Frobeniolsigon is

(8-87) a,=a,=

[

(8-88) yi(x) =" ¢ (x = %)

n=0

and the second Frobenius solution is proposedédfollowing form:
(8-89) Yo(x) = w()Inx =]+ 3 clx = )" for x# x,
n=1

whose derivatives are

¥5(%)= Vi ()i = x|+, (x)(x = ;)

(8:90) 3 e+ a)(xm w)
0= YI0mx =+ 25,00 =) = 7, bx =)
(8-91)

+ 3+ a)n+a -1 (x-x )

n=1

Substituting them into (8-47) yields

[P(xm(x)+q(xm(x)+R(x)yl(x)]m|x—xo|
P21 (3)(x = x) ™ = yu()x = 3 ) ] + Q) (x)(x = %, )
+P(Ych(n+a)n+ a - DY)

[

> &+ )x =)™+ R 6 (x-)™ =0
Since P(x)y;(x)+ Q(x)y;(x)+ R(x)y(x) =0, we have

P2y, 3)x = 3 )™ = v (X)(x = %) 2]+ QU (x)(x = ,)
(8-93) +P()Ycn+a)n+a, 1) (x=x )"

i+ ) (x= )+ RY eil—%,) =0

n=1

(8-92)

MSZ

+Q(x)

|_‘

Nl zMs

+Q(x)

1
=

n

Further premultiplying P™*(x)(x - x,)* yields

14
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[2,(x)(x = %) = yu(x)] + 0, (), (%)

(8-94) + z cn+a)n+a, -1)(x-x, )"
0, (0 e o )+, () =0

Hence, we have

M

YCUMARICERREERS 3
#2enra ), -

n=1

1
o

(8:99) q )( )
+ Zl mZ ot =22+, )(x = %, )™
+ZZCD p o)( _Xo)n+m+(11=0

n=1 m=0

which can be rewritten as

2c{al = qg(xo)](x_ %) +i ¢ qgmr)rEXO)(X_ . )

+§cn(2(n+al) 1)(x - Xo)n+al+zzc )(Xo)(x_Xo)n+m+0,1

n=1 m=0

(8:96)  +c(n+a)n+a, ~1)(x-x)"

n=1

+ z z o qgmr)rgxo)(n s a)x—x )

n=1 m=0

(m)
e

n=1 m=0
The first term can be deleted sineg _1—qu(x0)' and then
2oty (0 )x =) + 3 {2k + 1) ~x -, )™
=1 k=1
i“i %" (XO)( )+ icﬂ(k +a, )k +a, —1)(x—x, )<
L m — X s k 1 1 0
(8-97) o i q m)( )
DI T (e
P m
S m) (Xo) k+ar
+ C =0
;m Cem = X %)
or

15
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(8-98) > g x=x,)** =0

where the coefficientsy,, k=1,2,, are given as

e, %) fra)-)e S, B0

k!
(8-99)
k-1 (m) k-1 (m)
+c5(k+al)(k+al—1)+zc5_mqu(,x°”(k—m+al)+ o %)
m=0 m=0
From (8-98), we know thaig, = ,d.e.,
ay” (%)

k-1
o) o, (k) -1+ S o, B cificrancra,-1)
m=0

(8-100)

k- (m) k= (m)
e S0y S )

=0 mi =0 ml
for k=1,2,3;"". We can solvec, and then obtain the second Frobenius
solution y,(x) in (8-89) forx in some interval of-h, x+h) and x# x, .

Therefore, the total solution of the case (G2)-a, =0 with ¢,Z0 is

y(X) = Ayl(x) +AY, (X)
(8-101) _ (A_L YA In|x— Xo|) = c. (X— Xo)n+01 + Azicf(x— Xo)n+m

n=0

whereA, andA, are arbitrary constants. For simplicity, we oftdéwose c, = 1

Let’s consider the following homogeneous equati®m@ma example, which
Is expressed as

(8-102) Xy +xy +xy=0
which has a singular point &=0. It is easy to check that

_ ~(xox ) QW) X
(8-103) g, (%) = (x=x,) Pl o L
(8-104) ro(x)= (x- Xo)zs_x;: X g =x

Both are analytic ak,=0, and thusx,=0 is an RSP. Let the solution be a

Frobenius series shown as below:
(8-105) y(x)=> ¢ x"
wherea is a real number. Then, the derivatives are

16
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(n+a) n+a-1

Ms

y(x)=
(8-106) ”jo
x)=> c,(n+a)n+a-1)x?

n=0

Substituting them into (8-102) results in

@107) o n+afnra-1 4T ea)e +xY ox =0
n=0

>

ie.,

@108 Yo lkra)kra-1xT+3 g k+a)k T+ Y X =0
k=1

k=0 k=0

Hence, we have

(8-109) i@xk“’ =0
k=0
where
(8-110) @ =clala-1)+a)=ca*=0
(8-111) a=c(k+a)f+c_,=0, k=1,2,3,...

Assume ¢, # Q from (8-110) we know the indicial equation &8 =0, which

has repeated root&, = a, =0. Clearly, this is the case of (C2) and let thstfir

Frobenius solution be
(8-112) y(x)=> e XM =g+ ¢ X"
n=0 n=1
Then, from (8-111) we havey = ck(k + a'l)2 +c_,=ck*+c_,=0,ie,

(8-113) c =——<t, fork=1,23....

lzco, and so forth.

-1 1.1 (-1
Hence, ¢, = chcz— 2201_(1[2)2(:0 ----- Ck_( 1) (k!)

If we choosec, = 1then ¢, :(—1)"ﬁ fork=0,1,2,3,... and
2 1 3

(8-114) y,(x)= i(—l)“ixnzl—x+ix - Xt

(ntf (2~ @r

0
For the second solutiory,(x), from (8-89) we have

n=

(8-115) Vo(x) = (K + >

17
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and the derivatives are

-119) )= + 54 5 e
(6-117) 100= it + 2200 S g

Substituting them into (8-102) yields
(200 + x5 (x) + 53, () inf + 25, (x)

8-118 © % o
( ) +> n(n-2)cx" + > nex" + > cx™ =0
n=1 n=1 n=1
le.,
(8-119) 2xy,(x) + i n(n-1)cx" + i ncox” + i ¢l x"=0
n=1 n=1 n=2
From (8-114), we havey,(x)= i (-2)" _1 x"* and then (8-119) is
p— nt (n—1)!
written as
(8-120) i (-2)" 2 4 i n(n-1)c’x" + i nc-X" + i ¢’ x"=0
n=1 n! (n _1)' n=1 n=1 n=2
le.,
o_ <[ (_a\n 2 2.0, A0 |yn —
(8-121) @_2k+gi(ﬂlﬂm_ﬂ+nq+qﬂ}(—0
Hence, ¢’= 2and (-1)' " (n2—1)! +n’c+c’, =0, forn=1,2,3,..., i.e,
(8-122) =Lt - (-2 2 forn=1,2,3,...
"o n(n!)?
then
=S e
(8-123) =0

11 , 25 , 137
X - X + X+
108" 345¢°  43200(

The solution is y(x) = Ay, (x)+ A,y,(x) with A, andA, arbitrary constants.

(C3) a,—a,=N is apositive integer

In this case, if we still assume the second Frasesolution is similar to

the first Frobenius solution, i.e.,

18
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00

(8-124) o(x) = 3= 1)" % = chlx—x, ) + D elx—x, )"

n=0 n=1

with ¢; # 0, then from (8-65) we have

_ ; s Vb)) ]
(8-125) clk+a,)k+a, 1)+;c{(n+a'2 (=n) + (=n) =0
for k=1,2,3;", which can be further rewritten as
o T qt(xy) 1l
clk+a,)k+a,-1)+> c| (n+a,)7 = E:;’)+ Ek—(n);('))
n=1 - 4
o 0s) , 00|
:—COD|:O'2 qp % +rp %o
k! k!
Since @, and a, are the roots ofa® +alg, (%) -1)+r, (%) =0, we have
(8-127) a + ay(a, () =1)+1,(%,) =0
(8-128) a,+a, =1-q,(x,)

Hence, the coefficient ot in (8-126) is
(k)i a, =)+, Mo+ .) 1, ()

(8-129) =klk+2a, -1+, (%)) + a2 +a,(q,(x,) - 1)+r
:k(k+2a2—(a1+az)) ( ( )

N—
7\_

—_~
7\_
Z

N—

Hence, (8-126) becomes

" (k-n)t  (k-n)

n=

W(x) W
_ —c(?l:az qpk('xo) 0 k(lxo)}

cEk(k—N)+ch{(n+a2\q( %), 13 (Xo):l

(8-130)

Fork=1,2,...N-1, we have

(8-131) o'=-

[azq(pl) (>1<o_) +r) (Xo):l

_ @+ a)al )+ ()] o _[a
CZ_{ c;(2i()|\|) : }Cl { 2(2-N) %
ER LR e Ll Ry

(8-132) = Bico + 22— N) Co
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and so on. This implies that

(8-133) ¢ =f4¢c fork=1,2,..N-1
If k=N, we can conclude from that (8-130) that
N-1
(8-134) cN(N - N)+(20Niﬂ, +UN0jc§:cﬁN(N -N)+p,cl=0
i=1
N-1

where p, :ZaNi,Bi +0,,- If p,#0, ¢, must be zero, which violates the
i=1

assumptionc,# 0 If p, =0, we still cannot determinec,. Hence, the

second solution cannot be expressed as a Frobsaries.

Based on the above analysis, a second solutioerelift to the Frobenius

series is required and it is proposed as below:
(8-135) Y (%) = by, (x)In)x = x| + 3" e (x = %)™
n=0

where b may be zero or nonzero. Since the discussion o thse is

complicated, let’s just stop here.

Let's consider the following "-order ODE as an example, which is
expressed as
(8-136) xy'—y=0

[

which has a RSP a=0. Let y(x)=>¢,x™, then

n
n=0

c.(n+a)n+a-1)x"*t - i c, X"

NgE

n=0 n=0
(8-137) = i c,(n+a)n+a-1x"* - i C, X
n=0 n=1
=caa-1)x"* + i (c,(n+a)n+a-1)-c,, )x"*=0
n=1
Hence,
(8-138) c,a(@-1)=0
1
-1 = forn=1,2,3,....
(8-139) C, (n+a)(n+a—1)cn‘1’ orn=1,2,3,
Choose ¢, = 1then the indicial equation is
(8-140) ala@-1)=0
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with roots a; =1 and a,=0. Since a,-a, =1 is an integer, it is the third
case (8-C3) and the first solution is relatedap=1 and from (8-139) the

coefficients, fom=1,2,3,..., are

R S =(n—1)!C =(n—1)!(n—2)lC
P LA T
n-1) (n-2) (n—-3)! n-1f {(n-2) O
(8-141) =(n+1)! n! (n—l)!cn_s_m_(n+1)! N

10 1

“(h+)n “= (n+2)n

This gives us a Frobenius solution

yi(x)= D e X"t =x+ 2'11' x* + 3|12' X+ 4|13' X+
(8-142) n=0 H . L. R 4
3 4

1, 1 1
=X+ X=X+t +
27 127 144

Next, for a, =0, if we still use (8-137) to find the second saduati then

(8-143) n(n-1)c, =c,,, forn=1,2,3,.... (8-25-97)
It is easy to check thah= 1leads toc,= Q which is contrary to the
assumption ofc, # 0 Hence, to find the second solution, we have topad

(8-135) as below:

(8-144) y,(x) = by, (x)In x| + ZCDX”
Substituting it into (8-136) gets

b{xy2(x)~ Y 6N + 203,(x) - b ()

+> n(n-1ex"* - i cX"=0
n=0

n=2

(8-145)

S 1 n+1
Since xy/(x)-y,(x)=0 and y,(x)= nzz;) T X", we have

) = 2b _ b n - _ n-1_ S n—
(8-146) ;( AR n!jx +n2:;n(n 1)cix ;CEX 0
le.,
= (b b ). & )
(8-147) Z[ 5= Jx +3 n(n+1)c;,,x" —chDx =0
n+1) n=1
Then

21



Course: Differential Equations/NCTU/ECE/Yon-Pingebh

_ A0 S 2b _ b 0O _ A0lyn —
(8-148) b qﬁé( ORCET +n(n+1)c, cnjx =0
which leads to
(8-149) c =b
i o o1 [po_ 20+l .
(8-150) Coat n(n+1)(cn n!(n+1)! b], forn=1,2,3,....

Here, we choosec, = Hnd thenb= 1For (8-150), we choose, = €hen

CZD:—§, c,f:—l, cE:—i, and so on. Hence,
4 36 172¢
3 7 35
8-151 X)=y, (X)X +1-=x? —— x> ———x*-...
(8-151) Y2(x)= Yy (inpq + 127 =2 - =

and the total solution is
(8-152) Y(X) = A1Y1(X) +AY, (X)

whereA, andA; are arbitrary constants.
Bessel's Equation

In applied mathematics, one of the most importaDtE® is Bessel's

equation, which is expressed as

(8-153) X2y" + xy' +(x2 - Vz)y =0
wherev is assumed to be real and nonnegative, ez, . It Iltas been applied

to a lot of fields, such as electric fields andtiemduction.

Bessel's equation can be solved by the Frobenidsadeand its solutions
about the RSR,=0 are called Bessel functions. As mentioned, theteol is a

Frobenius series represented by
(8-154) y(x)=>"c,x™

Substituting (8-154) and its derivatives into (81 §ives

00 00

(8-155) i c(n+a)n+a-1xm"+> c (n+a)x™ +>c, (x2 - VZ)X““’ =0

n=0 n=0 n=0

which can be rearranged as

(8-156) i C, ((n +af - Vz)x”“’ + i C,, X" =0
n=2

n=0
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Hence,

(8-157) cla?-v?)=0

(8-158) c((@+17-v?)=0

(8-159) cn((n+cr)2 —V2)+ c_,=0, forn=2,3,.....

Assuming c, # Q (8-157) results in the indicial equation

(8-160) a’-v*=0

with roots @ =+v. Let a =v >0, then (8-158) reduces tg,(2v +1)=0.
Since 2v +1# Q we havec, =0 and from (8-159) we obtair,,,, = @or

n=1,2,3;". Therefore, only the coefficients,, existand also from (8-159) we

have
1
(8-161) CZ”:_ZZn(n+V)C2”_2' n=1,2,3;"
which results in
n 1
8-162 =(-1 , forn=1,2,3;".
( ) C,, ( ) 220 1) (1+V)(2+V)-~-(n+|/)co orn

The Frobenius solution fa0 is then expressed as

y = n 1 2n+y
G109 e )

with ¢, an arbitrary constant.

Now, let’s consider a specific case thvatn is an integer andc, =

2m

m
Then, (8-163) becomes

— (=) 1 _
(8-164) Con =(-1) ey (el n=0,1,2,3,

Note that this expression is also availablerfe®. In general, the solution is

purposely denoted ag(x) = J,, (x) where

(8-165) 3.0 =x"3 (1) L

(8-166) 3,(0)=x"S ()"
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which is called the Bessel function of the firsadkiof ordem. Based on ratio

test, this series converges very fast forxablecause of the factorials in the

denominator. Fon=0, the Bessel function of order @,o(x), is given as

(8-167)

oy ey ray

Forn=1, the Bessel function of order 1,(x), is given as

SRy 3 ()

= 22™mil (m+1)!

2m

(8-168) g - .

2 20)2) 2@2)@) 2@)@) "

The Bessel functions df, J; andJ, are shown below.

Bessel Functions of the First Kind for n = 0,1,2
1

Matlab commands “besseleg.m”

x =0:0.1:30;

J = zeros(8-5,301); ‘

fori=0:4 i
J(8-i+1,:) = besselj(8-i,x); g |

plot(8-x,J)

axis(8-[0 30 -.5 1]) T

grid on

xlabel(8-'x")

-0.5
0

ylabel(8-'J_n(8-x)")
legend(8-'J_0','J_1''J_2'/'Location’,'Best)
title(8-'Bessel Functions of the First Kind for r0:4,2")

The Frobenius solution fa-0, not an integer, has been given in (8-163).
Here, we will introduce the gamma function firstieh is related to the Bessel

function and defined as
(8-169) )= et "t
Then, we have

(8-170) rv+1)= j: e't"dt = —e™'t"

@ ® o tev-1 g _
0+|/.[0et dt =vr(v)
If v=1, from (8-169) we have

(8-171) r=[e'd=1
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and from (8-170), we have™ (2)=10r(1)=1, r(3)=2r(2)=2', and so
on. Clearly,
(8-172) rh+1)=n, n=0,1,2;"

This shows the gamma function generalizes the fiatfonction.

If v=nis a nonnegative integer, the solution is a Befss®ltion given in

(8-166) which can be represented as

(8-173) 3,(x)=x"S (-2)" X

e 2°™"mi /- (m+n+1)

2m

If vis a not an integer, the general solution is giuen8-163). Let the

coefficient ¢, = m then (8-163) becomey(x)=J,(x), where
v
J,(x) _1 v

) 2 (v +1)

o0 2n+y

*orv )2 Y e e ()

(8-174)

1 2n+v

- X
= = ¥ -1)"
2”0!r(u+1)x +;( ) 22 nl [ (n+v +1)

00 N X2n+v
=3'(-1
HZ;( ) 22l (n+v +1)

For the general solution of Bessel equation witmot an integer, the first

solution is J,(x) and the second solution i3_, (x), expressed as

2n-v

(8-175) 3, (x)= 2(— i) e nle(n )

Since J,(x) and J_,(x) are linear independent, the total solution is
(8-176) y(x)=AJ, (x)+ AJ_,(x)

where A and A, are constant.

For the case that=n is a nonnegative integer, a question is raised: Ca

we just simply assign

e x2m
8-177 I ()=x">(-2)"
( ) ) =x mzzo( ) 2" mi /- (m-n+1)

as the second solution? The answer is NO! Let'$a@x|it here. First, from the

truth /(M-n+1)=c for m<n, we rewrite (8-177) as
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o0 2m

(8-178) 3,00 = Y (Y ;(m_ g (©2629)

Let m=n+s, then

2n+2s

AN X
J_n - ’ _1 " 2n+2s-n
(8-179) (X) " ;( ) 2 (n + s)! f(s+1)

non > s X2$ n
=(-1 B S— | L}
That meansJ_, (x) is not independent tal (x). Hence, (8-177) is not the

second solution and we have to determine the sesantion by the method of
Frobenius of the case (C3). The resulted secondisolis called the Bessel
function of the second kind. Since the derivatiérthe second solution is too

complicated, we will stop the discussion here.
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