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7. Linear Second-Order Ordinary Differential Equations  

In engineering, 2nd-order ODEs have been widely adopted to describe 

dynamic systems, such as an inverted pendulum and an object in simple 

harmonic motion. A 2nd-order ODE is generally expressed as 

(7-1) ( ) 0=′′′ y,y,y,xF  

For example, 032 =−′+′′ xyyy  and 0=−′′ xyeyx  are 2nd-order ODEs. 

For the 2nd-order ODE (7-1) on an interval I, if there is a function ( )xϕ  

that satisfies 

(7-2) ( ) 0=′′′ ϕϕϕ ,,,xF  for all x in I 

then ( )xy ϕ=  is a solution of (7-2). For example, 

(7-3) ( ) xcosxx 2=ϕ  

is a solution of 

(7-4) ( ) 01222 22 =++′−′′ yxyxyx  

for x>0. This can be verified by substituting ( )xy ϕ=  into (7-4). 

Since it is more complicated to solve a 2nd-order ODE than 1st-order, this 

topic will only focus on the simpler case, the linear 2nd-order ODEs. 

In general, a linear 2nd-order ODE in an interval I is often represented by 

the following form 

(7-5) ( ) ( ) ( ) ( )xRyxQyxPyxW =+′+′′  

where ( ) 0≠xW  and W(x), P(x), Q(x) and R(x) are continuous in the interval I. 

Taking monic process on (7-5) results in 

(7-6) ( ) ( ) ( )xryxqyxpy =+′+′′  

and in what follows, (7-6) will be adopted for discussion. 

Similar to 1st-order ODE, it is required to ensure the existence and 

uniqueness of the solution of (7-6). Let’s consider the following example 

(7-7) xy 6=′′  

whose solution is 

(7-8) ( ) KCxxxy ++= 3  

where C and K are two arbitrary constants. Clearly, this is different from the 
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1st-order case whose solution only has one arbitrary constant. If we are given 

one initial condition, such as y(0)=3, then K=3, i.e., 

(7-9) ( ) 33 ++= Cxxxy  

To determine C, obviously, we require an extra condition, such as ( ) 10 −=′y , 

which results in C=−1. That means under the conditions y(0)=3 and ( ) 10 −=′y , 

the solution (7-8) can be uniquely determined as 

(7-10) ( ) 33 +−= xxxy  

Since both y(0)=3 and ( ) 10 −=′y  are given at the initial point x=0, the above 

problem is known as an IVP. On the other hand, if we are given y(0)=3 and 

y(1)=6, then K=3 and C=2; clearly, the solution is still unique and obtained as 

(7-11) ( ) 323 ++= xxxy  

Since the condition y(1)=6 is not given at the initial point x=0, it is not an IVP; 

instead, we call it the boundary value problem or BVP for short. 

Next, let’s discuss the existence and uniqueness of the IVP of a linear 

2nd-order ODE, described as below: 

(7-12) ( ) ( ) ( )xryxqyxpy =+′+′′ ,  ( ) 00 yxy =  and ( ) 00 yxy ′=′  

Consider the simpler case that r(x)=0 for all x and the initial conditions 

( ) 00 yxy =  and ( ) 00 yxy ′=′  are neglected. Then, we have 

(7-13) ( ) ( ) 0=+′+′′ yxqyxpy  

which is known as the homogeneous equation of (7-12). Assume ( )xy1  and 

( )xy2  are two nonzero solutions of (7-13) and they are linearly independent, 

i.e., ( ) ( )xkyxy 21 ≠  for 0≠k . Hence, we have 

(7-14) ( ) ( ) 0=+′+′′ iii yxqyxpy ,  i=1,2 

Let ( ) ( ) ( )xycxycx 2211 +=ϕ , which is a linear combinations of ( )xy1  and 

( )xy2  with constant coefficients c1 and c2. It is easy to check that 

(7-15) ( ) ( ) ( ) ( )( ) 0
2

1

=+′+′′=+′+′′ ∑
=i

iiii yxqyxpycxqxp ϕϕϕ  

Therefore, ( ) ( ) ( )xycxycx 2211 +=ϕ  is the homogeneous solution of (7-13). 

To use the linear combinations ( ) ( ) ( )xycxycx 2211 +=ϕ  as the solution, it 

is required that ( )xy1  and ( )xy2  are independent. There is a test, called 
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Wronskian Test, to tell whether ( )xy1  and ( )xy2  are linear independent or 

not. Let’s define the Wronskian of ( )xy1  and ( )xy2  as below: 

(7-16) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )xyxyxyxy

xyxy

xyxy
xW 1221

21

21   ′−′=
′′

=  

and its derivative is 

(7-17) 

( )

( ) ( )( ) ( ) ( )( )

( )( ) ( ) ( )xWxpyyyyxp

yxqyxpyyxqyxpy

yyyyyyyyyyyyxW

−=′−′−=

−′−−−′−=

′′−′′=′′−′′−′′+′′=′

1221

112221

122112122121

          

          

 

 

Hence, 

(7-18) ( ) ( )∫=
− dxxp

AexW  

where A is a constant and 
( )

0≠∫− dxxp
e  for all x in I. Clearly, if there exists 

( ) 00 =xW  at a point 0xx =  in I, then we have A=0 which means ( ) 0=xW  

for all x in I. On the other hand, if there exists ( ) 00 ≠xW  at a point 0xx =  in 

I, then we have A≠0 which means ( ) 0≠xW  for all x in I. Hence, the above 

analysis comes to the conclusion: Either W(x)=0 or ( ) 0≠xW  for all x in I. 

Moreover, it is easy to check that if ( )xy1  and ( )xy2  are linearly 

dependent, i.e., ( ) ( )xkyxy 21 = , then ( ) ( )xykxy 21 ′=′  and  

(7-19) ( ) ( ) ( )
( ) ( ) 01221

21

21 =′−′=
′′

= yyyy
xyxy

xyxy
xW  

Hence, if ( ) 0≠xW  then ( ) ( )xkyxy 21 ≠ , or ( )xy1  and ( )xy2  are linearly 

independent. Conversely, if ( ) 01221 =′−′= yyyyxW  then  1221 yyyy ′=′  or 

2

2

1

1

y

y

y

y ′
=

′
, which is equivalent to cylnyln += 21  or 21 kyy =  with cek = . 

That means if ( ) ( )xkyxy 21 ≠  then ( ) 0≠xW . 

To sum up, the linear independency of ( )xy1  and ( )xy2  can be 

checked by the Wronskian ( )0xW  at any specific point 0xx = . If ( ) 00 ≠xW , 

then ( )xy1  and ( )xy2  are linearly independent, otherwise they are linearly 

dependent. 



Course: Differential Equations/NCTU/ECE/Yon-Ping Chen 

4 

Consider 04 =−′′ yy , which has two solutions xey 2
1 =  and xey 2

2
−= . 

The Wronskian is 

(7-20) ( ) 0422
22 22

22

≠−=−−=
−

= −

−

xx

xx

ee

ee
xW  

which means xey 2
1 =  and xey 2

2
−=  are linearly independent. Thus, their 

linear combination ( ) xx ececx 2
2

2
1

−+=ϕ with constant coefficients c1 and c2 is 

also a solution of 04 =−′′ yy . 

Further consider 0=−′′ xyy . It seems simple, but actually it is not easy 

to get the solution. Under such situation, we often solve it by the power series 

method, which will be introduced later, and obtain two solutions 

(7-21) ( ) ( )
( )∑

∞

=

−⋅⋅+=
1

3
1 3

23741
1

k

kx
!k

k
xy

L
 

(7-22) ( ) ( )
( )∑

∞

=

+

+
−⋅⋅+=

1

13
2 13

13852

k

kx
!k

k
xxy

L
 

It is not so easy to evaluate he Wronskian of ( )xy1  and ( )xy2  at any x in I. 

However, if we calculate the Wronskian at x=0, we will find that 

(7-23) ( ) ( ) ( ) ( ) ( ) 01001100000 1221 ≠=×−×=′−′= yyyyW  

Since ( ) 00 ≠W  implies ( ) 0≠xW  for all x, we know that ( )xy1  and ( )xy2  

are linearly independent. 

Next, consider the case of ( ) 0≠xr  in (7-12) and neglect the initial 

conditions ( ) 00 yxy =  and ( ) 00 yxy ′=′ . Then, we have 

(7-24) ( ) ( ) ( )xryxqyxpy =+′+′′  

which is called the nonhomogeneous equation. Similar to the 1st-order linear 

ODE, first we determine ( )xy1  and ( )xy2  for ( ) 0=xr  and obtain the 

homogeneous solution ( ) ( ) ( )xycxycxyh 2211 += , which satisfies 

(7-25) ( ) ( ) 0=+′+′′ hhh yxqyxpy  

Then, find a particular solution ( )xyp , which satisfies 

(7-26) ( ) ( ) ( )xryxqyxpy ppp =+′+′′  

From (7-25) and (7-26), it can be obtained that 

(7-27) ( ) ( ) ( )xrxqxp =+′+′′ ϕϕϕ  
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where 

(7-28) ( ) ( ) ( ) ( ) ( ) ( )xyxycxycxyxyx pph ++=+= 2211ϕ  

Clearly, ( )xϕ  is the solution of the nonhomogeneous equation (7-24). 

Order Reduction Method for Homogeneous Equations 

For a 2nd-order linear homogeneous ODE, there are two independent 

solutions. Most importantly, if a solution is obtained first, then the second 

solution can be determined by the order reduction method, which will be 

introduced below. 

Suppose that we have found a homogeneous solution ( ) 01 ≠xy  for the 

2nd-order ODE 

(7-29) ( ) ( ) 0=+′+′′ yxqyxpy  

Then choose the second solution as 

(7-30) ( ) ( ) ( )xyxxy 12 µ=  

whose first and second derivatives are 

(7-31) 112 yyy ′+′=′ µµ  

(7-32) 1112 2 yyyy ′′+′′+′′=′′ µµµ  

Since ( ) ( ) 0222 =+′+′′ yxqyxpy , we have 

(7-33) ( ) ( )( ) ( ) 02 111111 =+′+′+′′+′′+′′ yxqyyxpyyy µµµµµµ  

i.e., 

(7-34) ( )( ) ( ) ( )( ) 02 111111 =+′+′′++′′+′′ yxqyxpyyxpyy µµµ  

Due to the fact that ( ) ( ) 0111 =+′+′′ yxqyxpy , (7-34) can be written as 

(7-35) ( )( ) 02 111 =+′′+′′ yxpyy µµ  

Since 01 ≠y , it can be changed into 

(7-36) ( ) 0=′+′′ µβµ x  

where ( ) ( )
1

12
y

y
xpx

′
+=β . Let ( ) ( )xxz µ′= , then 

(7-37) ( ) 0=+′ zxz β  

Clearly, the 2nd-order ODE (7-29) is reduced to the 1st-order ODE (7-37). That 

is why we call the above process as the order-reduction method. The solution 

of (7-37) can be solved as 
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(7-38) ( ) ( )∫=
− dxx

Cexz
β

 

with C constant. Since ( ) ( )xxz µ′=  and ( ) ( ) ( )xyxxy 12 µ= , we have 

(7-39) ( ) ( )
∫∫ ∫==

−
dxeCdxxz

dxxβµ  

(7-40) ( ) ( ) ( ) ( ) ( )
∫ ∫==

−
dxexCyxyxxy

dxxβµ 112  

Here, ( )xy1  and ( )xy2  are linearly independent since the Wronskian is 

(7-41) ( ) ( ) ( ) 2
1

2
1111112121 zyyyyyyyyyyyxW =′=′−′+′=′−′= µµµµ  

Clearly, ( ) 0≠xW  because ( ) ( )
0≠∫=

− dxx
Cexz

β
 and 01 ≠y . Thus, y1(x) and 

y2(x) are linearly independent. 

Consider the 2nd-order CODE 02 2 =+′+′′ yyy ωω  which has a repeated 

eigenvalue ω and two homogeneous solutions ( ) xexy ω−=1  and ( ) xxexy ω−=2 . 

Here, we assume ( ) xexy ω−=1  is given and then use the order-reduction 

method to determine the second solution ( ) xxexy ω−=2 . 

According to the order-reduction method, the second solution is defined 

as ( ) ( ) ( ) ( ) xexxyxxy ωµµ −== 12 . Then, its first and second derivatives are 

obtained as 112 yyy ′+′=′ µµ  and 1112 2 yyyy ′′+′′+′′=′′ µµµ . Substitute them into 

the CODE 02 2 =+′+′′ yyy ωω  and we have 

(7-42) 02222 111111 =′+′−′′=′+′′+′′ yyyyyy µωµωµµωµµ  

i.e., 01 =′′yµ . Since 01 ≠y , we have 0=′′µ . Then, ( ) dcxx +=µ  and the 

second solution is 

(7-43) ( ) ( ) ( ) xxx decxeexyxxy ωωωµµ −−− +=== 12  

Since only the term not in the form of ( ) xexy ω−=1  is needed, we choose c=1 

and d=0, i.e., the second solution is shown as below: 

(7-44) ( ) xxexy ω−=2  

The Wronskian is 

(7-45) ( ) ( ) 022
2121 ≠=+−=′−′= −−−−− xxxxx exexeeeyyyyxW ωωωωω ωω  

for all x. Hence, ( ) xexy ω−=1  and ( ) xxexy ω−=2  are linearly independent, and 

form a fundamental set of solutions for all x. Finally, the solution of the 
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homogeneous equation is 

(7-46) ( ) xx xececxy ωω −− += 21  

with arbitrary constants c1 and c2. 

Let’s consider the other example ( ) 0
1

1
1

1 =
+

+′
+

−′′ y
xx

y
x

y  for x>0, 

which has a solution ( ) xxy =1 . The other solution is defined as ( ) ( )xxxy µ=2 . 

Then, µµ +′=′ xy2  and µµ ′+′′=′′ 22 xy . Substituting them into the ODE 

yields ( ) ( ) ( ) 0
1

1

1

1
2 =

+
++′

+
−′+′′ x

xx
x

x
x µµµµµ . Let µ′=z , then we have 

(7-47) 0
1

12 =








+
−+′ z

xx
z  

which results in ( )
1

111
1

2

12

+
+−=+= −−

xxx
xxz  and 

(7-48) 






 ++−== ∫ x
ln

x
zdx

1
1

1µ  

Therefore, the second solution is 

(7-49) ( ) ( ) 






 ++−==
x

lnxxxxy
1

112 µ  

Since ( ) xxy =1  and ( ) 






 ++−=
x

lnxxy
1

112  are linearly independent. The 

homogeneous solution is 

(7-50) ( ) 






 ++−+=
x

x
lnxcxcxy

1
121  

with arbitrary constants c1 and c2. 

Cauchy-Euler Differential Equations 

A Cauchy-Euler equation, or simply called Euler equation, is generally 

expressed as 

(7-51) ( ) ( ) 001
2

2
11

1 =+′+′′+++ −−
− yayxayxayxayxa nn

n
nn

n L  

which is defined on the half line x>0 or x<0. In this section, we will focus on 

the 2nd-order case, given as 

(7-52) 001
2 =+′+′′ yayxayx  

and defined on the right half line x>0. 
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The most common way is to transform (7-52) into a CODE by setting 

tex =  and ( ) ( ) ( )tzeyxy t == . Then, the first derivative of y(x) is 

(7-53) ( ) ( ) ( ) tt etzetz
dt

dx

dt

dz

dx

dt

dt

dy

dx

dy
xy −′=′====′  

i.e.,  

(7-54) ( ) ( ) ( )tzxyexyx t ′=′=′  

The second derivative is 

(7-55) 
( ) ( )( ) ( )( ) ( )( )

( ) ( )( ) ( ) ( ) ttttt

t
tt

t

etzetzeetzetz

e
dt

etzd

dx

dt

dt

etzd
etz

dx

d

dx

dy

dx

d
xy

22          −−−−−

−
−−

−

′−′′=′−′′=

′
=

′
=′=







=′′
 

i.e., 

(7-56) ( ) ( ) ( ) ( )tztzxyexyx t ′−′′=′′=′′ 22  

Hence, (7-52) can be changed into 

(7-57) ( ) ( ) ( ) ( ) 01 01 =+′−+′′ tzatzatz  

which is a 2nd-order CODE and z(t) can be solved by the methods introduced 

before. Since tex = , i.e., xlnt = , the solution is then obtained as 

( ) ( ) ( )xlnztzxy
xlnt

==
=

, for x>0. Next, let’s use some examples for 

demonstration. 

Consider the 2nd-order ODE 0242 =+′+′′ yyxyx  for x>0. By setting 

tex =  and ( ) ( ) ( )tzeyxy t == , the differential equation is transformed to 

(7-58) ( ) ( ) ( ) 023 =+′+′′ tztztz  

whose characteristic equation is ( )( ) 021232 =++=++ λλλλ  with roots 

1−=λ  and 2−=λ . Hence,  

(7-59) ( ) tt ecectz 2
21

−− +=  

From tex = , we have xlnt =  and then  

(7-60) ( ) ( ) 2
2

1
1

2
21

−−−− +=+== xcxcececxlnzxy xlnxln  

which is the solution of 0242 =+′+′′ yyxyx  for x>0. 

Consider the 2nd-order ODE 0432 =+′−′′ yyxyx  for x>0. Let tex =  

and ( ) ( ) ( )tzeyxy t == , the differential equation is transformed to 

(7-61) ( ) ( ) ( ) 044 =+′−′′ tztztz  
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whose characteristic equation is ( ) 0244 22 =−=+− λλλ  with repeated root 

2=λ . Hence, 

(7-62) ( ) tt tecectz 2
2

2
1 +=  

From tex = , we have xlnt =  and then  

(7-63) ( ) ( ) ( ) xlnxcxcexlncecxlnzxy xlnxln 2
2

2
1

2
2

2
1 +=+==  

which is the solution of 0432 =+′−′′ yyxyx  for x>0. 

Consider the 2nd-order ODE 022 =+′−′′ yyxyx  for x>0, with initial 

conditions ( ) 11 =y  and ( ) 01 =′y . Let tex =  and ( ) ( )tzxy = , the differential 

equation is transformed to 

(7-64) ( ) ( ) ( ) 022 =+′−′′ tztztz  

whose characteristic equation is ( )( ) 011222 =−−+−=+− jj λλλλ  with 

roots j±= 1λ . Hence,  

(7-65) ( ) tsinectcosectz tt
21 +=  

From tex = , we have xlnt =  and then  

(7-66) 
( ) ( ) ( ) ( )

( ) ( )xlnsinxcxlncosxc

xlnsinecxlncosecxlnzxy xlnxln

21

21

        +=
+==

 

According to the initial conditions ( ) 11 =y  and ( ) 01 =′y , we have 11 =c  

and 12 −=c . Hence, ( ) ( ) ( )xlnsinxxlncosxxy −=  for x>0. 

Linear Nonhomogeneous Equations 

After the homogeneous solution hy  is solved, the general solution of the 

linear nonhomogeneous equation 

(7-67) ( ) ( ) ( )xryxqyxpy =+′+′′  

can be expressed as ph yyy += , where py  is a particular solution. Here, we 

will introduce the method to determine a particular solution, which is similar to 

the order-reduction method used to find the second homogeneous solution. 

Let 1y  and 2y  be the independent homogeneous solutions of (7-67). 

We assume the particular solution is related to 1y  and 2y  as below: 

(7-68) ( ) ( ) 2211 yxyxyp µµ +=  



Course: Differential Equations/NCTU/ECE/Yon-Ping Chen 

10 

in which ( )x1µ  and ( )x2µ  are two differentiable functions. Then,  

(7-69) 22221111 yyyyyp ′+′+′+′=′ µµµµ  

Further assume 

(7-70) 02211 =′+′ yy µµ  

then (7-69) becomes 

(7-71) 2211 yyyp ′+′=′ µµ  

Then, the second derivative of py  is 

(7-72) 22221111 yyyyy p ′′+′′+′′+′′=′′ µµµµ  

Substitute these terms into (7-67) and obtain 

(7-73) ( ) ( ) rqyypyqyypyyy =+′+′′++′+′′+′′+′′ 222211112211 µµµµ  

Since 0111 =+′+′′ qyypy  and 0222 =+′+′′ qyypy , (7-73) can be reduced as 

(7-74) ryy =′′+′′ 2211 µµ  

Solve (7-70) and (7-74), and achieve 

(7-75) 
W

ry2
1 −=′µ   and  

W

ry1
2 =′µ  

where 2121 yyyyW ′−′=  is the Wronskian of 1y  and 2y . After determine 1µ  

and 2µ  from (7-75), we have a particular solution as shown in (7-68). 

For example, if we want to find the solution for xsecyy =+′′ 4 , then 

first solve the homogeneous solutions, which are xcosy 21 =  and xsiny 22 = . 

The Wronslian is 22121 =′−′= yyyyW  and from (7-75) we have 

(7-76) 
2

2
1

xsinxsec−=′µ   and  
2

2
2

xcosxsec=′µ  

Then,  

(7-77) xcosdxxsindx
xsinxsec =−=−= ∫∫ 2

2
1µ  

(7-78) 

xtanxseclnxsin

dxxsecxcosdx
xcosxsec

+−=








 −== ∫∫

2
1

     

2
1

2
2

2µ
 

From (7-68), a particular solution can be obtained as 

(7-79) 






 +−+=+= xtanxseclnxsinxsinxcosxcosvyuyy p 2

1
2221  
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Hence, the general solution is 

(7-80) 







 +−+

++=

xtanxseclnxsinxsin

xcosxcosxsincxcoscy

2
1

2        

221

 

Next, find the general solution for 1
44 2

2 +=+′−′′ xy
x

y
x

y  for x>0. Two of 

the independent homogeneous solutions are xy =1  and 4
2 xy = . The 

Wronslian is 4
2121 3xyyyyW =′−′=  and from (7-75) we have 

(7-81) 
( )

4

24

1 3

1

x

xx +−=′µ   and  
( )

4

2

2 3

1

x

xx +=′µ  

Then,  

(7-82) xxdx
x

3

1

9

1

3

1 3
2

1 −−=+−= ∫µ  

(7-83) ( ) 231
2 6

1

3

1

3

1 −−− −=+= ∫ xxlndxxxµ  

From (7-68), a particular solution can be achieved as 

(7-84) xlnxxxvyuyy p
424

21 3

1

2

1

9

1 +−−=+=  

Hence, the general solution is 

(7-85) xlnxxxxcxcy 4244
21 3

1
2
1

9
1 +−−+=  


