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6. Special First-Order Ordinary Differential Equations 

Linear Differential Equations 

A 1st-order ODE is said to be linear if it can be expressed by the 

following form 

(6-1) ( ) ( )xqyxpy =+′  

where p(x) and q(x) are continuous on an interval I of x. The linearity can be 

seen from the terms on the left-hand side, which are defined as 

(6-2) [ ] ( )yxpyyL +′≡  

It is easy to check that [ ] [ ] [ ]22112211 yLayLayayaL +=+ , i.e., the operator (6-2) 

satisfies the superposition principle. Hence, [ ] ( )yxpyyL +′≡  is a linear 

operator and we call (6-1) a linear ODE. 

To solve the 1st-order linear ODE (6-1), we can adopt the method of 

integrating factor by choosing ( )dxxpe ∫=µ . Then, multiply ( )dxxpe∫=µ  to (6-1) 

and obtain 

(6-3) ( ) ( ) ( ) ( ) ( ) 0=′+− ∫∫∫ yeexqyexp dxxpdxxpdxxp  

where ( ) ( ) ( ) ( )dxxpdxxp exqyexpM ∫∫ −=  and ( )dxxpeN ∫= . Since 

(6-4) ( ) ( )dxxpexp
x

N

y

M ∫=
∂
∂=

∂
∂

 

we know that (6-3) is exact and a potential function ϕ  exists such that 

M
x

=
∂
∂ϕ

 and N
y

=
∂
∂ϕ

. Hence, from ( )dxxpeN
y

∫==
∂
∂ϕ

, we have 

(6-5) ( ) ( )xgye dxxp += ∫ϕ  

which leads to 

(6-6) ( ) ( ) ( )xgyexp
x

dxxp ′+=
∂
∂ ∫ϕ

 

Further from ( ) ( ) ( ) ( )dxxpdxxp exqyexpM
x

∫∫ −==
∂
∂ϕ

, we obtain 

(6-7) ( ) ( ) ( )dxxpexqxg ∫−=′  

Let 

(6-8) ( ) ( ) ( )
∫ ∫−= dxexqxg dxxp  
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then the potential function is 

(6-9) ( ) ( ) ( )
∫ ∫∫ −= dxexqye dxxpdxxpϕ  

and the solution is  

(6-10) ( ) ( ) ( ) Cdxexqye dxxpdxxp =− ∫ ∫∫  

or explicitly expressed as 

(6-11) ( ) ( ) ( ) ( )dxxpdxxpdxxp Cedxexqey ∫−∫∫− += ∫  

with C constant. This is also the explicit solution of ( ) ( )xqyxpy =+′  because 

the integrating factor ( ) 0≠= ∫ dxxpeµ . 

In fact, the 1st-order linear ODE (6-1) can be also solved from by 

multiplying the integrating factor 
( )∫ dxxp

e , i.e., 

(6-12) 
( ) ( ) ( ) ( ) ( )∫=∫+′∫ dxxpdxxpdxxp

exqyexpye  

Since 
( ) ( ) ( ) ( )

yexpyeye
dx

d dxxpdxxpdxxp ∫+′∫=





 ∫ , we have 

(6-13) 
( ) ( ) ( )∫=






 ∫ dxxpdxxp

exqye
dx

d
 

which leads to 

(6-14) 
( ) ( ) ( )

Cdxexqye
dxxpdxxp

+∫=∫ ∫  

with C constant. Clearly, 

(6-15) 
( ) ( ) ( ) ( )∫+∫∫=

−−

∫
dxxpdxxpdxxp

Cedxexqey  

same as the solution shown in (6-11). 

The solution (6-15) is not unique since constant C is arbitrary. As 

mentioned before, C can be uniquely determined if the initial condition 

( ) 00 yxy =  is given. Rewrite (6-15) as 

(6-16) ( ) ( ) ( ) ( ) ( )∫+∫∫=
−−

∫
x

xx

x

x
dpx

x

dpdp

Cedeqexy 0

0

00
λλλλλλ

ττ
τ

 

and then, 

(6-17) ( ) ( ) ( ) ( ) ( )
00

0

0
0

0

0

0

0 yCCedeqexy
x

xx

x

x
dpx

x

dpdp

==∫+∫∫=
−−

∫
λλααλλ

ττ
τ

 

In conclusion, for the following IVP 
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(6-18) ( ) ( )xqyxpy =+′ ,   ( ) 00 yxy =  

the solution can be uniquely determined as 

(6-19) 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )∫+∫=

∫+∫∫=

−−

−−

∫

∫
x

x

x

x

xx

x

x

dpx

x

dp

dpx

x

dpdp

eydeq

eydeqexy

0

0

0

0

00

0

0

         
λλλλ

λλλλλλ

ττ

ττ

τ

τ

 

Next, let’s take some examples of 1st-order ODE for demonstration. 

Consider xsinyy 32 =+′  with initial condition y(0)=1. Since p(x)=2, 

the integrating factor is given as 

(6-20) ( ) xdxxp ee 2== ∫µ  

Multiplying xe2=µ  yields xsineyeye xxx 32 222 =+′ , i.e., 

(6-21) ( ) xsineye
dx

d xx 322 =  

Hence, 

(6-22) CxcosexsineCdxxsineye xxxx +−=+= ∫ 3
13
3

3
13
2

3 2222  

i.e., the solution is 

(6-23) ( ) xCexcosxsiny 23332
13
1 −+−=  

From the initial condition y(0)=1, we have C+−=
13
3

1 , or 
13
16=C , and then  

(6-24) ( ) xexcosxsiny 2

13
16

3332
13
1 −+−=  

which is the unique solution for y(0)=1. 

Consider the other example of 1st-oreder linear ODE with initial 

condition, which is given as 

(6-25) 22
xy

x
y =+′ ,   y(1)=2 

where x≠0. Since ( )
x

xp
2=  and ( ) 2xxq = , the integrating factor is 

(6-26) ( ) 22 xee xlndxxp === ∫µ ,  for 0≠x  

Multiplying (6-25) by 2x=µ  yields 42 2 xxyyx =+′ , i.e., ( ) 42 xyx
dx

d = . 
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Hence, Cxyx += 52

5

1
 or 

2
3

5

1

x

C
xy += . From the initial condition y(1)=2, it 

can be obtained that C+=
5

1
2  or 

5

9=C . Therefore, the solution is 

(6-27) 
2

3

5

9

5

1

x
xy += ,  for 0≠x  

which is a unique solution. 

For some linear ODEs, their form may be simple but their solutions 

cannot be expressed in a closed form. For example, 

(6-28) 1=−′ xyy  

which seems quite simple; however, its solution is obtained as 

(6-29) 222 222 xxx Cedxeey += ∫
−  

where dxe x

∫
− 22

 cannot be written into a closed form. 

Homogeneous Equations 

A 1st-order ODE ( )y,xfy =′  can be also expressed as the following 

form ( ) ( ) 0=′+ yy,xNy,xM , or 

(6-30) ( ) ( )
( )yxN

yxM
yxfy

,

,
, −==′  

If both ( )yxM ,  and ( )yxN ,  are homogeneous functions, which have the 

same degree n, i.e., ( ) ( )yxMyxM n ,, λλλ =  and ( ) ( )yxNyxN n ,, λλλ =  where 

λ is a factor. For example, the polynomial ( ) 22 57 yxyxy,xM ++=  contains 

there terms of degree 2, i.e., it is a homogeneous function of degree 2. Hence, 

( ) ( )y,xMyxyxy,xM 222222 57 λλλλλλ =++= . Now, let’s change (6-30) into 

(6-31) 
( )
( )

( )
( )

( )
( ) ( )yxf

yxN

yxM

yxN

yxM

yxN

yxM
y

n

n

λλ
λλ
λλ

λ
λ

,
,

,

,

,

,

, =−=−=−=′  

Let 
x

1=λ , then 
( )
( )xyN

xyM

x

y
fy

,1
,1

,1 −=






=′ . For simplicity, it is often simply 

written as 

(6-32) 






=′
x

y
fy  

and called a homogeneous equation for 0≠x . 
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Note that the term “homogeneous equation” used here means the 

equation is formed by a homogeneous function, which is different to the 

“homogeneous equation” of an ODE without q(t) on the right hand side. 

Let’s define 
x

y
u = , then uxy =  and uxuy ′+=′ . Hence, (6-32) can 

be changed into ( )ufuxu =′+ , or 

(6-33) ( ) x

dx

uuf

du =
−

 

which is an ODE with separable variables. After integrating, we can obtain u 

and the solution is y=ux. 

Consider the 1st-order ODE y
x

y
yx 2

2

−=′  for 0≠x , which can be 

further rewritten as 

(6-34) 
( )
( )y,xN

y,xM

x

xyy
y −=−=′

2

2 2
 

with ( ) xyyy,xM 22 +−=  and ( ) 2, xyxN = . Both ( )y,xM  and ( )y,xN  are 

homogeneous functions of order 2 and then 

(6-35) 






=−






=′
x

y
f

x

y

x

y
y 2

2

 

Define 
x

y
u = , then uxy =  and uxuy ′+=′ . Hence, uuuxu 22 −=′+ , i.e., 

uuux 32 −=′ , or 

(6-36) 
x

dx

uu

du =
− 32

 

After integration, we have 1
3 33 Cxlnulnuln =−−−  with C1 constant. That 

means 13
3

3 Ce
ux

u ±=−
 or  

(6-37) 
31

3
Cx

x
y

−
=  

where 13CeC ±=  and 0≠x . 

Bernoulli Equations 

A 1st-order ODE is called Bernoulli equation if it is expressed as the 
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following form 

(6-38) ( ) ( ) αyxryxpy =+′  

in which α  is a real number. 

The Bernoulli equation (6-38) is possessed of separable variables if 

1=α  and is linear if 0=α . For the case of 1≠α , (6-38) can be transformed 

to a linear equation by defining 

(6-39) α−= 1yv  

Its derivative is ( ) yyv ′−=′ −αα1  and from (6-38) we have 

(6-40) ( ) ( ) ( )( ) ( ) ( ) ( )( )vxpxryxpyxryv −−=−−=′ − αα αα 11  

or 

(6-41) ( ) ( ) ( ) ( )xrvxpv αα −=−+′ 11  

which is linear and can be solved by the methods introduced before. 

Consider 22xyxyy =+′ , which is a Bernoulli equation with 2=α , 

where ( ) xxp =  and ( ) xxr 2= . Let 11 −− == yyv α , then 

(6-42) ( ) xvxxyxyyyyv +−=−−=′−=′ −− 22 222  

or 

(6-43) xxvv 2−=−′  

which is a linear ODE. Then, choose ( ) 22xdxx ee −∫ − ==µ  as the integrating 

factor whose derivative is µµ xxe x −=−=′ − 22

. Then, multiplying µ into (6-43) 

gets xxvv µµµ 2−=−′  or xvv µµµ 2−=′+′ . Hence,  

(6-44) ( ) ( ) xdxdxvvvd µµµµ 2−=′+′=  

which results in 

(6-45) ( ) CeCdxeCdxxv xx +=+−=+−= −−
∫∫

222 22

22µµ  

Hence, Ceye xx += −−− 212 22

2  or 

(6-46) 
22

2

1
xCe

y
+

=  

which is the explicit solution of 22xyxyy =+′ . 

For the example of discharging water through a drain hole at the bottom 

of a tank, the related ODE is 



Course: Differential Equations/NCTU/ECE/Yon-Ping Chen 

7 

(6-47)                                     2
2

gh
r

a

dt

dh

π
−=  

or  

(6-48)                                 
2

2

1

2
h

r

ga
h

π
−=′  

which is a Bernoulli equation with 
2
1=α , 

( ) 0=xp  and ( )
2

2

r

ga
xr

π
−= . Let 2

1
1 hhv == −α , then 

(6-49) 
2

2

1

2
2

1

2

1

2

2

2

1

2

1

r

ag
h

r

ga
hhhv

ππ
−=













−=′=′

−−
 

Hence, ( ) Ct
r

ag
tv +−= 22 π

, i.e.,  

(6-50) ( )
2

2

2

2 22







 −=









+−= kt

r

ag
Ct

r

ag
th

ππ
 

where gCk 2=  is an arbitrary constant.  

Riccati Equations 

A 1st-order ODE is called Riccati equation if it can be expressed as the 

following form 

(6-51) ( ) ( ) ( )xryxqyxpy ++=′ 2  

which is not a linear equation. Assume Y(x) is a solution of (6-51) and define 

(6-52) ( )
z

xYy
1+=  

Then, the derivative of y is 

(6-53) ( ) z
z

xYy ′−′=′
2

1
 

Substituing (6-52) and (6-53) into (6-51) obtains 

(6-54) 
( ) ( ) ( )

( ) ( ) ( ) ( ) ( )xq
zzz

Y
xpxrYxqYxp

xr
z

Yxq
z

Yxpz
z

Y

11
2               

111

2
2

2

2

+






 ++++=

+






 ++






 +=′−′
 

Since Y(x) is a solution of (6-51), we know that ( ) ( ) ( )xrYxqYxpY ++=′ 2 . 

h 

r a 



Course: Differential Equations/NCTU/ECE/Yon-Ping Chen 

8 

Hence, (6-54) is further simplified as ( ) ( )xq
zzz

Y
xpz

z

11
2

1
22 +






 +=′− , or 

(6-55) ( ) ( ) ( )( ) ( )xpzxYxpxqz −=++′ 2  

which is a linear ODE and can be solved by the methods introduced before. 

Consider 
x

xy
x

xxyy
11

22 ++






 +−=′  for x>0, which is a Riccati 

equation with ( ) xxp = , ( ) 






 +−=
x

xxq
1

2  and ( )
x

xxr
1+= . It can be found 

that ( ) 1=xY  is a solution; hence, from (6-52) we let 

(6-56) ( )
zz

xYy
1

1
1 +=+=  

and from (6-55), we achieve the linear equation as 

(6-57) xz
x

z −=−′ 1
 

Further choose the integrating factor as 

(6-58) 1
1

−−∫ 






 −
=== xee xln

dx
xµ  

whose derivative is 
x

x
µµ −=−=′ −2 . After multiplying µ into (6-57), it can be 

obtained that µµµ xz
x

z −=−′ 1
 or ( ) 1−=z

dx

d µ . Clearly, the result can be 

found as Cxz +−=µ  with C constant. Hence,  

(6-59) Cxxz +−= 2  

and then the solution in (6-56) is 

(6-60) 
Cxx

Cxx

z
y

+−
++−=+=

2

2 11
1  

which is an explicit solution. 

Further consider a free falling object with mass m. If it encounters a 

quadratic friction, then the dynamic model can be described as 

(6-61) ( ) ( )tvmgtvm 2β−=′  

where v(t) is the velocity and ( )tv2β−  is the quadratic friction. It can be 

rewritten as 
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(6-62) ( ) ( ) ( )trvtqvtpgv
m

v ++=+−=′ 22β
 

which is a Riccati equation with ( )
m

tp
β−= , ( ) 0=tq  and ( ) gtr = . First, 

find a solution, which is ( )
β

mg
tY =  and let 

(6-63) ( )
z

mg

z
xYv

11 +=+=
β

 

From (6-55), we have the following linear ODE 

(6-64) 
m

z
m

g
z

ββ =−′ 2  

and the solution is 

(6-65) 
mg

kez
t

m

g ββ

2
12

−=  

Hence, 

(6-66) 

1
2

2
1

−














−+=

mg
ke

mg
v

t
m

g β
β

β

 

which is an explicit solution. If the initial velocity is zero, i.e., ( ) 00 =v . Then, 

from (6-66), we obtain 0
2

1
1

=









−+

−

mg
k

mg β
β

, or 
mg

k
β

2
1−=  and the 

solution in (6-65) becomes 

(6-67) ( ) t
m

g
tanh

mg

ee

eemg
tv

t
m

g
t

m

g

t
m

g
t

m

g

β
ββ ββ

ββ

=
















+

−=
−

−

 

As t→∞, we have the terminal velocity ( )
β

mg
v =∞ . 


