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6. Special First-Order Ordinary Differential Equations

Linear Differential Equations

A 1%-order ODE is said to be linear if it can be expess by the

following form

(6-1) y + p(x)y=q(x)
wherep(x) andq(x) are continuous on an interviabf x. The linearity can be
seen from the terms on the left-hand side, whiehdafined as

(6-2) Llyl=y + p(x)y
It is easy to check thaL[a1y1 + azyz] = aiL[y1]+ azL[yz], i.e., the operator (6-2)
satisfies the superposition principle. Hende[,y] =y +p(x)y is a linear

operator and we call (6-1) a linear ODE.
To solve the T-order linear ODE (6-1), we can adopt the method of

integrating factor by choosing: = &P Then, multiply = &P 1o (6-1)

and obtain
(6-3) p(x)e/ Py — g(x)e/ PR 4 glPlikys =

where M = p(x)& "™y - q(x)e'"™ and N =e&P®¥ Since

oM _ ON
6-4 - =— _=nplXx d p(x)ix
(6-4) oy ox p(x)

we know that (6-3) is exact and a potential functip exists such that

% =M and % =N. Hence, from% =N :e“’(x)dx, we have

ox ay oy

(6-5) ¢ ="My + g(x)
which leads to

(6-6) % = plxle "y -+ g (x)

Further from ?3_¢ =M = p(x)e"™*y — g(x)e/"™ ™ we obtain

X
(6-7) g'(x) = —q(x)e/ P
Let
(6-8) g(x) = ~[ a(x)e’ " dx
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then the potential function is

(6-9) $ = PRy~ g(x)eP0Hax
and the solution is

(6-10) gl Pk g j q(x)eP*dx = C

or explicitly expressed as

(6-11) y= e’ P(X)dx'[q(x)ef p(x)dxdx +Ce! p(x)dx

with C constant. This is also the explicit solution gf+ p(x)y = q(x) because
the integrating factory = &P 20,

In fact, the -order linear ODE (6-1) can be also solved from by

multiplying the integrating factorejp(x)dx, le.,

(6-12) e[p(x)dxyr + p(x)e[P(X)de _ q(x)ej p(x)ax
Since %(ej p(x)dxy) = Py p(x)ej "%y we have
(6-13) % (ej p(x)dxy) - q(x)el "t

which leads to

(6-14) ¢/ "y = [g(x)e e+
with C constant. Clearly,

(6-15) y=e " g(x)el ™ e+ ce 170

same as the solution shown in (6-11).

The solution (6-15) is not unique since const@nts arbitrary. As
mentioned beforeC can be uniquely determined if the initial conditio

y(x,)=y, is given. Rewrite (6-15) as

(6-16) y(x) - e‘fxo p(A)dA Jj G (r)eL‘) p(a)cud i Ce LO p(A)dA
and then,
(6-17) Y(Xo) = e_LO o L:O CI(T)eLc’ p(a)dadr + Ce_Lo P =C=y,

In conclusion, for the following IVP
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(6-18) y+p(xy=a(x), y)=v
the solution can be uniquely determined as

y(x)= e_LO P '[ " q )eLO p(A)(Md T+ yoe_

Xg

j; p(A)at
(6-19)

X

- el P 4y

A)dA

Next, let’s take some examples 6tdrder ODE for demonstration.

Consider y' +2y =sin3x with initial condition y(0)=1. Sincep(x)=2,
the integrating factor is given as
(6-20) 1 =/ P = g2x

22X\,

Multiplying =€ vyields ey +2e*y =e**sin3x, i.e.,

d 2X 2X
6-21 —|e”y)=e"" sn3x
(6-21) )
Hence,
2Xy\ , — 2X - 2 2X i 3 2X
(6-22) e y—je sin3xdx+C =—e” sin3x——e~* cos3x+C
13 13

i.e., the solution is

(6-23) y= 1—13 (2sin3x—3cos3x)+Ce™*
I iy _ _ 3 _16
From the initial conditiory(0)=1, we havel= _E+C ,or C 13 and then

1. . 16 _,
6-24 =—(2sin3x—3cos3x)+=—e "
(6-24) y=2( )+
which is the unique solution fgf0)=1.

Consider the other example of'a@reder linear ODE with initial

condition, which is given as
2 _ .o
(6-25) y tYEX y(1)=2
wherex#0. Since p(x)=E and q(x) = x?, the integrating factor is
X
(6-26) u=eP = =32 for x#0

Multiplying (6-25) by ¢ =x? yields x?y' +2xy=x* , i.e., —(X y)=X4 -
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Hence, x’y :%x5+c ory :éx3+£2. From the initial conditiory(1)=2, it
X
. 1 9 .
can be obtained tha? :§+C or C ZE . Therefore, the solution is

1 9
6-27 ==x*+—, for x#0
(6-27) Y= Xt

which is a unique solution.

For some linear ODEs, their form may be simple tngir solutions
cannot be expressed in a closed form. For example,

(6-28) y-xy=1

which seems quite simple; however, its solutioakitained as

(6-29) y=e ZJ' e?dx +Ce"’?

where J' e2dx cannot be written into a closed form.

Homogeneous Equations

A 1%torder ODE y = f(x,y) can be also expressed as the following
form M(x,y)+ N(x,y)y =0, or

M (x,y)
N(x,y)

If both M(x,y) and N(x,y) are homogeneous functions, which have the

(6-30) y=f (X, y) =—

same degren, i.e., M(Ax,dy)=A"M(x,y) and N(Ax,Ay)=A"N(x,y) where
A is a factor. For example, the polynomii (x,y)= x* +7xy +5y® contains
there terms of degree 2, i.e., it is a homogenéaustion of degree 2. Hence,

M (Ax,Ady) = %% + 7A%xy + 52y? = M (x,y). Now, let's change (6-30) into

. Xy) _ AMIXy) _ AX,Ay)

Let A =1, then y' = f(llj :—M. For simplicity, it is often simply
X x)  N(Ly/x)

written as

(6-32) y = f(lj

X

and called a homogeneous equationfot . 0
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Note that the term “homogeneous equation” used hmeeans the
equation is formed by a homogeneous function, whghdifferent to the

“homogeneous equation” of an ODE with@t) on the right hand side.

Let's define u :;, then y=ux and y'=u+xu'. Hence, (6-32) can
be changed intou + xu' = f(u), or

(6-33) ==

which is an ODE with separable variables. Afteegrating, we can obtain

and the solution ig=ux.

2
Consider the *torder ODE xy'=y——2y for x#£0, which can be
X

further rewritten as

) _Y-2xy _ M(xy)
(6-34) y=I—= Ny

with M(x,y)=-y?+2xy and N(x,y)=x*. Both M(x,y) and N(x,y) are

homogeneous functions of order 2 and then
2
(6-35) y = (Xj oY ¢ (Xj
X X X
Define u = then y=ux and y =u+xu’. Hence,u+xu =u’-2u, i.e.,

xu' =u®-3u, or

du =%
u>-3u X

(6-36)

After integration, we havdn|u—3|—|n|u|—|n‘x3‘ =3C, with C; constant. That

u-3
means —,.- = +e** or
ux
3X

1-Cx°

(6-37) y=
where C=+€*> and x# Q
Bernoulli Equations

A 1%-order ODE is called Bernoulli equation if it is@rssed as the
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following form
(6-38) y + p(x)y =r(x)y”

in which a is a real number.

The Bernoulli equation (6-38) is possessed of sdpearvariables if
a =1 andis linear ifa = 0 For the case oy # ,1(6-38) can be transformed

to a linear equation by defining

(6-39) v=y

Its derivative isV = (1—a)y“’y’ and from (6-38) we have

(6-40) v =[-a)y (r(x)y” - p(x)y)=-a)r(x)- p(x)v)
or

(6-41) vV + (1— a) p(x)v = (1— a)r (x)

which is linear and can be solved by the methottediced before.

Consider y' +xy = 2xy*, which is a Bernoulli equation withr = ,2

where p(x)=x and r(x)=2x. Let v=y" =y then

(6-42) vV =-y?y =-y? (2xy2 - xy) = —2X+ XV
or
(6-43) V —Xxv=-2X

which is a linear ODE. Then, choose=¢e/(™k = e as the integrating
factor whose derivative ig/ = —xe 72 = =X . Then, multiplyingu into (6-43)
gets wv' — uxv=-2ux or W'+ u'v=-2ux. Hence,

(6-44) d(wv) = (v + pv)ax = ~2pxdx

which results in

(6'45) V= j(_ 2,UX)dX+ C= _I e—x2/2dx2 +C= 2e—x2/2 +C

Hence, 2y =262 +C or

1

6-46 = =
(6-46) y e

which is the explicit solution ofy’ + xy = 2xy?.

For the example of discharging water through andhaile at the bottom
of a tank, the related ODE is
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dh

__ a T
6-47 d__2 2gn <
- oS ==
or _f
1 h

(6-48) h=- a;izz_g h2

which is a Bernoulli equation withor =%,

1
p(x)=0 and r(x)= _a/2g Let v=h"" =h2, then

> -

T
1 A 1

(6-49) v=inzy=1p7 -2 229 h? :‘\Eiz

2 2 T 2
Hence, v(t)= —\/gizuc, le.,

2T
2 2

- g _a _9(_a
6-50 hit)=| -,/ —t+C| == —t-k
(6-50) ()(ﬁﬂz J 2[,,2 J

where k =C,/2/g is an arbitrary constant.

Riccati Equations

A 1% order ODE is called Riccati equation if it can be@mssed as the

following form

(6-51) y = p(x)y* +a(x)y+r(x)
which is not a linear equation. AssuMg) is a solution of (6-51) and define
(6-52) y= Y(x)+1

Then, the derivative of is
(6-53) y =Y'(x) Y

Substituing (6-52) and (6-53) into (6-51) obtains

2

Y’ —iz Z= p(x)(Y + %) + q(x)(Y + %) +r(x)

= p(JY? +q(x)Y +r(x)+ p(X)(ZE +Z—12j + % a(x)

(6-54)

Since Y(x) is a solution of (6-51), we know that' = p(x)Y? +q(x)Y +r(x).



Course: Differential Equations/NCTU/ECE/Yon-Pingebh

Hence, (6-54) is further simplified asz—l2 Z= p(x)[zé +%) + % q(x), or
(6-55) Z +(a(x)+ 2p(x)v(x))z=-p(x)

which is a linear ODE and can be solved by the nustiatroduced before.

Consider y':xyz—(2x+1jy+x+1 for x>0, which is a Riccati
X X

equation with p(x) = x, q(x)=—(2x+§j and r(x):x+%. It can be found

that Y(x)=1 is a solution; hence, from (6-52) we let

(6-56) y:Y(x)+£ :1+£
2 b4

and from (6-55), we achieve the linear equation as

(6-57) 7-L7=x
X
Further choose the integrating factor as
1
| == [
(6-58) U= e( X)d =™ =x"

whose derivative isy/ = —x = —ﬁ. After multiplying i into (6-57), it can be
X

obtained that/,zz'—lzu=—xu or di(/,zz)=—1. Clearly, the result can be
X X

found as puz=-x+C with C constant. Hence,
(6-59) z=-x*+Cx
and then the solution in (6-56) is

(6-60) y=1+==
which is an explicit solution.

Further consider a free falling object with mams|f it encounters a
guadratic friction, then the dynamic model can bsatibed as

(6-61) mv(t) = mg - A7 (t)
where v(t) is the velocity and—,B\/z(t) is the quadratic friction. It can be

rewritten as
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(6-62) V= —%vz +g=ptV +althv+r(t)

which is a Riccati equation witrp(t)z—ﬁ, qt)=0 and r(t)=g. First,
m
find a solution, which isY(t) = /% and let

(6-63) v=Y(x)+

N |~

From (6-55), we have the following linear ODE

(6-64) zZ- ZJE zZ=
m

and the solution is

2| Py
(6-65) z:ke\/? 1B
2\ mg

Hence,

2,29
(6-66) ve [ [yl L :a
B 2\mg

which is an explicit solution. If the initial velity is zero, i.e.,v(0)=0. Then,

-1
from (6-66), we obtain /% +(k—E ﬁj =0, or k:—% B and the

3 >

-1

2\ mg mg

solution in (6-65) becomes

A, B,

mgle'™ —-e'™ mg Jés)

6-67 vit)= | —=| ———— | = [—tanh,|—t

(6-67) (),/ﬂ R Jﬂ \/m
elm+e'm

As t—w, we have the terminal velocity(co) =

m_\é



