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5. General First-Order Ordinary Differential Equations

Although we have learned how to solve CODE, there a lot of
engineering problems related to general ODEs, @DEs. From now on, we
will focus on the general ODEs and start withatder ODEs.

There are two kinds of expression to represent-arder ODE, which
are described as

(5-1) F(x.y(x).y(x))=0
(5-2) y (%)= £ (x,y(x))

wherey(x) is the unknown function andis the independent variable. Here, we
will focus on the form of (5-2) and simply represénas y' = f(x,y). For
example, y =3y+6 and y =xy?+e¥'? are f-order ODEs. For the first
one y =3y+ 6, itis a CODE and we have learned how to solveestiistion.
For the second ong/ =xy? +e¥'2, since it is not a CODE, we have to learn

different methods to determine the solution.

For the f-order ODE (5-2) defined on an interdabf x, if ¢(x) is a
solution of (5-2), then it should satisfy

(5-3) ¢ =f(x,¢), forxdl.
For example,
(5-4) ¢=-2+ke™>

is a general solution of
(5-5) y =3y+6

wherek is an arbitrary number.
Explicit and Implicit Solutions

The solution y = ¢(x) is called an explicit solution sincg(x) can be

directly determined bw. If a solution cannot be explicitly expressed as a
function of x, then it is called an implicit solution. For exaepa f-order
ODE is given as

_y+2x

(5-6) y = . for & #x
e’ —x
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and its solution cannot be explicitly expressedyas ¢(x). However, we can
find that its solution should satisfy the followieguation

(5-7) xy+x*—-¢e¥ =k

wherek is an arbitrary number. To verify that tix) in (5-7) is a solution of
(5-6), let’s take the derivative of (5-7) with regp tox and then we will obtain
y +2X

e’ —x

thaty + xy' + 2x—e’y = 0, which can be rearranged ag = . Therefore,

y(X) in (5-7) is indeed a solution of (5-6). That medh-7) is an implicit way

to represent the solutioix). Hence, we call (5-7) an implicit solution.
Numeric Solutions

In addition to explicit and implicit solution, weag also use the numeric
result to represent the solution. For example, )(&n be solved by the
Matlab/Simulink fory(0)=1. From (5-7), we know tha&=—e=-2.71828. The

block diagram and numeric result of the soluty@x) is shown below.
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Next, we will introduce some ODEs with some speg@aiperties and

show the way to solve them.
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Separable Variables

In general, a order ODE with variables separable is shown as the

following form
(5-8) y =g(x)h(y)
If h(y)#0, then it can be also expressed as a differemtiad f

] dy _
(5-9) o) g(x)dx

It is obvious that the variablesandy are totally separated. Take integration on

both sides, and get

(5-10) | W [a(xJax+k

h(y)

wherek is a constant. Note that (5-10) is a general iotolution ofy(x).

For example, consideg*”’y' -1 with y(0)=1, which can be rearranged
y
as y = e‘x(%e‘yj. Obviously, it has separable variables wigfx)=e™ and

h(y) :ie’y. From (5-9), we haveye’dy =e *dx and take integration on both
y

sides to getj yeydy:J'e‘de+ k, which results in a general implicit solution

shown as

(5-11) (y-1)e’ = —e™*+k

From the initial conditiory(0)=1, we havek =1, i.e.,y satisfies

(5-12) (y-1)e’ =-e>+1 N
—

which is an implicit solution foy(5-0)=1. Q
Next, let's introduce an application concerning _T_

separable variables, which is a cylindrical wasgktwith
radiusr shown on the right. The water levelhisand we

want to discharge the water through a drain hol¢hat
bottom. If the cross-sectional area of the hola,ishrow

long it will take to empty the tank?

The volume of water discharged from the drain hebkedx, wheredx is
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the distance that the water leaves down from tHe.H8ince the volume of
discharged water is equal to the decreased vok(mé)dh of the water on the
top, we haveadx =—-7rdh or

—nzd—h:a%:av=a 2gh

5-13
( ) dt dt

where v:% is the velocity of the discharged water from thaiml hole, and

according to the Torricelli's theorem, the velodgyv =./2gh. Hence,

i = —iz dt
\2gh T

which clearly has separable variables. Furtherintpkntegral on both sides

(5-14)

: /2h .
yields |[— = —izt +k, wherek is a constant. After rearrangement, the water
g T

level is obtained as

2
_9( a
5-15 h= t—k
( ) 2[”2 j

Let h, be the initial water level &0, then k=,/2h,/g, i.e.,

(5-16) h(t) =g(i2t - %j

T g

2
If the tank is empty at=t;, then h(tf):%tf - /% =0, or t; :% /%

2
Therefore, it takes the timeg, SELE /% to completely discharged the water
ayg
tank from the initial water leveh(0) = h, .

Exactness and Potential Function

In general, a %order ODE y = f(x,y) can be rewritten into the

following form

(5-17) M(x,y)+N(x,y)y =0
or
(5-18) M (x,y)dx+ N(x,y)dy =0
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where M(x,y), N(x,y), aM/dy and dN/dx are all continuous within a

rectangle regiors in thex-y plane. An interesting thing happens if a function

#(x,y) satisfies 6¢ =M(x,y) and % =N(x,y), then (5-17) and (5-18) can

be expressed as

(5-19) 99,09 _
ox 0y dx
and
(5-20) 99 i+ 92 4y =0
0x oy

Taking the derivative ofg(x,y) with respect to gets

):%-{-%ﬂzo

d
5-21 — @IX,
( ) dx¢( y ox 0y dx

which also implies the differential of(x,y) is

(5-22) ag{x () = 5 it 3 dy=0

Therefore, (5-22) is equivalent to

(5-23) #(x.y)=C

where C is a constant. That means the solutig®) can be implicitly
represented byg(x,y)=C. Here, the functiong(x,y) is usually called a

potential function. Besides, (5-17) is said to kaat within a rectangle region

Sin thex-y plane.

In conclusion, if M(x,y)+ N(x,y)y =0 is exact, then there exists an
implicit solution ¢(x,y)=C, Wherea—¢— M(x,y) and ai =N(x,y). Also,
from the truth of

(5-24) (wj [¢J 0’¢
oy\ ox ) ox\dy ) oxoy

we know that

oM (x,y) _ ON(x,y)

5-25
( ) oy 0X

Now, one question is raised: Can we declare thasie5) is true, then
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M (x,y)+ N(x,y)y =0 is exact? The answer is YES! Let's explain it below.

Assume bothaMa(;(’y) and aNg:,y) are continuous on a rectangle
oM (x,y) _ 6N(x,y)

region S. Under the condition as shown in (5-25), we

oy 0x

choose an arbitrary poin@xo,yo) in Sand define

(5-26) o(x,y)= LO M (s, y, )ds+ jyy N(x,t)dt
for any point x,y) in S Then, we have
W _0p o
o XOM(s,yO)ds+aX yoN(x,t)dt
_ y ON(x,t) . _ y OM (x,t)
(5-27) =Meyo) [T =My )+ TR
=M (%,¥0) + M (%,y) =M (x,) =M (x,y)
09 _ 0 v
-2 — =— NIxt)dt=N
(5-28) 3y~ ay b, NOxtldt=N(x.y)
Obviously, if aMa(;('y):aN(g);'y), then there exists a functio¢(x,y) as

shown in (5-26), which satisfies‘?:M(X.y) and z—¢=N(X,y)- That
X y

means M (x,y)+ N(x,y)y’ =0 is exact.

For example, consider the®-brder ODE x(1+3y)+(x*y-x)y =0,
, Y .
where M =x(1+3y) and N =x*y-x. Since a—y:3x is not equal to

%—N:2xy—1, we know thatx(1+3y)+(x2y—x)y’:0 Is not exact and we
X

cannot solve it by choosing a potential function.

2 _
Next, considery':—z(y—%. To solve it, we first write it into the
x‘y+e”
following form
(5-29) M +Ny = xy? -1+ (x?y+e” )y =0
where M =xy?-1 and N=x’y+e”. Since%—M:%—N=2xy, we know
y X
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that (5-29) is exact. Hence, fron%g =M(x,y), we have
(5-30) 0, =J- Mdx :%xzyz - x+h(y)
and from 3—¢ =N(x,y), we have

0¢_ o, . d 20 4 o
5-31 —— =xy+—hly)=xy+e”’
(5-31) oy = XVt g, )=y

ie., dih(y)=e‘y or h(y)=—e‘y. Therefore, the potential function in (5-30)
y

Is expressed as
(5-32) = % x*y? —x-e”
That means the implicit solution i =C or

(5-33) %xzy2 -x-e?=C

whereC is a constant.

Further, we takee*cosy + x— (eX siny+ 2)y' =0 as the example, where

M =e‘cosy+x and N=—(exsiny+2). Hence,a—M=aN

— =—-e“giny, i.e.,
dy 0OXx y

the ODE is exact. Fromg—¢ =N(x,y), it can be obtained that

y
(5-34) ¢=j Ndy =e*cosy -2y + g(x)
09 _ _ o
From o M(x,y)—e cosy+ X, we have
X
09 _ « ) = X
(5-35) il cosy+g'(x)=€e*cosy +x

which leads tog'(x)=x or g(x):%xz. The potential function in (5-34) is
then expressed as

(5-36) ¢p=€" cosy—2y+%x2

and the implicit solution isp =e* cosy -2y + % x*> =C, whereC is a constant.
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Integrating Factor for Exactness

Most of the ODEs are not exact. However, some @fitican be modified
into exact equations by multiplying a nonzero fdmm:ty(x,y), which is
called an integrating factor. For example,

(5-37) 2y? =3y +(Bxy -3x%)y' =0
where M =2y*-3xy and N =6xy-3x*. Then, we have%—M=4y—3x
y

and %—':=6y—6x. Clearly, 66_I\3¢6_N which means (5-37) is not exact.

0X

However, if we multiply a functionu(x,y)=y into (5-37), then

(5-38) 2y°® - 3xy’ + (6xy2 - 3x2y)y' =0, for yz0
where M =2y®-3xy* and N =6xy*-3x%y. Then, aa—M =%—N =6Yy* -6xy,
y X

which means (5-38) is exact. Hence, the potentiattion can be obtained as

@ =2xy° —gxzyz, and the implicit solution for (5-38) is shown as

(5-39) ¢=2xy3—gx2y2 =C, for yz0

with C constant. Howevey=0 is also a solution of (5-37) and can be included
in (5-39). Hence, the implicit solution of (5-38) i

(5-40) 2xy° —g x’y*=C

which contain the solutioy=0, different to (5-39).

Next, let’s introduce some different methods toed®ine integrating

factors for exactness.

Consider x—=2xy-y = Q which is not exact sinceaaﬂ:—ZX and
y

%—N =0 are different. Multiply an integrating facto to obtain
X

(5-41) Hx-2xy)- 1y =0

where M :,u(x—2xy) and N =-x. The exactness is guaranteed if the
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condition a—M =6—N is satisfied, i.e.,

dy Ox
ou _ou
5-42 X=2 —2UX =
(5-42) (-2~ 2= =
_ U _ _ du
If we choose,u:u(x), then a——O and (5-42) becomes-z,ux——d—.
y X
Hence,
du _
(5-43) = 2xdx

U
which has separable variables. Further taking natemn yields In|,u| =x> or

u==e. Now, select y=e“ as the integrating factor and express (5-41) as

(5-44) e’ (x-2xy)-e‘y =0
where 92 =m = ¢* (x-2xy) and 9 _N=-¢". From 2 =—¢*, it can
ox ay oy
be obtained that
(5-45) ¢ =—-e"y+g(x)
and from 6¢ =e“(x-2xy) we have
a¢ _ X2 ' _ 3
(5-46) — =-2e"xy+g'(x) =€ (x- 2xy)

()4

XZ

Clearly, g'(x)=xe* or g(x):%eX2 . Then, the potential function in (5-45) is

2 1 - (1
5'47 = —ex + — ex = ex _
( ) ¢ y 5 [2 YJ

and the solution isp = exz(% - yj =C or explicitly expressed as

(5-48) y= % -Cce™

whereC is a constant. Sincg/ = e 20, (5-48) is also the explicit solution of

the original ODE x—-2xy -y = Q which is not exact.

Further consider3y2+2xy+(3xy+x2)y'=0 as an example, which is
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not exact sinceaaM=6y+ 2x and %—T =3y+2x are different. Chooseu
y

as the integrating factor, i.e.,
(5-49) ul3y? +2xy)+ pldxy + x2)y =0
where M = ,u(3y2 +2xy) and N = ,u(3xy+ xz). The exactness requires that

oM = 6_N which is equivalent to
dy Ox
(5-50) (3y2 + 2xy)g—§ + u(By +2x) = (3xy + X )g—ﬁ + 13y + 2x)
After rearrangement, it is written as
(5-51) (3y2 + 2xy)g—/; - (3xy +x2 )% +3uy=0

For simplicity, we may choosg: = 1(x) or = u(y), but it is still difficult
for us to solve (5-51). Instead, let’s ty = x*y”, then (5-51) becomes

(5-52) bx? yb‘l(:%y2 + 2xy)— ax®tyP (3xy + x2)+ 3x*y™ =0

Further multiply it with xy™ on both sides to obtain

(5-53) 3b-a+1)xy? +(2b-a)x?y =0

for x#0 and y# O Hence,b—a+1l= 0Oand 2b—-a= 0. It can be found
thata=2 andb=1, i.e., 1 = x*y. Now, we rewrite (5-49) as

(5-54) (3x2y3 + 2x3y2)+ (3x3y2 + x“y)y’ =0
_%_ 2,,3 3,,2 _%_ 3,,2 4 ;
WhereM—a =3xy +2x’y° and N—a =3x’y“ +x"y. Then, taking the
X y

integration for ?3_¢ =3x%y?* +x'y vyields
y
(5-55) $ =Xy’ +%X“y2 +9(x)

From ?3_¢ =3x%y® +2x°y?, we have
X

(5-56) %—¢ =3x%y° + 2x°y? + g'(x) = 3x%y® + 2x°y?
X

which implies g’(x):O. For simplicity, let g(x):O, then the potential
function in (5-55) is
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(5-57) ¢:ﬁ¢+%ﬁf
and the implicit solution is

(5-58) x%y? +% x*y?=C
with C constant.

The method of integrating factor can be also usesbtve the ODE with
separable variables, i.e.y’ =g(x)h(y) or g(x)h(y)-y =0. Choose the

integrating factor asy :ﬁ, then
y

(5-59) g(x)——)y =0

where M(x)=g(x) and N(y)=- ( 3 It is easy to check that

(5.60) a( x) ZON(y) _
y 0x
which means (5-59) is exact. Then, frof?ﬁa2 = N(y) = —i, we hve
oy h(y)

(5-61) ¢:—jﬁdy+r(><)
From a—¢ =M =g(x), it can be obtained that

- %: "Ix) =
(5-62) 5 =" )=9()

which implies r(x)= [ g(x)dx. Then, the potential function in (5-61) is

(569 6=~[yy &+ b
and the implicit solution is
(5-64) I ) dy + J. xX)dx =C

with C constant.
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