5. General First-Order Ordinary Differential Equations

Although we have learned how to solve CODE, there are a lot of engineering problems related to general ODEs, not CODEs. From now on, we will focus on the general ODEs and start with 1st-order ODEs.

There are two kinds of expression to represent a 1st-order ODE, which are described as

(5-1)
$$F(x, y(x), y'(x)) = 0$$

or

(5-2)
$$y'(x) = f(x, y(x))$$

where y(x) is the unknown function and x is the independent variable. Here, we will focus on the form of (5-2) and simply represent it as y' = f(x, y). For example, y' = 3y + 6 and $y' = xy^{-2} + e^{-y/2}$ are 1st-order ODEs. For the first one y' = 3y + 6, it is a CODE and we have learned how to solve the equation. For the second one $y' = xy^{-2} + e^{-y/2}$, since it is not a CODE, we have to learn different methods to determine the solution.

For the 1st-order ODE (5-2) defined on an interval I of x, if $\varphi(x)$ is a solution of (5-2), then it should satisfy

(5-3)
$$\varphi' = f(x, \varphi), \quad \text{for } x \in I.$$

For example,

$$\varphi = -2 + ke^{-3x}$$

is a general solution of

$$(5-5) y' = 3y + 6$$

where k is an arbitrary number.

Explicit and Implicit Solutions

The solution $y = \varphi(x)$ is called an explicit solution since $\varphi(x)$ can be directly determined by x. If a solution cannot be explicitly expressed as a function of x, then it is called an implicit solution. For example, a 1st-order ODE is given as

(5-6)
$$y' = \frac{y+2x}{e^y - x}, \quad \text{for } e^y \neq x$$

and its solution cannot be explicitly expressed as $y = \varphi(x)$. However, we can find that its solution should satisfy the following equation

$$(5-7) xy + x^2 - e^y = k$$

where k is an arbitrary number. To verify that the y(x) in (5-7) is a solution of (5-6), let's take the derivative of (5-7) with respect to x and then we will obtain that $y + xy' + 2x - e^y y' = 0$, which can be rearranged as $y' = \frac{y + 2x}{e^y - x}$. Therefore, y(x) in (5-7) is indeed a solution of (5-6). That means (5-7) is an implicit way to represent the solution y(x). Hence, we call (5-7) an implicit solution.

Numeric Solutions

In addition to explicit and implicit solution, we can also use the numeric result to represent the solution. For example, (5-6) can be solved by the Matlab/Simulink for y(0)=1. From (5-7), we know that k=-e=-2.71828. The block diagram and numeric result of the solution y(x) is shown below.

Next, we will introduce some ODEs with some special properties and show the way to solve them.

Separable Variables

In general, a 1st-order ODE with variables separable is shown as the following form

$$(5-8) y' = g(x)h(y)$$

If $h(y) \neq 0$, then it can be also expressed as a differential form

$$\frac{dy}{h(y)} = g(x)dx$$

It is obvious that the variables x and y are totally separated. Take integration on both sides, and get

(5-10)
$$\int \frac{dy}{h(y)} = \int g(x)dx + k$$

where k is a constant. Note that (5-10) is a general implicit solution of y(x).

For example, consider $e^{x+y}y' = \frac{1}{y}$ with y(0)=1, which can be rearranged

as
$$y' = e^{-x} \left(\frac{1}{y} e^{-y} \right)$$
. Obviously, it has separable variables with $g(x) = e^{-x}$ and

$$h(y) = \frac{1}{y}e^{-y}$$
. From (5-9), we have $ye^{y}dy = e^{-x}dx$ and take integration on both

sides to get $\int ye^y dy = \int e^{-x} dx + k$, which results in a general implicit solution shown as

(5-11)
$$(y-1)e^{y} = -e^{-x} + k$$

From the initial condition y(0)=1, we have k=1, i.e., y satisfies

(5-12)
$$(y-1)e^y = -e^{-x} + 1$$

which is an implicit solution for y(5-0)=1.

Next, let's introduce an application concerning separable variables, which is a cylindrical water tank with radius *r* shown on the right. The water level is *h* and we want to discharge the water through a drain hole at the bottom. If the cross-sectional area of the hole is *a*, how long it will take to empty the tank?

The volume of water discharged from the drain hole is $a \cdot dx$, where dx is

the distance that the water leaves down from the hole. Since the volume of discharged water is equal to the decreased volume $-(\pi r^2)dh$ of the water on the top, we have $adx = -\pi r^2 dh$ or

(5-13)
$$-\pi r^2 \frac{dh}{dt} = a \frac{dx}{dt} = av = a\sqrt{2gh}$$

where $v = \frac{dx}{dt}$ is the velocity of the discharged water from the drain hole, and according to the Torricelli's theorem, the velocity is $v = \sqrt{2gh}$. Hence,

$$\frac{dh}{\sqrt{2gh}} = -\frac{a}{\pi r^2} dt$$

which clearly has separable variables. Further, taking integral on both sides yields $\sqrt{\frac{2h}{g}} = -\frac{a}{\pi r^2}t + k$, where k is a constant. After rearrangement, the water level is obtained as

$$(5-15) h = \frac{g}{2} \left(\frac{a}{\pi r^2} t - k \right)^2$$

Let h_0 be the initial water level at t=0, then $k=\sqrt{2h_0/g}$, i.e.,

(5-16)
$$h(t) = \frac{g}{2} \left(\frac{a}{\pi r^2} t - \sqrt{\frac{2h_0}{g}} \right)^2$$

If the tank is empty at $t=t_f$, then $h(t_f) = \frac{a}{\pi r^2} t_f - \sqrt{\frac{2h_0}{g}} = 0$, or $t_f = \frac{\pi r^2}{a} \sqrt{\frac{2h_0}{g}}$.

Therefore, it takes the time $t_f = \frac{\pi r^2}{a} \sqrt{\frac{2h_0}{g}}$ to completely discharged the water tank from the initial water level $h(0) = h_0$.

Exactness and Potential Function

In general, a 1st-order ODE y' = f(x, y) can be rewritten into the following form

(5-17)
$$M(x, y) + N(x, y)y' = 0$$

or

$$(5-18) M(x,y)dx + N(x,y)dy = 0$$

where M(x,y), N(x,y), $\partial M/\partial y$ and $\partial N/\partial x$ are all continuous within a rectangle region S in the x-y plane. An interesting thing happens if a function $\varphi(x,y)$ satisfies $\frac{\partial \varphi}{\partial x} = M(x,y)$ and $\frac{\partial \varphi}{\partial y} = N(x,y)$, then (5-17) and (5-18) can be expressed as

(5-19)
$$\frac{\partial \varphi}{\partial x} + \frac{\partial \varphi}{\partial y} \frac{dy}{dx} = 0$$

and

(5-20)
$$\frac{\partial \varphi}{\partial x} dx + \frac{\partial \varphi}{\partial y} dy = 0$$

Taking the derivative of $\varphi(x, y)$ with respect to x gets

(5-21)
$$\frac{d}{dx}\varphi(x,y) = \frac{\partial\varphi}{\partial x} + \frac{\partial\varphi}{\partial y}\frac{dy}{dx} = 0$$

which also implies the differential of $\varphi(x, y)$ is

(5-22)
$$d\varphi(x,y(x)) = \frac{\partial \varphi}{\partial x} dx + \frac{\partial \varphi}{\partial y} dy = 0$$

Therefore, (5-22) is equivalent to

$$(5-23) \varphi(x,y) = C$$

where C is a constant. That means the solution y(x) can be implicitly represented by $\varphi(x,y)=C$. Here, the function $\varphi(x,y)$ is usually called a potential function. Besides, (5-17) is said to be exact within a rectangle region S in the x-y plane.

In conclusion, if M(x,y)+N(x,y)y'=0 is exact, then there exists an implicit solution $\varphi(x,y)=C$, where $\frac{\partial \varphi}{\partial x}=M(x,y)$ and $\frac{\partial \varphi}{\partial y}=N(x,y)$. Also,

from the truth of

(5-24)
$$\frac{\partial}{\partial y} \left(\frac{\partial \varphi}{\partial x} \right) = \frac{\partial}{\partial x} \left(\frac{\partial \varphi}{\partial y} \right) = \frac{\partial^2 \varphi}{\partial x \partial y}$$

we know that

(5-25)
$$\frac{\partial M(x,y)}{\partial y} = \frac{\partial N(x,y)}{\partial x}$$

Now, one question is raised: Can we declare that if (5-25) is true, then

M(x, y) + N(x, y)y' = 0 is exact? The answer is YES! Let's explain it below.

Assume both $\frac{\partial M(x,y)}{\partial y}$ and $\frac{\partial N(x,y)}{\partial x}$ are continuous on a rectangle region *S*. Under the condition $\frac{\partial M(x,y)}{\partial y} = \frac{\partial N(x,y)}{\partial x}$ as shown in (5-25), we choose an arbitrary point (x_0,y_0) in *S* and define

(5-26)
$$\varphi(x,y) = \int_{x_0}^{x} M(s,y_0) ds + \int_{y_0}^{y} N(x,t) dt$$

for any point (x,y) in S. Then, we have

$$\frac{\partial \varphi}{\partial x} = \frac{\partial}{\partial x} \int_{x_0}^x M(s, y_0) ds + \frac{\partial}{\partial x} \int_{y_0}^y N(x, t) dt$$

$$= M(x, y_0) + \int_{y_0}^y \frac{\partial N(x, t)}{\partial x} dt = M(x, y_0) + \int_{y_0}^y \frac{\partial M(x, t)}{\partial t} dt$$

$$= M(x, y_0) + M(x, y) - M(x, y_0) = M(x, y)$$

$$\frac{\partial \varphi}{\partial y} = \frac{\partial}{\partial y} \int_{y_0}^y N(x, t) dt = N(x, y)$$
(5-28)

Obviously, if $\frac{\partial M(x,y)}{\partial y} = \frac{\partial N(x,y)}{\partial x}$, then there exists a function $\varphi(x,y)$ as shown in (5-26), which satisfies $\frac{\partial \varphi}{\partial x} = M(x,y)$ and $\frac{\partial \varphi}{\partial y} = N(x,y)$. That means M(x,y) + N(x,y)y' = 0 is exact.

For example, consider the 1st-order ODE $x(1+3y)+(x^2y-x)y'=0$, where M=x(1+3y) and $N=x^2y-x$. Since $\frac{\partial M}{\partial y}=3x$ is not equal to $\frac{\partial N}{\partial x}=2xy-1$, we know that $x(1+3y)+(x^2y-x)y'=0$ is not exact and we cannot solve it by choosing a potential function.

Next, consider $y' = -\frac{xy^2 - 1}{x^2y + e^{-y}}$. To solve it, we first write it into the following form

(5-29)
$$M + Ny' = xy^2 - 1 + (x^2y + e^{-y})y' = 0$$

where $M = xy^2 - 1$ and $N = x^2y + e^{-y}$. Since $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x} = 2xy$, we know

that (5-29) is exact. Hence, from $\frac{\partial \varphi}{\partial x} = M(x, y)$, we have

(5-30)
$$\varphi = \int M dx = \frac{1}{2} x^2 y^2 - x + h(y)$$

and from $\frac{\partial \varphi}{\partial y} = N(x, y)$, we have

(5-31)
$$\frac{\partial \varphi}{\partial y} = x^2 y + \frac{d}{dy} h(y) = x^2 y + e^{-y}$$

i.e., $\frac{d}{dy}h(y)=e^{-y}$ or $h(y)=-e^{-y}$. Therefore, the potential function in (5-30)

is expressed as

(5-32)
$$\varphi = \frac{1}{2}x^2y^2 - x - e^{-y}$$

That means the implicit solution is $\varphi = C$ or

(5-33)
$$\frac{1}{2}x^2y^2 - x - e^{-y} = C$$

where *C* is a constant.

Further, we take $e^x \cos y + x - (e^x \sin y + 2)y' = 0$ as the example, where $M = e^x \cos y + x$ and $N = -(e^x \sin y + 2)$. Hence, $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x} = -e^x \sin y$, i.e.,

the ODE is exact. From $\frac{\partial \varphi}{\partial y} = N(x, y)$, it can be obtained that

(5-34)
$$\varphi = \int Ndy = e^x \cos y - 2y + g(x)$$

From $\frac{\partial \varphi}{\partial x} = M(x, y) = e^x \cos y + x$, we have

(5-35)
$$\frac{\partial \varphi}{\partial x} = e^x \cos y + g'(x) = e^x \cos y + x$$

which leads to g'(x) = x or $g(x) = \frac{1}{2}x^2$. The potential function in (5-34) is then expressed as

(5-36)
$$\varphi = e^x \cos y - 2y + \frac{1}{2}x^2$$

and the implicit solution is $\varphi = e^x \cos y - 2y + \frac{1}{2}x^2 = C$, where C is a constant.

Integrating Factor for Exactness

Most of the ODEs are not exact. However, some of them can be modified into exact equations by multiplying a nonzero function $\mu(x, y)$, which is called an integrating factor. For example,

$$(5-37) 2y^2 - 3xy + (6xy - 3x^2)y' = 0$$

where $M = 2y^2 - 3xy$ and $N = 6xy - 3x^2$. Then, we have $\frac{\partial M}{\partial y} = 4y - 3x$

and
$$\frac{\partial N}{\partial x} = 6y - 6x$$
. Clearly, $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$ which means (5-37) is not exact.

However, if we multiply a function $\mu(x, y) = y$ into (5-37), then

(5-38)
$$2y^3 - 3xy^2 + (6xy^2 - 3x^2y)y' = 0, \text{ for } y \neq 0$$

where
$$M = 2y^3 - 3xy^2$$
 and $N = 6xy^2 - 3x^2y$. Then, $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x} = 6y^2 - 6xy$,

which means (5-38) is exact. Hence, the potential function can be obtained as

 $\varphi = 2xy^3 - \frac{3}{2}x^2y^2$, and the implicit solution for (5-38) is shown as

(5-39)
$$\varphi = 2xy^3 - \frac{3}{2}x^2y^2 = C, \quad \text{for } y \neq 0$$

with C constant. However, y=0 is also a solution of (5-37) and can be included in (5-39). Hence, the implicit solution of (5-37) is

$$(5-40) 2xy^3 - \frac{3}{2}x^2y^2 = C$$

which contain the solution y=0, different to (5-39).

Next, let's introduce some different methods to determine integrating factors for exactness.

Consider x - 2xy - y' = 0, which is not exact since $\frac{\partial M}{\partial y} = -2x$ and

 $\frac{\partial N}{\partial x} = 0$ are different. Multiply an integrating factor μ to obtain

(5-41)
$$\mu(x-2xy) - \mu y' = 0$$

where $M = \mu(x - 2xy)$ and $N = -\mu$. The exactness is guaranteed if the

condition $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$ is satisfied, i.e.,

(5-42)
$$(x - 2xy)\frac{\partial \mu}{\partial y} - 2\mu x = -\frac{\partial \mu}{\partial x}$$

If we choose $\mu = \mu(x)$, then $\frac{\partial \mu}{\partial y} = 0$ and (5-42) becomes $-2\mu x = -\frac{d\mu}{dx}$.

Hence,

$$\frac{d\mu}{\mu} = 2xdx$$

which has separable variables. Further taking integration yields $ln|\mu| = x^2$ or $\mu = \pm e^{x^2}$. Now, select $\mu = e^{x^2}$ as the integrating factor and express (5-41) as

(5-44)
$$e^{x^2}(x-2xy)-e^{x^2}y'=0$$

where
$$\frac{\partial \varphi}{\partial x} = M = e^{x^2} (x - 2xy)$$
 and $\frac{\partial \varphi}{\partial y} = N = -e^{x^2}$. From $\frac{\partial \varphi}{\partial y} = -e^{x^2}$, it can

be obtained that

(5-45)
$$\varphi = -e^{x^2}y + g(x)$$

and from $\frac{\partial \varphi}{\partial x} = e^{x^2} (x - 2xy)$ we have

(5-46)
$$\frac{\partial \varphi}{\partial x} = -2e^{x^2}xy + g'(x) = e^{x^2}(x - 2xy)$$

Clearly, $g'(x) = xe^{x^2}$ or $g(x) = \frac{1}{2}e^{x^2}$. Then, the potential function in (5-45) is

(5-47)
$$\varphi = -e^{x^2}y + \frac{1}{2}e^{x^2} = e^{x^2}\left(\frac{1}{2} - y\right)$$

and the solution is $\varphi = e^{x^2} \left(\frac{1}{2} - y \right) = C$ or explicitly expressed as

$$(5-48) y = \frac{1}{2} - Ce^{-x^2}$$

where C is a constant. Since $\mu = e^{x^2} \neq 0$, (5-48) is also the explicit solution of the original ODE x - 2xy - y' = 0, which is not exact.

Further consider $3y^2 + 2xy + (3xy + x^2)y' = 0$ as an example, which is

not exact since $\frac{\partial M}{\partial y} = 6y + 2x$ and $\frac{\partial N}{\partial x} = 3y + 2x$ are different. Choose μ

as the integrating factor, i.e.,

(5-49)
$$\mu(3y^2 + 2xy) + \mu(3xy + x^2)y' = 0$$

where $M = \mu(3y^2 + 2xy)$ and $N = \mu(3xy + x^2)$. The exactness requires that $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$, which is equivalent to

$$(5-50) \qquad \left(3y^2 + 2xy\right)\frac{\partial\mu}{\partial y} + \mu(6y + 2x) = \left(3xy + x^2\right)\frac{\partial\mu}{\partial x} + \mu(3y + 2x)$$

After rearrangement, it is written as

(5-51)
$$\left(3y^2 + 2xy\right)\frac{\partial\mu}{\partial y} - \left(3xy + x^2\right)\frac{\partial\mu}{\partial x} + 3\mu y = 0$$

For simplicity, we may choose $\mu \equiv \mu(x)$ or $\mu \equiv \mu(y)$, but it is still difficult for us to solve (5-51). Instead, let's try $\mu = x^a y^b$, then (5-51) becomes

(5-52)
$$bx^{a}y^{b-1}(3y^{2}+2xy)-ax^{a-1}y^{b}(3xy+x^{2})+3x^{a}y^{b+1}=0$$

Further multiply it with $x^{-a}y^{-b}$ on both sides to obtain

(5-53)
$$3(b-a+1)xy^2 + (2b-a)x^2y = 0$$

for $x \neq 0$ and $y \neq 0$. Hence, b-a+1=0 and 2b-a=0. It can be found that a=2 and b=1, i.e., $\mu=x^2y$. Now, we rewrite (5-49) as

(5-54)
$$(3x^2y^3 + 2x^3y^2) + (3x^3y^2 + x^4y)y' = 0$$

where $M = \frac{\partial \varphi}{\partial x} = 3x^2y^3 + 2x^3y^2$ and $N = \frac{\partial \varphi}{\partial y} = 3x^3y^2 + x^4y$. Then, taking the

integration for $\frac{\partial \varphi}{\partial y} = 3x^3y^2 + x^4y$ yields

(5-55)
$$\varphi = x^3 y^3 + \frac{1}{2} x^4 y^2 + g(x)$$

From $\frac{\partial \varphi}{\partial x} = 3x^2y^3 + 2x^3y^2$, we have

(5-56)
$$\frac{\partial \varphi}{\partial x} = 3x^2y^3 + 2x^3y^2 + g'(x) = 3x^2y^3 + 2x^3y^2$$

which implies g'(x) = 0. For simplicity, let g(x) = 0, then the potential function in (5-55) is

(5-57)
$$\varphi = x^3 y^3 + \frac{1}{2} x^4 y^2$$

and the implicit solution is

$$(5-58) x^3 y^3 + \frac{1}{2} x^4 y^2 = C$$

with C constant.

The method of integrating factor can be also used to solve the ODE with separable variables, i.e., y' = g(x)h(y) or g(x)h(y) - y' = 0. Choose the integrating factor as $\mu = \frac{1}{h(y)}$, then

(5-59)
$$g(x) - \frac{1}{h(y)}y' = 0$$

where M(x) = g(x) and $N(y) = -\frac{1}{h(y)}$. It is easy to check that

(5-60)
$$\frac{\partial M(x)}{\partial y} = \frac{\partial N(y)}{\partial x} = 0$$

which means (5-59) is exact. Then, from $\frac{\partial \varphi}{\partial y} = N(y) = -\frac{1}{h(y)}$, we hve

(5-61)
$$\varphi = -\int \frac{1}{h(y)} dy + r(x)$$

From $\frac{\partial \varphi}{\partial x} = M = g(x)$, it can be obtained that

(5-62)
$$\frac{\partial \varphi}{\partial x} = r'(x) = g(x)$$

which implies $r(x) = \int g(x)dx$. Then, the potential function in (5-61) is

(5-63)
$$\varphi = -\int \frac{1}{h(y)} dy + \int g(x) dx$$

and the implicit solution is

$$-\int \frac{1}{h(y)} dy + \int g(x) dx = C$$

with C constant.