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5. General First-Order Ordinary Differential Equations 

Although we have learned how to solve CODE, there are a lot of 

engineering problems related to general ODEs, not CODEs. From now on, we 

will focus on the general ODEs and start with 1st-order ODEs. 

There are two kinds of expression to represent a 1st-order ODE, which 

are described as 

(5-1) ( ) ( )( ) 0=′ xy,xy,xF  

or 

(5-2) ( ) ( )( )xy,xfxy =′  

where y(x) is the unknown function and x is the independent variable. Here, we 

will focus on the form of (5-2) and simply represent it as ( )y,xfy =′ . For 

example, 63 +=′ yy  and 22 /yexyy −− +=′  are 1st-order ODEs. For the first 

one 63 +=′ yy , it is a CODE and we have learned how to solve the equation. 

For the second one 22 /yexyy −− +=′ , since it is not a CODE, we have to learn 

different methods to determine the solution. 

For the 1st-order ODE (5-2) defined on an interval I of x, if ( )xϕ  is a 

solution of (5-2), then it should satisfy 

(5-3) ( )ϕϕ ,xf=′ ,  for x∈I. 

For example, 

(5-4) xke 32 −+−=ϕ  

is a general solution of 

(5-5) 63 +=′ yy  

where k is an arbitrary number. 

Explicit and Implicit Solutions 

The solution ( )xy ϕ=  is called an explicit solution since ( )xϕ  can be 

directly determined by x. If a solution cannot be explicitly expressed as a 

function of x, then it is called an implicit solution. For example, a 1st-order 

ODE is given as 

(5-6) 
xe

xy
y

y −
+=′ 2

,  for xe y ≠  
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and its solution cannot be explicitly expressed as ( )xy ϕ= . However, we can 

find that its solution should satisfy the following equation 

(5-7) kexxy y =−+ 2  

where k is an arbitrary number. To verify that the y(x) in (5-7) is a solution of 

(5-6), let’s take the derivative of (5-7) with respect to x and then we will obtain 

that 02 =′−+′+ yexyxy y , which can be rearranged as 
xe

xy
y

y −
+=′ 2

. Therefore, 

y(x) in (5-7) is indeed a solution of (5-6). That means (5-7) is an implicit way 

to represent the solution y(x). Hence, we call (5-7) an implicit solution. 

Numeric Solutions 

In addition to explicit and implicit solution, we can also use the numeric 

result to represent the solution. For example, (5-6) can be solved by the 

Matlab/Simulink for y(0)=1. From (5-7), we know that k=−e=−2.71828. The 

block diagram and numeric result of the solution y(x) is shown below. 

 

 

 

 

 

 

 

 

 

 

 

Next, we will introduce some ODEs with some special properties and 

show the way to solve them. 
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Separable Variables 

In general, a 1st-order ODE with variables separable is shown as the 

following form 

(5-8) ( ) ( )yhxgy =′  

If ( ) 0≠yh , then it can be also expressed as a differential form 

(5-9) ( ) ( )dxxg
yh

dy =  

It is obvious that the variables x and y are totally separated. Take integration on 

both sides, and get 

(5-10) ( ) ( ) kdxxg
yh

dy += ∫∫  

where k is a constant. Note that (5-10) is a general implicit solution of y(x). 

For example, consider 
y

ye yx 1=′+  with y(0)=1, which can be rearranged 

as 






=′ −− yx e
y

ey
1

. Obviously, it has separable variables with ( ) xexg −=  and 

( ) ye
y

yh −= 1
. From (5-9), we have dxedyye xy −=  and take integration on both 

sides to get kdxedyye xy += ∫∫
− , which results in a general implicit solution 

shown as 

(5-11) ( ) keey xy +−=− −1  

From the initial condition y(0)=1, we have 1=k , i.e., y satisfies 

(5-12) ( ) 11 +−=− −xy eey  

which is an implicit solution for y(5-0)=1. 

Next, let’s introduce an application concerning 

separable variables, which is a cylindrical water tank with 

radius r shown on the right. The water level is h and we 

want to discharge the water through a drain hole at the 

bottom. If the cross-sectional area of the hole is a, how 

long it will take to empty the tank? 

 The volume of water discharged from the drain hole is a·dx, where dx is 

h 

r a 
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the distance that the water leaves down from the hole. Since the volume of 

discharged water is equal to the decreased volume −(πr2)dh of the water on the 

top, we have dhradx 2π−=  or 

(5-13) ghaav
dt

dx
a

dt

dh
r 22 ===−π  

where 
dt

dx
v =  is the velocity of the discharged water from the drain hole, and 

according to the Torricelli’s theorem, the velocity is ghv 2= . Hence, 

(5-14) dt
r

a

gh

dh
22 π

−=  

which clearly has separable variables. Further, taking integral on both sides 

yields kt
r

a

g

h +−=
2

2
π

, where k is a constant. After rearrangement, the water 

level is obtained as 

(5-15) 
2

22







 −= kt
r

ag
h

π
 

Let 0h  be the initial water level at t=0, then ghk 02= , i.e., 

(5-16) ( )
2

0
2

2

2 









−=

g

h
t

r

ag
th

π
 

If the tank is empty at t=tf, then ( ) 0
2 0

2
=−=

g

h
t

r

a
th ff π

, or 
g

h

a

r
t f

0
2 2π= . 

Therefore, it takes the time 
g

h

a

r
t f

0
2 2π=  to completely discharged the water 

tank from the initial water level ( ) 00 hh = . 

Exactness and Potential Function 

In general, a 1st-order ODE ( )y,xfy =′  can be rewritten into the 

following form 

(5-17) ( ) ( ) 0=′+ yy,xNy,xM  

or 

(5-18) ( ) ( ) 0=+ dyy,xNdxy,xM  
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where ( )y,xM , ( )y,xN , yM ∂∂  and xN ∂∂  are all continuous within a 

rectangle region S in the x-y plane. An interesting thing happens if a function 

( )y,xϕ  satisfies ( )y,xM
x

=
∂
∂ϕ

 and ( )y,xN
y

=
∂
∂ϕ

, then (5-17) and (5-18) can 

be expressed as 

(5-19) 0=
∂
∂+

∂
∂

dx

dy

yx

ϕϕ
 

and 

(5-20) 0=
∂
∂+

∂
∂

dy
y

dx
x

ϕϕ
 

Taking the derivative of ( )y,xϕ with respect to x gets  

(5-21) ( ) 0=
∂
∂+

∂
∂=

dx

dy

yx
y,x

dx

d ϕϕϕ  

which also implies the differential of ( )y,xϕ  is 

(5-22) ( )( ) 0=
∂
∂+

∂
∂= dy

y
dx

x
xy,xd

ϕϕϕ  

Therefore, (5-22) is equivalent to  

(5-23) ( ) Cy,x =ϕ  

where C is a constant. That means the solution y(x) can be implicitly 

represented by ( ) Cy,x =ϕ . Here, the function ( )y,xϕ  is usually called a 

potential function. Besides, (5-17) is said to be exact within a rectangle region 

S in the x-y plane. 

In conclusion, if ( ) ( ) 0=′+ yy,xNy,xM  is exact, then there exists an 

implicit solution ( ) Cy,x =ϕ , where ( )y,xM
x

=
∂
∂ϕ

 and ( )y,xN
y

=
∂
∂ϕ

. Also, 

from the truth of 

(5-24) 
yxyxxy ∂∂

∂=








∂
∂

∂
∂=









∂
∂

∂
∂ ϕϕϕ 2

 

we know that 

(5-25) 
( ) ( )

x

y,xN

y

y,xM

∂
∂=

∂
∂

 

Now, one question is raised: Can we declare that if (5-25) is true, then 
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( ) ( ) 0=′+ yy,xNy,xM  is exact? The answer is YES! Let’s explain it below. 

Assume both 
( )
y

y,xM

∂
∂

 and 
( )
x

y,xN

∂
∂

 are continuous on a rectangle 

region S. Under the condition 
( ) ( )

x

y,xN

y

y,xM

∂
∂=

∂
∂

 as shown in (5-25), we 

choose an arbitrary point ( )00 y,x  in S and define 

(5-26) ( ) ( ) ( )∫∫ +=
y

y

x

x
dtt,xNdsy,sMy,x

00
0ϕ  

for any point (x,y) in S. Then, we have 

(5-27) 

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )y,xMy,xMy,xMy,xM

dt
t

t,xM
y,xMdt

x

t,xN
y,xM

dtt,xN
x

dsy,sM
xx

y

y

y

y

y

y

x

x

=−+=
∂

∂+=
∂

∂+=

∂
∂+

∂
∂=

∂
∂

∫∫

∫∫

00

00

0

       

       
00

00

ϕ

 

(5-28) ( ) ( )y,xNdtt,xN
yy

y

y
=

∂
∂=

∂
∂

∫
0

ϕ
 

Obviously, if 
( ) ( )

x

y,xN

y

y,xM

∂
∂=

∂
∂

, then there exists a function ( )y,xϕ  as 

shown in (5-26), which satisfies ( )y,xM
x

=
∂
∂ϕ

 and ( )y,xN
y

=
∂
∂ϕ

. That 

means ( ) ( ) 0=′+ yy,xNy,xM  is exact. 

For example, consider the 1st-order ODE ( ) ( ) 031 2 =′−++ yxyxyx , 

where ( )yxM 31+=  and xyxN −= 2 . Since x
y

M
3=

∂
∂

 is not equal to 

12 −=
∂
∂

xy
x

N
, we know that ( ) ( ) 031 2 =′−++ yxyxyx  is not exact and we 

cannot solve it by choosing a potential function. 

Next, consider 
yeyx

xy
y −+

−−=′
2

2 1
. To solve it, we first write it into the 

following form 

(5-29) ( ) 01 22 =′++−=′+ − yeyxxyyNM y  

where yeyxNxyM −+=−= 22     and     1 . Since xy
x

N

y

M
2=

∂
∂=

∂
∂

, we know 
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that (5-29) is exact. Hence, from ( )y,xM
x

=
∂
∂ϕ

, we have 

(5-30) ( )yhxyxMdx +−== ∫
22

2
1ϕ  

and from ( )y,xN
y

=
∂
∂ϕ

, we have 

(5-31) ( ) yeyxyh
dy

d
yx

y
−+=+=

∂
∂ 22ϕ

 

i.e., ( ) yeyh
dy

d −=  or ( ) yeyh −−= . Therefore, the potential function in (5-30) 

is expressed as 

(5-32) yexyx −−−= 22

2
1ϕ  

That means the implicit solution is C=ϕ  or 

(5-33) Cexyx y =−− −22

2
1

 

where C is a constant. 

Further, we take ( ) 02 =′+−+ yysinexycose xx  as the example, where 

xycoseM x +=  and ( )2+−= ysineN x . Hence, ysine
x

N

y

M x−=
∂
∂=

∂
∂

, i.e., 

the ODE is exact. From ( )y,xN
y

=
∂
∂ϕ

, it can be obtained that 

(5-34) ( )xgyycoseNdy x +−== ∫ 2ϕ  

From ( ) xycosey,xM
x

x +==
∂
∂ϕ

, we have 

(5-35) ( ) xycosexgycose
x

xx +=′+=
∂
∂ϕ

 

which leads to ( ) xxg =′  or ( ) 2

2
1

xxg = . The potential function in (5-34) is 

then expressed as 

(5-36) 2

2
1

2 xyycosex +−=ϕ  

and the implicit solution is Cxyycosex =+−= 2

2
1

2ϕ , where C is a constant. 
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Integrating Factor for Exactness 

Most of the ODEs are not exact. However, some of them can be modified 

into exact equations by multiplying a nonzero function ( )y,xµ , which is 

called an integrating factor. For example, 

(5-37) ( ) 03632 22 =′−+− yxxyxyy  

where xyyM 32 2 −=  and 236 xxyN −= . Then, we have xy
y

M
34 −=

∂
∂

 

and xy
x

N
66 −=

∂
∂

. Clearly, 
x

N

y

M

∂
∂≠

∂
∂

 which means (5-37) is not exact. 

However, if we multiply a function ( ) yy,x =µ  into (5-37), then 

(5-38) ( ) 03632 2223 =′−+− yyxxyxyy ,  for 0≠y  

where 23 32 xyyM −=  and yxxyN 22 36 −= . Then, xyy
x

N

y

M
66 2 −=

∂
∂=

∂
∂

, 

which means (5-38) is exact. Hence, the potential function can be obtained as 

223

2
3

2 yxxy −=ϕ , and the implicit solution for (5-38) is shown as 

(5-39) Cyxxy =−= 223

2
3

2ϕ ,   for 0≠y  

with C constant. However, y=0 is also a solution of (5-37) and can be included 

in (5-39). Hence, the implicit solution of (5-37) is 

(5-40) Cyxxy =− 223

2
3

2  

which contain the solution y=0, different to (5-39). 

Next, let’s introduce some different methods to determine integrating 

factors for exactness. 

Consider 02 =′−− yxyx , which is not exact since x
y

M
2−=

∂
∂

 and 

0=
∂
∂

x

N
 are different. Multiply an integrating factor µ  to obtain 

(5-41) ( ) 02 =′−− yxyx µµ  

where ( )xyxM 2−= µ  and µ−=N . The exactness is guaranteed if the 
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condition 
x

N

y

M

∂
∂=

∂
∂

 is satisfied, i.e., 

(5-42) ( )
x

x
y

xyx
∂
∂−=−

∂
∂− µµµ

22  

If we choose ( )xµµ ≡ , then 0=
∂
∂

y

µ
 and (5-42) becomes 

dx

d
x

µµ −=− 2 . 

Hence, 

(5-43) xdx
d

2=
µ
µ

 

which has separable variables. Further taking integration yields 2xln =µ  or 

2xe±=µ . Now, select 
2xe=µ  as the integrating factor and express (5-41) as 

(5-44) ( ) 02
22

=′−− yexyxe xx  

where ( )xyxeM
x

x 2
2

−==
∂
∂ϕ

 and 
2xeN

y
−==

∂
∂ϕ

. From 
2xe

y
−=

∂
∂ϕ

, it can 

be obtained that 

(5-45) ( )xgyex +−=
2

ϕ  

and from ( )xyxe
x

x 2
2

−=
∂
∂ϕ

 we have 

(5-46) ( ) ( )xyxexgxye
x

xx 22
22

−=′+−=
∂
∂ϕ

 

Clearly, ( ) 2xxexg =′  or ( ) 2

2
1 xexg = . Then, the potential function in (5-45) is 

(5-47) 






 −=+−= yeeye xxx

2

1

2

1 222

ϕ  

and the solution is Cyex =






 −=
2
12

ϕ  or explicitly expressed as 

(5-48) 
2

2
1 xCey −−=  

where C is a constant. Since 0
2

≠= xeµ , (5-48) is also the explicit solution of 

the original ODE 02 =′−− yxyx , which is not exact. 

Further consider ( ) 0323 22 =′+++ yxxyxyy  as an example, which is 
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not exact since xy
y

M
26 +=

∂
∂

 and xy
x

N
23 +=

∂
∂

 are different. Choose µ  

as the integrating factor, i.e., 

(5-49) ( ) ( ) 0323 22 =′+++ yxxyxyy µµ  

where ( )xyyM 23 2 += µ  and ( )23 xxyN += µ . The exactness requires that 

x

N

y

M

∂
∂=

∂
∂

, which is equivalent to 

(5-50) ( ) ( ) ( ) ( )xy
x

xxyxy
y

xyy 2332623 22 ++
∂
∂+=++

∂
∂+ µµµµ

 

After rearrangement, it is written as 

(5-51) ( ) ( ) 03323 22 =+
∂
∂+−

∂
∂+ y

x
xxy

y
xyy µµµ

 

For simplicity, we may choose ( )xµµ ≡  or ( )yµµ ≡ , but it is still difficult 

for us to solve (5-51). Instead, let’s try ba yx=µ , then (5-51) becomes 

(5-52) ( ) ( ) 03323 12121 =++−+ +−− bababa yxxxyyaxxyyybx  

Further multiply it with ba yx −−  on both sides to obtain 

(5-53) ( ) ( ) 0213 22 =−++− yxabxyab  

for 0≠x  and 0≠y . Hence, 01=+− ab  and 02 =− ab . It can be found 

that a=2 and b=1, i.e., yx2=µ . Now, we rewrite (5-49) as 

(5-54) ( ) ( ) 0323 4232332 =′+++ yyxyxyxyx  

where 2332 23 yxyx
x

M +=
∂
∂= ϕ

 and yxyx
y

N 4233 +=
∂
∂= ϕ

. Then, taking the 

integration for yxyx
y

4233 +=
∂
∂ϕ

 yields 

(5-55) ( )xgyxyx ++= 2433

2
1ϕ  

From 2332 23 yxyx
x

+=
∂
∂ϕ

, we have 

(5-56) ( ) 23322332 2323 yxyxxgyxyx
x

+=′++=
∂
∂ϕ

 

which implies ( ) 0=′ xg . For simplicity, let ( ) 0=xg , then the potential 

function in (5-55) is 
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(5-57) 2433

2
1

yxyx +=ϕ  

and the implicit solution is 

(5-58) Cyxyx =+ 2433

2
1

 

with C constant. 

The method of integrating factor can be also used to solve the ODE with 

separable variables, i.e., ( ) ( )yhxgy =′  or ( ) ( ) 0=′− yyhxg . Choose the 

integrating factor as ( )yh

1=µ , then 

(5-59) ( ) ( ) 0
1 =′− y
yh

xg  

where ( ) ( )xgxM =  and ( ) ( )yh
yN

1−= . It is easy to check that 

(5-60) 
( ) ( )

0=
∂

∂=
∂

∂
x

yN

y

xM
 

which means (5-59) is exact. Then, from ( ) ( )yh
yN

y

1−==
∂
∂ϕ

, we hve 

(5-61) ( ) ( )xrdy
yh

+−= ∫
1ϕ  

From ( )xgM
x

==
∂
∂ϕ

, it can be obtained that 

(5-62) ( ) ( )xgxr
x

=′=
∂
∂ϕ

 

which implies ( ) ( )∫= dxxgxr . Then, the potential function in (5-61) is 

(5-63) ( ) ( )∫∫ +−= dxxgdy
yh

1ϕ  

and the implicit solution is 

(5-64) ( ) ( ) Cdxxgdy
yh

=+− ∫∫
1

 

with C constant.  


